Помощь в написании студенческих работ
Антистрессовый сервис

Физика. 
Риторика

РефератПомощь в написанииУзнать стоимостьмоей работы

Чтобы показать силу идеи атома, представим себе капельку воды размером 0,5 см. Если мы будем пристально разглядывать ее, то ничего, кроме воды, спокойной, сплошной воды, мы не увидим. Даже под лучшим оптическим микроскопом при 2000;кратном увеличении, когда капля примет размеры большой комнаты, и то мы все еще увидим относительно спокойную воду, разве что по ней начнут шнырять какие-то… Читать ещё >

Физика. Риторика (реферат, курсовая, диплом, контрольная)

Нет, наверное, в истории физики человека, который бы с большим жаром, большей любовью к предмету своей речи проповедовал бы научные истины, чем великий физик-электротехник Никола Тесла (1856—1943). Во вводной части своих лекций он буквально очаровывал слушателей перспективами, открывающимися при изучении законов природы, перед тем как перейти к изложению сути своих экспериментов. Несмотря на то что теория мирового эфира давно отвергнута физиками, эмоциональное воздействие лекций Теслы ощущается в полной мере и сейчас. Предлагаемый фрагмент может служить прекрасной иллюстрацией, как нужно готовить аудиторию к восприятию сложного учебного материала. Обратите также внимание на толерантность исследователя, делегировавшего слушателям благородное право на собственное мнение.

«Нет предмета более захватывающего, более достойного изучения, чем природа. Понять этот великий механизм, обнаружить силы, которые в нем работают, и законы, ими управляющие, — вот величайшая цель человеческого разума.

Природа хранит неисчерпаемые запасы энергии. Вечный приемник и передатчик этой бесконечной энергии — эфир. Признание существования эфира и функций, которые он выполняет, — один из наиболее выдающихся результатов современной научной мысли. Один только отказ от идеи действия на расстоянии и признание существования среды, пронизывающей всю материю, освободил умы мыслителей от вечных сомнений и, открыв новый горизонт непредвиденных возможностей, вызвал особый интерес к явлению, с которым мы знакомы давно. Это стало большим шагом в направлении понимания сил природы и их многообразных воздействий на паши чувства. Для просвещенного ученого-физика это то же, что понимание механизма действия огнестрельного оружия или парового двигателя для варвара. Явления, на которые мы смотрели как на чудеса, не поддающиеся осмыслению, теперь предстают перед нами в ином свете. Искра, произведенная катушкой индуктивности, блеск лампы накаливания, механические проявления силы токов и магнитов уже доступны нашему пониманию; вместо чего-либо непонятного, как прежде, наблюдение за этими явлениями рисует у нас в голове картинку простого механизма, и хотя точное их происхождение для нас все еще загадка, мы знаем, что правда недолго будет от нас сокрыта, и инстинктивно чувствуем, что понимание близко. Мы все еще восторгаемся этими прекрасными явлениями, этими странными силами, но мы уже нс беспомощны; мы в определенной мере можем объяснить их и надеемся в конце концов сорвать покровы тайны, окружающей их.

Насколько далеко мы можем продвинуться в понимании окружающего мира — вопрос, который волнует каждого естествоиспытателя… Неутомимый дух познания ведет нас далеко за пределы нашего восприятия, и у нас есть надежда, что эти неизведанные миры — ничтожно малые и бесконечно огромные — могут в определенной степени открыться нам. И если мы достигнем этого знания, пытливый разум, возможно, подойдет к пределу, — который невозможно осознать, — истинного мироощущения, внешнее проявление которого составляет хрупкую основу нашей философии.

Из всех форм неизмеримой, все пронизывающей природной энергии, которая постоянно движется и изменяется, как душа, дающая жизнь инертной Вселенной, электричество и магнетизм, вероятно, наиболее удивительные. Явления притяжения, тепла и света мы наблюдаем каждый день и скоро к ним привыкаем, они теряют для нас загадочность и удивительность; но электричество и магнетизм, в своем единстве, кажущиеся двойственными, есть силы уникальные. Они заключают в себе явления притяжения, отталкивания и вращения, странные проявления необъясненных факторов, они возбуждают мысль и побуждают разум к исследованию.

Что есть электричество и что есть магнетизм? Эти вопросы задают снова и снова. Наиболее мощные умы непрестанно бьются над разрешением этой проблемы; и все-таки еще нет исчерпывающего ответа. По даже если в настоящий момент мы не можем дать точного определения этим силам, мы значительно продвинулись в разрешении этой проблемы. С уверенностью можно утверждать, что явления электричества и магнетизма связаны с эфиром, и, возможно у нас есть основания говорить, что эффекты статического электричества — это эффекты эфира под напряжением, а явления динамического электричества и электромагнитные эффекты — это проявления эфира в движении. Но и это не является ответом на вопрос: что же есть электричество и магнетизм?

Сначала мы, естественно, задаемся вопросом, что есть электричество, и есть ли такое явление вообще? …Старая теория Франклина, хотя и в чем-то неудовлетворительна, с определенной точки зрения является наиболее состоятельной. Все же теория о двух электричествах широко принята, поскольку наиболее убедительно объясняет явления электричества. Но теория, которая наилучшим образом объясняет факты, не обязательно истинна. Изощренный ум может изобрести теории, которые удовлетворят наблюдателя, и почти у каждого самостоятельного мыслителя есть собственный взгляд на любой предмет.

