Помощь в написании студенческих работ
Антистрессовый сервис

Гель-хроматография. 
Методы исследования материалов и процессов

РефератПомощь в написанииУзнать стоимостьмоей работы

Эффект разделения веществ в случае применения гельхроматографии обусловлен тем, что молекулы, отличающиеся по молярной массе (длине), способны проникать в структуру геля на разную глубину и удерживаться в ней различное время. Поэтому приэлюировании из колонки в первую очередь выходят крупные молекулы, не способные проникнуть вглубь гранул геля, а в последнюю — самые мелкие. Происходит как бы… Читать ещё >

Гель-хроматография. Методы исследования материалов и процессов (реферат, курсовая, диплом, контрольная)

В данном методе анализируемый раствор пропускают через колонку, заполненную набухшим гранулированным гелем (неподвижная фаза). Частицы геля состоят из высокомолекулярного соединения (ВМС), имеющего сетчатое строение (гибкие макромолекулы сшиты поперечными химическими связями). По этой причине набухший гель имеет сетчатую структуру, между узлами которой находится растворитель.

Распределение межузельного пространства геля по радиусам — основная характеристика применяемого геля, она зависит от природы полимера и растворителя, частоты сетки и температуры.

Эффект разделения веществ в случае применения гельхроматографии обусловлен тем, что молекулы, отличающиеся по молярной массе (длине), способны проникать в структуру геля на разную глубину и удерживаться в ней различное время. Поэтому приэлюировании из колонки в первую очередь выходят крупные молекулы, не способные проникнуть вглубь гранул геля, а в последнюю — самые мелкие. Происходит как бы просеивание молекул через межузельное пространство геля.

Хроматографию осуществляют следующим образом. Гранулы геля помещают в стеклянную колонку, дают им набухнуть в растворителе и далее в колонку подают анализируемую смесь веществ. Небольшие молекулы равномерно распределяются по всему объему гранул, в то время как более крупные молекулы, будучи не в состоянии проникнуть внутрь, остаются только в окружающем гранулы слое растворителя (внешнем объеме). Далее колонку промывают растворителем — элюентом. Как уже отмечалось, крупные молекулы перемещаются по колонке с большей скоростью, чем мелкие, движение которых постоянно замедляется диффузией вглубь гранул неподвижной фазы. В итоге компоненты смеси элюируются из колонки в порядке уменьшения их молярной массы. Пробы (фракции) выходящего из колонки элюента отбирают на анализ. Проведение эксперимента значительно упрощается, если имеется возможность непрерывного автоматического анализа элюента.

Для исследования гель нужно выбирать таким, чтобы его сродство к анализируемым веществам было минимальным: в этом случае вещества способны свободно перемешаться вдоль слоя колонки в соответствии с размером их молекул. Гранулы геля должны иметь оптимальные размеры : слишком мелкие — способствуют быстрому установлению диффузионного равновесия, но вызывают высокое гидравлическое сопротивление колонки. Применение крупных гранул дает низкое гидравлическое сопротивление, но тормозит диффузию, увеличивая время выхода анализируемых веществ.

Кроме того, гранулы должны обладать определенной механической прочностью, иначе их деформация в колонке приведет к падению скорости элюирования.

Наиболее широкое распространение для гель-хроматографии получил сефадекс (гель декстрана — высокомолекулярного полисахарида), образующийся при выращивании определенных бактерий в среде сахарозы. Выпускается восемь типов сефадекса, различающихся по степени их набухания, он устойчив к щелочам и слабым кислотам.

Рассмотрим конкретный пример разделения смеси крахмала и глюкозы на сефадексе G-25. В колонку с 87 г геля поместили 2 см3 водного раствора крахмала и глюкозы и элюировали смесь раствором поваренной соли. Фракции фильтрата собрали и определили в них содержание крахмала и глюкозы. Молекулы крахмала практически не проникали внутрь гранул геля, поэтому крахмал элюировался первым при расходе элюента 32—44 мл, а глюкоза — второй при расходе элюента 66−80 мл.

По полученным данным построили хроматограмму. Для этого по оси ординат отложили концентрацию веществ во фракциях, а по оси абсцисс — объем элюента (или номер фракции). Из хроматограммы определили объемы удерживания веществ V/ — общий объем собранного элюента до момента выхода из колонки фракции с максимальной концентрацией вещества. Из конкретной колонки данное вещество элюируется всегда при одном и том же V,. В рассматриваемом случае объем удерживания для крахмала оказался равным 35 мл, а для глюкозы — 73 мл.

Объем удерживания веществ воспроизводится достаточно точно. Поэтому с помощью гель-хроматографии можно решать и обратную задачу — определять молярную массу неизвестных соединений, определив их V,. Для этого колонку сначала калибруют: определяют объемы удерживания ВМС (стандартных полимеров) с известной молярной массой. С этой целью для калибровки гидрофильных гелей чаще всего применяют белки, обладающие известной фиксированной молярной массой. Кроме того, для ряда глобулярных белков, помимо молярной массы, определенной химическим путем, известен также и размер их молекул. Таким образом, с помощью колонки, калиброванной известными белками, можно получить представление и об эффективном радиусе исследуемых молекул.

Показать весь текст
Заполнить форму текущей работой