Помощь в написании студенческих работ
Антистрессовый сервис

Исследование возможностей синтеза фенилселиконатов натрия, содержащих в своем составе атом кобальта

РефератПомощь в написанииУзнать стоимостьмоей работы

В ИК-спектре соединения в области 1100 см-1 поглощение имеет относительно простую колебательную структуру, что указывает на мономерный характер полученного соединения. В этой области отсутствуют максимумы поглощения которые соответствовали бы колебаниям связи Si-O в циклических и олигомерных продуктах. Присутствует лишь полоса поглощения при 1130 см-1, 1430 см-1(характеристическая полоса для… Читать ещё >

Исследование возможностей синтеза фенилселиконатов натрия, содержащих в своем составе атом кобальта (реферат, курсовая, диплом, контрольная)

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение Дальневосточный Федеральный Университет Институт химии и прикладной экологии Кафедра неорганической и элементоорганической химии Исследование возможностей синтеза фенилселиконатов натрия, содержащих в своем составе атом кобальта Владивосток

  • Введение
  • 1. Литературный обзор
    • 1.1 Методы синтеза полиметаллоорганосилоксанов
      • 1.1.1 Взаимодействие органилсиланолятов щелочных металлов с хлоридами металлов
  • 2. Обсуждение результатов

3. Экспериментальная часть

  • 3.1 Синтез полифенилсилоксана (ПФС)

3.2 Синтез кристаллосольвата фенилсилантриолята натрия с ДМСО (ФСТН)

3.3 Синтез поликобальтфенилсилоксана

3.4 Взаимодействие поликобальтфенилсилоксана с гидроксидом натрия

  • 3.5 Исследование взаимодействия поликобальтфенилсилоксана с фенилсилантриолятом натрия

3.6 Анализ мононатровой и тринатровой соли фенилтригидроксисилана на натрий

  • 3.7 Определение кремния гравиметрическим методом
  • Выводы
  • Список литературы

Кремнийорганические полимеры, содержащие в своей структуре гетеросилоксановую группировку Si-O-Э (под символом Э подразумевается гетероатом, за исключением атомов водорода и углерода), носят название полигетеросилоксаны. Если элемент является металлом, они классифицируются как полиметаллоорганосилоксаны (ПМОС). Первые полученные в 50 г ХХ века, исследования были доведены до промышленного внедрения.

Интерес к химии полигетеросилоксанов обусловлен специфическими свойствами и реакционной способностью силоксановой связи и группировки Si-O-M, спектр свойств которых достаточно широк. Ранее было показано, что полигетеросилоксаны, содержащие в своем составе d-элементы обладают высокой термостойкостью, а также выступают в качестве эффективных термостабилизаторов полидиметилсилоксанового каучука (СКТН) и катализаторов некоторых органических реакций [2−4]. Так же полиметаллоорганосилоксаны используются в качестве стойких антикоррозийных покрытий, защитных лаков, катализаторов в нефтеперерабатывающей промышленности.

Взаимодействие полиметаллофенилсилоксанов с электрофильными реагентами в частности с кислотами достаточно хорошо изучено. 8] Их взаимодействие с нуклеофильными реагентами практически не изучено. В то же время при взаимодействии полиметаллофенилсилоксанов (содержащих олово и германий органические фрагменты) с такими электрофильными реагентами как спирты, происходит образование мономерных функциональных гетеросилоксанов.

Целью данной работы является исследование возможности синтеза фенилсиликонатов натрия содержащих в своем составе атомы кобальта.

1. Литературный обзор

1.1 Методы синтеза полиметаллоорганосилоксанов

В данное время существует пять основных путей формирования гетеросилоксановой группировки: реакции гидролитической и гетерофункциональной поликонденсации, взаимодействие органилсиланолятов щелочных металлов с галогенидами металлов, расщепление силоксановой связи оксидами элементов и методом механохимической активации. Методы были описаны авторами в следующих работах. [1, 6−12]

1.1.1. Взаимодействие органилсиланолятов щелочных металлов с хлоридами металлов

Наиболее удобным в препаративном отношении и универсальным методом синтеза ПМОС является метод, основанный на взаимодействии хлоридов металлов с органилсиланолятами щелочных металлов [13−16]. Данный способ практически незаменим для получения ПМОС циклолинейного строения.