Не из желания отстоять свою точку зрения, но лишь затем, чтобы познакомить вас с некоторыми результатами, которые я далее и опишу, показать вам путь моих размышлений, то, к чему я пришел, — вот смысл моих дальнейших рассуждений"[1].

Лекция была закончена на высоком эмоциональном фоне, способствующем релаксации публики после напряженной мыслительной работы в течение достаточно продолжительного времени. Польстив аудитории, Тесла стремился подкрепить воздействие рациональных доводов психологическими.

«Представляя вашему вниманию результаты моих исследований по этому предмету, я остановился только вскользь на фактах, которые мог бы описывать очень долго, и среди моих наблюдений я выбрал только те, которые, как мне показалось, могли бы вас заинтересовать.

Насколько результаты, полученные мной, применимы на практике, покажет будущее. Все же, каковы бы ни были непосредственные результаты этих опытов, я надеюсь, что они будут только шагом в дальнейших изысканиях идеала и совершенства. Именитые ученые решают проблему использования одного типа излучения без применения других в устройствах, созданных для производства света при помощи преобразования одной из форм энергии в свет.

…Но есть возможность получения энергии не только в виде света, движущей силы и энергии любого другого вида в каком-то другом виде из окружающей среды. Придет время и все это будет достигнуто, а сейчас настало время, когда можно произнести эти слова перед просвещенной аудиторией и тебя не сочтут глупым мечтателем. Мы вращаемся в бесконечном пространстве с невообразимой скоростью, все вокруг нас вращается, все движется, везде есть энергия. Должен быть способ получать эту энергию напрямую. Тогда, получив свет из окружающей среды, получив от него энергию, когда любой тип энергии добывается без усилий из источника неисчерпаемого, человечество пойдет вперед семимильными шагами. Одна только мысль об этих замечательных возможностях расширяет наше сознание, укрепляет надежду и наполняет сердца высшим ликованием"[2].

Опытный лектор, как показывает следующий фрагмент, может без ущерба предварять свое выступление и достаточно продолжительным отступлением. Важно только, чтобы это отступление интриговало, подогревало интерес к заявленной теме или было бы приятно слуху аудитории. Всего этого Тесла добивался, активно используя вопросительные конструкции, средства выразительности; выходя за рамки темы, обращаясь к философским вопросам человеческого бытия.

Стоит заметить, что предваряя текст лекции о физической природе света, Тесла связывал ее предмет с важнейшим органом чувств, присущим каждому слушателю. Так достигалась актуализация учебного материала.

О свете и других высокочастотных явлениях.

«Знания можно получать только при помощи глаз. Какова основа всех философских систем прошлого и современности, фактически, всей философии человека? Я существую, я мыслю, я мыслю, следовательно, я существую. Но как бы я мыслил, и откуда бы мне было известно, что я существую, если бы у меня не было глаз? Ибо знание подразумевает сознание; сознание означает идеи, понятия; понятия подразумевают картинки или образы, а образы — зрение, а следовательно, и орган зрения. Но вот вопрос, а как быть со слепыми людьми? Да, слепой человек может создавать великолепные поэмы, формы и сцены настоящей жизни, из того мира, который он физически не видит. Слепой человек может трогать клавиши инструмента с безошибочной точностью, может спроектировать самое быстроходное судно, он может открывать и изобретать, считать и строить, может выполнять и более поразительные задачи, но все слепцы, которые творили такое, произошли от тех людей, у которых были зрячие глаза.

Природа может достигать цели разными путями. Как в физическом мире, в безбрежном океане той среды, что пронизывает все, так и в мире организмов, в жизни заданный импульс распространяется временами, может быть, со скоростью света, а иногда так медленно, что веками он кажется застывшим па месте, претерпевая процессы, неподвластные человеческому разуму, но во всех его формах, на всех стадиях энергия его сохраняется. Одинокий луч света далекой звезды, в незапамятные времена коснувшийся глаз тирана, возможно, изменил течение его жизни, изменил судьбы народов, может быть, изменил лик Земли, настолько сложны, настолько непостижимо запутаны природные процессы. Только тогда мы можем получить представление о величии Природы, когда понимаем, что в соответствии с законом сохранения энергии, где бы то ни было, силы находятся в совершенном равновесии, и поэтому энергия одной мысли может определить движение Вселенной. Совсем необязательно, чтобы отдельный индивидуум, или даже поколение, или несколько поколений имели орган зрения, то есть формировали идеи и понятия; но в какой-то момент эволюции глаз должен существовать, а иначе мысль, как мы ее понимаем, будет невозможна; иначе понятия, такие, как дух, разум, интеллект, называйте их как хотите, будут невозможны. Понятно, что в каком-то ином мире, у каких-то других существ глаз заменен другим органом, таким же или более совершенным, но эти существа не могут быть людьми.

Итак, что подталкивает всех нас к намеренным движениям разного рода? Снова глаз. Если я осознаю движение, я должен иметь идею или понятие, а значит — глаз. Если я не совсем осознаю движение, то это происходит потому, что образы расплывчаты и смазаны, наложены один на другой. Но когда я произвожу движение, импульс, который меня толкает, происходит изнутри или извне? Величайшие физики не считали для себя зазорным попытаться ответить на этот и подобные ему вопросы и иногда полностью отдавались восторгу чистой и ничем неограниченной мысли. Такие вопросы обычно не относят к сфере позитивной физики, но вскоре станут относить. Гельмгольц, возможно, думал о жизни больше, чем любой из современных ученых. Лорд Кельвин высказал мысль о том, что жизнь имеет электрическую природу, и что есть сила, которая является неотъемлемой частью организма, определяющая его движения. Так же, как я убежден в каждой физической истине, я убежден в том, что исходный импульс должен поступать извне.

Ибо рассмотрим простейший организм, известный нам, — возможно, имеется нечто более простое — скопление всего лишь нескольких клеток. Если он может совершать намеренное движение, то он совершает бесчисленное количество движений, все они определенны и точны. Но механизм, состоящий из конечного числа частей, которых и не очень много, не способен совершать бесчисленное количество определенных движений, поэтому импульсы, руководящие его движениями, должны поступать из окружающей среды. Так, атом, мельчайший элемент в структуре Вселенной, постоянно мечется в пространстве, как игрушка в руках внешних сил, как лодка в бушующем море. Прекратись его движение — он умрет. Материя в покое, если бы такое могло существовать, была бы мертвой материей, лишенной смысла! Никогда еще мысль, более наполненная философским смыслом, доселе не звучала. Именно так выразился профессор Дьюар, описывая свои восхитительные опыты, где с жидким кислородом обращаются как с водой, а воздух при нормальном давлении сгущается и даже твердеет под воздействием крайнего холода. Эти опыты призваны проиллюстрировать, как он выражается, последние слабые проявления жизни, последние судороги материи, которая вот-вот умрет. Но человеческий глаз не засвидетельствует такую смерть. Материя бессмертна, ибо на всех просторах Вселенной она должна двигаться, колебаться, то есть жить.

Все это я говорил, ступая, но зыбкой почве метафизики, в надежде сделать вступление в предмет моей лекции перед уважаемой аудиторией не совсем скучным. Но теперь, возвращаясь к этому предмету — этому божественному органу — зрению, этому неотъемлемому инструменту мысли и интеллектуального восторга, который открывает нам чудеса Вселенной, при помощи которого мы получили все знания, которыми располагаем, и который стимулирует и контролирует всю нашу физическую и умственную деятельность. Что на него влияет? Свет! Л что есть свет?

…Цель моей сегодняшней лекции — представить вашему вниманию определенную группу световых явлений и ряд феноменов, наблюдавшихся при изучении этих явлений"1.

Научная статья, как показывает приведенный далее пример, может быть настоящим гимном науке. Образ Теслы-ритора раскрылся здесь в полной мере. По его мысли, ученый призван не только добывать знания', гуманизм, альтруизм людей науки выступает гарантией не только материального прогресса, но и устойчивого эволюционного развития человечества. Мы видим, что речь ученого ввиду ее высокой социальной значимости обладает величайшим воспитательным потенциалом, который не может гибнуть под спудом сугубо научных интересов.

Миссия науки[3][4]

«В наше время можно встретить пессимистов, которые с выражением обеспокоенности на лицах постоянно нашептывают вам в ухо, что государства годами тайно вооружаются, вооружаются до зубов, и в какой-то день они планируют обоюдное нападение н уничтожение противной стороны. Люди, ведущие разговоры в таком духе, игнорируют силы, которые все время трудятся, без лишних слов, но неуклонно стремятся к миру. Происходит пробуждение того свободного, филантропического духа, который, даже в давние времена, озарял светом учения благородных реформаторов и философов, тот дух, который заставляет людей любой профессии и положения работать не столько ради какой-либо материальной выгоды или вознаграждения — хотя рассудок может внушать и это, — сколько, главным образом, ради успеха, ради удовольствия его достижения и ради благ, которые они, возможно, смогут дать своим соотечественникам.

Сейчас вперед устремляются люди, которые творят чудеса каждый в своей области, чьей главной целью и радостью жизни являются приобретение и распространение знаний, люди, которые намного выше всего земного, люди, на чьем знамени начертано: Все выше! Вперед и выше!

Во всех этих проявлениях, придающих возвышенный характер современному интеллектуальному развитию, электричество, развитие науки об электричестве является мощной движущей силой. Наука об электричестве открыла для нас истинную природу света, обеспечила нас бесчисленными бытовыми и точными приборами и в огромной степени прибавила точности нашему знанию. Наука об электричестве показала нам более глубокую связь, существующую между совершенно разными силами и явлениями и, таким образом, подвела нас к полному пониманию Вселенной и ее воздействия на наши органы чувств. Главное же в том, что наука об электричестве своей притягательностью, своими перспективами огромных свершений, поразительных возможностей, особенно в гуманистическом аспекте, заручилась энергетической поддержкой творческого работника; ибо где есть такая сфера деятельности, в которой его Богом данные способности принесли бы большую пользу ближним, чем эта неисследованная, почти девственная сфера, где, как в тихом лесу, тысяча голосов отвечает на каждый зов?!

Тог есть истинный творец, кто вызывает в нас высокие, благородные чувства и заставляет нас ненавидеть раздоры и кровавые побоища. Вот инженер, который строит мосты через морские заливы и глубокие расщелины и содействует установлению связи и уравниванию неоднородных масс человечества. Вот механик, который приходит со своими времяи энергосберегающими электрическими приборами, который совершенствует свой летательный аппарат не для того, чтобы сбросить пакет динамита на город или судно, но для того, чтобы способствовать развитию транспортных средств и облегчить путешествие. Вот химик, который открывает новые природные богатства и делает бытие более радостным и безопасным; а вот инженер-электрик, который рассылает свои послания о мире по всему земному шару. Не за горами то время, когда люди, которые обращают свои изобретательские способности на создание скорострельных пушек, торпед и других средств разрушения, — при этом все время уверяя вас, что это на благо человечества, — не найдут покупателей для своих одиозных приспособлений и поймут, что если бы они применили свой изобретательский талант в других областях, то, вероятно, заслужили бы гораздо более высокую награду. Когда это время наступит, повсюду эхом прокатится требование покончить с пережитками варварства, наносящими такой вред прогрессу, дать храброму воину возможность проявить достойную большего одобрения отвагу, чем ту, которую он демонстрирует, когда, опьяненный победой, стремительно бросается на своего собрата, чтобы уничтожить его. Пусть он напряженно трудится день и ночь без особых надежд на успех, оставаясь тем не менее непоколебимо стойким, пусть он бросит вызов рискованным исследованиям атмосферных высот и морских глубин; пусть он мужественно переносит беды, зной тропических пустынь и лед полярных территорий. Пусть он обратит свои усилия на отражение грозящих всему сообществу опасностей и врагов-паразитов, находящихся вокруг нас повсюду: в воздухе, которым мы дышим, в воде, которую мы пьем, и в нище, которую мы потребляем. Это действительно странно, что мы, существа, достигшие высшего уровня развития в этом уникальном мире, существа с такими беспредельными способностями к мышлению и действию, находимся во власти невидимых враждебных нам сил, что нам не должно знать, доставит ли нам глоток пищи и питья удовольствие и продление жизни или принесет страдание и приблизит гибель1. С этими врагами следует вести боевые действия современными способами во главе с бактериологом и вооружившись электричеством, оказывающим чрезвычайно полезную помощь"[5][6].

Еще один прекрасный образец эпидейктической речи в статье Н. Теслы. И этот наполненный поэтическими образами фрагмент всего лить предваряет исследование авторских прав! Впору заключить, что риторике все области человеческой деятельности покорны.

Заметки по поводу французского патента № 164 995[7]

«Время от времени Великий дух изобретательства нисходит на Землю, чтобы раскрыть тайну, которой предназначено способствовать прогрессу человечества. Он тщательно отбирает самого достойного и нашептывает ему на ухо эту тайну. Подобно яркому свету вспыхивает драгоценное знание. Когда счастливчик постигает тайный смысл услышанного, он видит чудесную перемену: его восхищенному взору открывается новый мир. Он с трудом находит сходство со старым. Это не преходящее видение, не игра его живого воображения, не фантом или пелена перед глазами, которая может растаять. Чудные картины, которые он видит, пусть пока еще не четкие, существуют. Он знает это, в его сознании нет и тени сомнения, каждой клеточкой своего тела он ощущает: эго — Великая Истина!

С этого времени идея витает в воздухе. Он шепотом сообщает ее другу, этот друг — своему другу, тот еще одному — так передается удивительное слово, которое никто, кроме него, не может понять. Слух разрастается, слух путешествует верхом на лошади, в почтовой карете, на поезде и пароходе, но телеграфу и телефону — неясный, непостижимый шепот на неизвестном языке постепенно овладевает земным шаром. Он слишком слаб, чтобы быть услышанным, слишком необычен, чтобы быть понятым: люди, как и прежде, заняты своими делами. Но вот в каком-то уголке мира обнаруживается человек с поразительно тонким чувственным восприятием и интуитивным мышлением; природа подготовила его к высокому призванию; если бы не было того, другого, избранного, Великий дух сообщил бы тайну ему. Шепот доходит до него — его охватывает необъяснимое волнение. Он и до этого упорно работал, но теперь он не знает отдыха.

День за днем он размышляет над проблемой, из ночи в ночь он мечется в постели без сна, идей одна за другой проносятся в его голове. Все более и более нарастает таинственное воздействие — необычное восторженное состояние — наивысшее напряжение, наступает этот великий миг, его слух предельно обострен, чувствительность его ментального тела возрастает — и вот, каким бы неясным ни было слово, его чудесное ухо уловило его; каким бы странным оно ни было, его тонкое сознание проникло в его смысл. Эврика! Нашел! — восклицает он. Увы, слишком поздно. Ибо, возможно, уже завтрашние вести обратят его радость в боль, боль, которая сожмет его душу, словно тисками, боль, которая убивает!"[8].

Фрагмент лекции одного из крупнейших физиков XX в., лауреата Нобелевской премии по физике Ричарда Фейнмана (1918—1988) иллюстрирует использование приема намеренного снижения стиля речи с целью облегчения восприятия учебного материала. Разговорные конструкции, образные примеры, метафорические выражения, рассыпанные в тексте, служат приближению научной информации к личному, обыденному опыту слушателя. Сам Фейнман полагал, что если человек, занимающийся квантовой физикой, не способен в двух словах объяснить пятилетнему ребенку суть своей работы, то его следует считать скорее шарлатаном, нежели серьезным ученьем.

«Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это — атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов — маленьких телец, которые находятся в беспрерывном движении, при тягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе, как вы убедились, содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения.

Чтобы показать силу идеи атома, представим себе капельку воды размером 0,5 см. Если мы будем пристально разглядывать ее, то ничего, кроме воды, спокойной, сплошной воды, мы не увидим. Даже под лучшим оптическим микроскопом при 2000;кратном увеличении, когда капля примет размеры большой комнаты, и то мы все еще увидим относительно спокойную воду, разве что по ней начнут шнырять какие-то «футбольные мячи». Это парамеция — очень интересная штука. На этом вы можете задержаться и заняться парамецией, ее ресничками, смотреть, как она сжимается и разжимается, и на дальнейшее увеличение махнуть рукой (если только вам не захочется рассмотреть ее изнутри). Парамециями занимается биология, а мы прошествуем мимо них и, чтобы еще лучше разглядеть воду, увеличим ее опять в 2000 раз. Теперь капля вырастет до 20 км, и мы увидим, как в ней что-то кишит; теперь она уже не такая спокойная и сплошная, теперь она напоминает толпу на стадионе в день футбольного состязания с высоты птичьего полета. Что же это кишит? Чтобы рассмотреть получше, увеличим еще в 250 раз. Нашему взору представится что-то похожее на [рисунок]. Это капля воды, увеличенная в миллиард раз, но, конечно, картина эта условная. Прежде всего частицы изображены здесь упрощенно, с резкими краями — это первая неточность. Для простоты они расположены на плоскости, на самом же деле они блуждают во всех трех измерениях — это во-вторых. На рисунке видны «кляксы» (или кружочки) двух сортов — черные (кислород) и белые (водород); видно, что к каждому кислороду пристроились два водорода. (Такая группа из атома кислорода и двух атомов водорода называется молекулой.) Наконец, третье упрощение заключается в том, что настоящие частицы в природе беспрерывно дрожат и подпрыгивают, крутясь и вертясь одна вокруг другой. Вы должны представить себе на картинке не покой, а движение. На рисунке нельзя также показать, как частицы «липнут друг к другу», притягиваются, пристают одна к одной и т. д. Можно сказать, что целые их группы чем-то «склеены». Однако ни одно из телец не способно протиснуться сквозь другое. Если вы попробуете насильно прижать одно к другому, они оттолкнутся.

Радиус атомов примерно равен 1 или 2 на 10~8 см. Величина 10-8 см это ангстрем, так что радиус атома равен 1 или 2 ангстремам (а). А вот другой способ запомнить размер атома: если яблоко увеличить до размеров Земли, то атомы яблока сами станут размером с яблоко.

Представьте теперь себе эту каплю воды с ее частичками, которые приплясывают, играют в пятнашки и льнут одна к другой. Вода сохраняет свой объем и не распадается на части именно из-за взаимного притяжения молекул. Даже катясь по стеклу, капля не растекается, опять-таки из-за притяжения. И все вещества не улетучиваются по той же причине. Движение частиц в теле мы воспринимаем как теплоту чем выше температура, тем сильнее движение. При нагреве воды толчея среди частиц усиливается, промежутки между ними растут, и наступает миг, когда притяжения между молекулами уже не хватает, чтобы удержать их вместе, вот тогда они и улетучиваются, удаляются друг от друга. Так получают водяной пар: при повышении температуры усиливается движение и частицы воспаряют"[9].

А вот как просто можно говорить и сложных вещах — о сути научного метода.

«…Предмет науки предстает перед нами во множестве проявлений, в обилии признаков. Спуститесь к морю, вглядитесь в него. Это ведь не просто вода. Это вода и пена, это рябь и набегающие волны, это облака, солнце и голубое небо, это свет и тепло, шум и дыхание ветра, это песок и скалы, водоросли и рыба, их жизнь и гибель, это и вы сами, ваши таза и мысли, ваше ощущение счастья. И не то ли в любом другом месте, не такое ли разнообразие явлений и влияний? Вы не найдете в природе ничего простого, все в ней перепутано и слито. А наша любознательность требует найти в этом простоту, требует, чтобы мы ставили вопросы, пытались ухватить суть вещей и попять их мпоголикость как возможный итог действия сравнительно небольшого количества простейших процессов и сил, на все лады сочетающихся между собой.

И мы спрашиваем себя: отличается ли песок от камня? Быть может, это всего лишь множество камешков? А может, и Луна — огромный камень? Тогда, поняв, что такое камни, не поймем ли мы тем самым природу песка и Луны? А ветер — что это такое? Может, это всплески воздуха, как вон те всплески воды у берега? Что общего между всяким движением? А есть ли что-нибудь общее между всевозможными звуками? Сколько получится, если пересчитать все цвета? И так далее и так далее. Вот так мы постепенно пробуем проанализировать все вокруг, связать то, что кажется несвязуемым, в надежде, что удастся уменьшить количество различных явлений и тем самым их лучше понять.

Способ получать частичные ответы на подобные вопросы был придуман еще несколько сот лет назад. Наблюдение, размышление и опыт — вот что составляет так называемый научный метод.

…Что значит «понять» что-либо? Представьте себе, что сложный строй движущихся объектов, который и есть мир, — это что-то вроде гигантских шахмат, в которые играют боги, а мы следим за их игрой. В чем правила игры, мы не знаем; все, что нам разрешили, — это наблюдать за игрой. Конечно, если посмотреть подольше, то кое-какие правила можно ухватить. Под основными физическими воззрениями, под фундаментальной физикой мы понимаем правила игры. Но, даже зная все правила, можно не понять какого-то хода просто из-за его сложности или ограниченности нашего ума. Тог, кто играет в шахматы, знает, что правила выучить легко, а вот понять ход игрока или выбрать наилучший ход порой очень трудно. Ничуть не лучше, а то и хуже обстоит дело в природе. Не исключено, что в конце концов все правила будут найдены, но пока отнюдь не все они нам известны. То и дело тебя поджидает рокировка или какой-нибудь другой непонятный ход. Но, помимо того, что мы не знаем всех правил, лишь очень и очень редко нам удается действительно объяснить что-либо на их основе. Приходится поэтому ограничиваться самыми основными правилами. Когда мы разбираемся в них, то уже считаем, что «поняли» мир.

Но откуда мы знаем, что те правила, которые мы «ощущаем», справедливы на самом деле? Ведь мы не способны толково разобрать ход игры. Существует, грубо говоря, три способа проверки.

Во-первых, мыслимы положения, когда природа устроена (или мы ее устраиваем) весьма просто, всего из нескольких частей; тогда можно точно предсказать все, что случится, проверив тем самым правила (в углу доски может оказаться всего несколько фигур, и все их движения легко себе представить.).

Есть и второй, достаточно неплохой, путь проверки правил: нужно из этих правил вывести новые, более общие. Скажем, слои ходит только по диагонали; значит, сколько бы он ни ходил, он всегда окажется, например, на черном поле. Стало быть, не вникая в детали, наши представления о движении слона всегда можно проверить по тому, остается ли он все время на черном иоле. Конечно, не исключено, что внезапно слон очутился на белом иоле: после того как его побили, пешка прошла на последнюю горизонталь и превратилась в белонольного слона. Так же и в физике.

Долгое время мы располагаем правилом, которое превосходно работает повсюду, даже когда детали процесса нам неизвестны, и вдруг иногда всплывает новое правило. С точки зрения физических основ самые интересные явления происходят в новых местах, там, где правила не годятся, а не в тех местах, где они действуют! Так открываются новые правила.

Есть и третий способ убедиться, что наши представления об игре правильны; мало оправданный по существу, он, пожалуй, самый мощный из всех способов. Это путь грубых приближений. Мы можем не знать, почему Алехин1 пошел именно этой фигурой. Но в общих чертах мы можем понимать, что он, видимо, собирает все фигуры для защиты короля, и сообразить, что в сложившихся обстоятельствах это самое разумное. Точно так же мы часто более или менее понимаем природу, хотя не знаем и не понимаем каждого хода отдельной фигуры"[10][11].

Обратите внимание, как во вступлении к лекции Р. Фейнман обосновывает метод преподавания «от простого к сложному».

«Этот двухгодичный курс физики рассчитан на то, что вы, читатель, собираетесь стать физиком. Положим, это не так уж обязательно, но какой преподаватель не надеется на это! Если вы и впрямь хотите быть физиком, вам придется много поработать. Как-никак, а двести лет бурного развития самой мощной области знания что-нибудь да значат! Такое обилие материала, пожалуй, и не усвоишь за четыре года; вслед за этим нужно еще прослушать специальные курсы.

И все же весь результат колоссальной работы, проделанной за эти столетия, удается сконденсировать — свести в небольшое число законов, которые подытоживают все наши знания. Однако и законы эти тоже нелегко усвоить, и просто нечестно по отношению к вам было бы начинать изучение такого трудного предмета, не имея под рукой какой-либо схемы, какого-нибудь очерка взаимосвязи одних частей науки с другими. Первые три главы и представляют собой такой очерк. Мы познакомимся в этих главах с тем, как связана физика с остальными науками, как относятся эти остальные науки друг к другу, да и что такое вообще наука. Это поможет нам «ощутить» предмет физики.

Вы спросите: почему бы сразу, на первой же странице, не привести основные законы, а после только показывать, как они работают в разных условиях? Ведь именно так поступают в геометрии: сформулируют аксиомы, а потом остается только делать выводы. (Неплохая мысль: изложить за 4 минуты то, что и в 4 года не уложишь.) Сделать это невозможно по двум причинам. Во-первых, нам известны не все основные законы; наоборот, чем больше мы узнаем, тем сильнее расширяются границы того, что мы должны познать! Во-вторых, точная формулировка законов физики связана со многими необычными идеями и понятиями, требующими для своего описания столь же необычной математики. Нужна немалая практика только для того, чтобы наловчиться понимать смысл слов. Так что ваше предложение не пройдет. Придется нам двигаться постепенно, шаг за шагом.

Каждый шаг в изучении природы — это всегда только приближение к истине, вернее, к тому, что мы считаем истиной. Все, что мы узнаем, — это какое-то приближение, ибо мы знаем, что не все еще законы мы знаем. Все изучается лишь для того, чтобы снова стать непонятным или, в лучшем случае, потребовать исправления.

Принцип науки, почти что ее определение, состоит в следующем: пробный камень всех наших знаний — это опыт. Опыт, эксперимент — это единственный судья научной «истины». А в чем же источник знаний? Откуда приходят те законы, которые мы проверяем? Да из того же опыта; он помогает нам выводить законы, в нем таятся намеки па них. А сверх того нужно еще воображение, чтобы за намеками увидеть что-либо большое и главное, чтобы отгадать нежданную, простую прекрасную картину, встающую за ними, и потом поставить опыт, который убедил бы нас в правильности догадки. Этот процесс воображения настолько труден, что происходит разделение труда: бывают физики-теоретикщ они воображают, соображают и отгадывают новые законы, но опытов не ставят, и бывают физики -экспериментаторы, чье занятие — ставить опыты, воображать, соображать и отгадывать.

…Так что же нам нужно изучить сначала? Учить ли нам правильные, но необычные законы с их странными и трудными понятиями, например теорию относительности, четырехмерное пространство-время и т. д. Или же начать с простого закона «постоянной массы»? Он хоть и приближенный, но зато обходится без трудных представлений. Первое, бесспорно, приятней, притягательней; первое очень соблазняет, но со второго начать легче, и потом ведь это первый шаг к углубленному пониманию правильной идеи. Этот вопрос встает все время, когда преподаешь физику. На разных этапах курса мы по-разному будем решать его, но на каждой стадии мы будем стараться изложить, что именно сейчас известно и с какой точностью, как это согласуется с остальным и что может измениться, когда мы узнаем об этом больше.

Давайте перейдем к нашей схеме, к очерку нашего понимания современной науки (в первую очередь физики, но также и прочих близких к ней наук), так что, когда позже нам придется вникать в разные вопросы, мы сможем видеть, что лежит в их основе, чем они интересны и как укладываются в общую структуру.

Итак, как же выглядит картина мира?"[12]

А еще делили ученых на «физиков» и «лириков»! Концовка лекции «Физика и другие науки» свидетельствуету что ученый, влюбленный в свою науку, способен подняться в лекциях до настоящей художественной прозы.

«Поэт сказал однажды: «Весь мир в бокале вина». Мы, вероятно, никогда не поймем, какой смысл он в это вкладывал, ибо поэты пишут не для того, чтобы быть понятыми. Но бесспорно, что, внимательно взглянув в бокал вина, мы поистине откроем целый мир. В нем и физические явления (искрящаяся жидкость, испарение, меняющееся в зависимости от погоды и вашего дыхания, блеск стекла) и атомы (о которых нас говорит наше воображение). Стекло — это очищенная горная порода; в его составе кроются секреты возраста Вселенной и развития звезд.

А из какого удивительного набора реактивов состоит это вино! Как они возникли? Там есть закваска, ферменты, вытяжки и разные другие продукты. Ведь в вине скрывается большое обобщение: вся жизнь есть брожение. Изучая химию вина, нельзя не открыть, как это и сделал Луи Пастер, причины многих болезней. Сколько жизни в этом кларете, если он навязывает нашему сознанию свой дух, если мы должны быть столь осторожны с ним! Наш ограниченный ум для удобства делит этот бокал вина, этот мир на части: физику, биологию, геологию, астрономию, психологию и т. д., но ведь природа на самом деле никакого деления не знает! Давайте же и мы сольем это воедино, не забывая все же, что мы увидели. Пусть этот бокал доставит напоследок еще одно наслаждение: выпить его и обо всем забыть!"1

Перед вами первая глава из книги выдающегося английского физика и популяризатора науки Стивена Хокинга. Обратите внимание на использование притчи-парадокса, ссылка на который завершает период, и серию вопросительных предложений в конце главы, предваряющих переход к основной части повествования.

Размышляя о Вселенной.

«Мы живем в странной и замечательной Вселенной. Неординарное воображение требуется, чтобы оценить возраст ее, размеры, неистовство и даже красоту. Место, занимаемое людьми в этом безграничном космосе, может показаться ничтожным. Н все же мы пытаемся понять, как устроен весь этот мир и как мы, люди, смотримся в нем.

Несколько десятилетий назад известный ученый (некоторые говорят, что это был Бертран Рассел[13][14]) выступал с публичной лекцией по астрономии. Он рассказал, что Земля обращается вокруг Солнца, а оно, в свою очередь, — вокруг центра обширной звездной системы, называемой нашей Галактикой. В конце лекции маленькая пожилая леди, сидевшая в задних рядах, встала и заявила:

— Вы рассказывали нам здесь полную ерунду. В действительности мир — эго плоская плита, покоящаяся на спине гигантской черепахи.

Улыбнувшись с чувством превосходства, ученый спросил:

— А на чем стоит черепаха?

Вы очень умный молодой человек, очень, — ответила старая леди. — Она стоит на другой черепахе, и так дальше, до бесконечности!

Сегодня большинство людей нашло бы довольно смешной такую картину Вселенной, эту нескончаемую башню из черепах. Но что заставляет нас думать, будто мы знаем больше?

Забудьте на минуту то, что вы знаете — или думаете, что знаете, — о космосе. Вглядитесь в ночное небо. Чем представляются вам все эти светящиеся точки? Может, это крошечные огоньки? Нам трудно догадаться, чем они в действительности являются, потому что эта действительность слишком далека от нашего повседневного опыта.

Если вы часто наблюдаете за ночным небом, то, вероятно, замечали в сумерках над самым горизонтом ускользающую искорку света. Это Меркурий, планета, разительно отличающаяся от нашей собственной. Сутки на Меркурии длятся две трети его года. На солнечной стороне температура зашкаливает за 400 °C, а глубокой ночью падает почти до 200 °C.

Но как бы ни отличался Меркурий от нашей планеты, еще труднее вообразить обыкновенную звезду — колоссальное пекло, ежесекундно сжигающее миллионы тонн вещества и разогретое в центре до десятков миллионов градусов.

Другая вещь, которая с трудом укладывается в голове, это расстояния до планет и звезд. Древние китайцы строили каменные башни, чтобы увидеть их поближе. Вполне естественно считать, что звезды и планеты находятся намного ближе, чем в действительности, — ведь в повседневной жизни мы никогда не соприкасаемся с громадными космическими расстояниями.

Расстояния эти настолько велики, что нет смысла выражать их в привычных единицах — метрах или километрах. Вместо них используются световые годы (световой год — путь, который свет проходит за год). За одну секунду луч света преодолевает 300 000 километров, так что световой год — это очень большое расстояние. Ближайшая к нам (после Солнца) звезда — Проксима Центавра — удалена примерно на четыре световых года. Это так далеко, что самый быстрый из проектируемых ныне космических кораблей летел бы к ней около десяти тысяч лет.

Сегодня мы располагаем мощными инструментами: мыслительными, такими как математика и научный метод познания, и технологическими, вроде компьютеров и телескопов. С их помощью ученые собрали воедино огромное количество сведений о космосе. Но что мы действительно знаем о Вселенной и как мы это узнали? Откуда она появилась? В каком направлении развивается? Имела ли начало, а если имела, что было до него? Какова природа времени? Придет ли ему конец? Можно ли вернуться назад во времени? Недавние крупные физические открытия, сделанные отчасти благодаря новым технологиям, предлагают ответы на некоторые из этих давних вопросов. Возможно, когда-нибудь эти ответы станут столь же очевидными, как обращение Земли вокруг Солнца, — или, быть может, столь же курьезными, как башня из черепах. Только время (чем бы оно ни было) это покажет"[15].

Обратите внимание на способы представления численных величин и использование средств выразительности в книге американского физика Брайана Грина.

«Если принять, что пространство Вселенной расширяется, приводя к увеличению расстояния между галактиками, переносимыми космическими потоками. Можно мысленно обратить развитие Вселенной вспять по времени, чтобы исследовать ее происхождение. При таком обращении пространство Вселенной сокращается, и галактики становятся все ближе и ближе друг к другу. По мере того, как сокращающаяся Вселенная сжимает галактики, в ней, как в автоклаве, происходит резкое увеличение температуры, звезды разрушаются, и образуется раскаленная плазма из элементарных составляющих вещества. Дальнейшее сжатие сопровождается непрекращающимся ростом температуры, а также плотности первичной плазмы. Если мы представим, что часы отсчитали примерно пятнадцать миллиардов лет назад от современного состояния, известная нам Вселенная сократится до еще меньшего размера. Материя, из которой состоит все: каждый автомобиль, каждое здание, каждая гора на Земле, сама Земля, Луна, Сатурн, Юпитер и все другие планеты, Солнце и все звезды Млечного Пути, галактика Андромеда с ее 100 миллиардами звезд и все остальные 100 миллиардов галактик — все эго сожмется в космических тисках до чудовищной плотности. А когда часы покажут еще более раннее время, весь космос сожмется до размеров апельсина, лимона, горошины, песчинки и даже до еще более крошечного размера. Если экстраполировать весь этот путь назад, к «началу всех начал», можно прийти к выводу, что Вселенная должна была возникнуть как точка… в которой все вещество и вся энергия были спрессованы до невообразимой плотности и температуры. Считается, что огненный шар, вырвавшийся из этой гремучей смеси в результате Большого взрыва, исторг семена, из которых в дальнейшем развилась известная нам Вселенная.

Образ Большого взрыва как космической вспышки, извергнувшей материальное содержимое Вселенной, как шрапнель из разорвавшейся бомбы, полезен для восприятия, но он может ввести в заблуждение. Когда взрывается бомба, она взрывается в определенном месте в пространстве и в определенный момент времени. Ее содержимое выбрасывается в окружающее пространство. При прокручивании вспять эволюции Вселенной, ее материя сжималась потому, что сокращалось все пространство. Размер апельсина, размер горошины, размер песчинки — обратная эволюция размеров относится ко всей Вселенной, а не к чему-то внутри Вселенной. Следуя вспять все ближе к началу, мы не найдем никакого пространства вне точечной гранаты. Большой взрыв представлял собой извержение сжатого пространства, развертывание которого, подобно приливной волне, и по сей день несет с собой материю и энергию"[16].

  • [1] Тесла II. Лекции. Самара, 2008. С. 37—38.
  • [2] Тесла II. Лекции. С. 77—78.
  • [3] Тесла Н. Лекции. С. 162—165.
  • [4] Опубликовано: Free Press Detroit, 02.09.1900.
  • [5] Н. Тесла был болезненно чистоплотен.
  • [6] Тесла Н. Статьи. Самара, 2008. С. 411—413.
  • [7] Машинописный текст статьи без библиографических данных, возможно, относящийсяк 1905 г.
  • [8] Тесла //. Статьи. С. 431—432.
  • [9] Фейнмановские лекции по физике. М., 2014. С. 23—25.
  • [10] Великий русский шахматист А. А. Алехин (1892—1946) — единственный непобежденный чемпион мира по шахматам.
  • [11] Фейнмановские лекции по физике. С. 38—41.
  • [12] Фейнмановские лекции по физике. С. 71.
  • [13] Фсйнмановскис лекции, но физике. С. 71.
  • [14] Бертран Рассел (1872—1970) — английский математик, философ и общественный деятель, Нобелевский лауреат по литературе.
  • [15] Хокинг С. Кратчайшая история времени. СПб.: Амфора, 2008. С. 7—9.
  • [16] Грин Б. Элегантная Вселенная: суперструны, скрытые размерности и поиски окончательной теории. М., 2008. С. 62.
Показать весь текст
Заполнить форму текущей работой