Данный метод образования полимеров отражен следующими схемами:

RSi (OH)2ONa+MYx>M[O (OH)2SiR]x+xNaY (1)

M[O (OH)2SiR]x>{[RSi (O)1.5MOx/2}+xH2O (2)

Методика получения ПМОС состоит из двух стадий: сначала при действии дозированного количества щелочи на органосилоксан получают органосиланолят, далее с помощью обменной реакции органосиланолята и галогенида поливалентного металла формируют металлосилоксановый фрагмент Si-O-M-O-Si, при этом металл «встраивается» в силоксановую цепь. Несмотря на кажущуюся простоту данных схем, соотношение кремния к металлу в получаемых полигетеросилоксанах часто отличается от исходного, они неоднородны по составу, что указывает на сложность процессов полимерообразования. Предложены методы синтеза в водно-органических средах: в этом случае соотношение кремния к металлу в полимерах зачастую сильно завышены относительно исходного и они неоднородны по составу [14,17].

По мнению ряда других авторов при проведении процесса в водно-органических средах преобладающее влияние оказывает гидролиз исходных соединений: реакция по своему характеру мало чем отличается от согидролиза.

Методом, основанным на взаимодействии хлоридов металлов с мононатровыми солями органилсилантриолов в безводной среде удается достигнуть значительно лучших результатов. При проведении процесса в среде инертного растворителя, выход полимера значительно улучшается в присутствии бутилового спирта, вероятно вследствие гомогенизации системы. Но данный способ является технологически более трудоемким из-за трудностей получения безводных хлоридов металлов. Однако и в этом случае в реакционной системе будет содержаться некоторое количество воды.

Для исключения влияния побочных процессов был предложен новый метод получения ПМОС в среде диметилсульфоксида (ДМСО), который эффективнее чем вода сольватирует ионы металлов. Насыщая координационную сферу металла, ДМСО препятствует протеканию нежелательных побочных процессов, что приводит к получению ПМОС более регулярного строения. Предложенный метод не требует использования в синтезе ПМОС безводных галогенидов металлов и абсолютных растворителей. В полученных полимерах сохраняются соотношения кремния к металлу и они практически однородны по составу.

Метод получения каркасных и полимерных металлоорганосилоксанов, в котором использовали для синтеза полиметаллоорганосилоксанов не силаноляты натрия, полученные щелочным расщеплением предварительно синтезированных полиорганосилоксанов, а мономерные органотриалкоксисиланы предложен авторами. Суть метода заключается в том, что органотриалкоксисилан обрабатывают водно-метанольным раствором едкого натра, причем количество воды должно обеспечивать полный гидролиз алкоксигрупп.

2. Обсуждение результатов

Нами было проведено исследование взаимодействия поликобальтфенилсилоксана по следующей схеме:

(PhSiO1,2)2CoO + 2NaOH > [PhSi (O)O0,5NaCoO]n + H2O (3)

Схема взаимодействия предполагает образование продуктов циклического или олигомерного характера.

Синтез осуществлен в условиях аналогичных для синтеза мононатровой соли фенилсилантриола в водно-ацетоновой среде. Исходный поликобальтфенилсилоксан был синтезирован по раннее описанной методике в присутствии диметилсульфоксида. 20] В результате синтеза наряду с полимерными продуктами были выделены белое кристаллическое вещество, состав которого отвечает финилсилантриоляту натрия: PhSi (ONa)3? 6,5H2O, ИК-спектр представлен на рисунке 1.

Рис. 1 синтезирование полифенилсилоксан натрий гравиметрический

В ИК-спектре соединения в области 1100 см-1 поглощение имеет относительно простую колебательную структуру, что указывает на мономерный характер полученного соединения. В этой области отсутствуют максимумы поглощения которые соответствовали бы колебаниям связи Si-O в циклических и олигомерных продуктах. Присутствует лишь полоса поглощения при 1130 см-1, 1430 см-1(характеристическая полоса для связи Si-Ph) и 1600 см-1, триплет в области 3100 см-1 отвечает колебаниям связи C-H в алифатическом радикале. Выход фенилсилантриолята натрия составил 80% от теоретически возможного. Таким образом взаимодействие протекает не согласно предполагаемой схеме реакции, а по следующей схеме:

(PhSiO1,5)2Co + 2NaOH > 0,7(PhSi (ONa)3) + (PhSiO1,5)1,33CoO + H2O (4)

Так как взаимодействие между реагентами не приводит к желаемому результату, нами была исследована возможность синтеза подобных соединений по следующей схеме:

CoCl2 + 2(NaO)3SiPh > Co[OSiPh (ONa)2]2 + 2NaCl (5)

Фенилсилантриолят натрия получен по раннее описанной методике. Синтез вели в условиях оптимальных для синтеза поликобальтфенилсилоксана, в среде смеси растворителей диметилсульфоксида и бензола. В результате взаимодействия было получено твердое вещество синего цвета. Разделить продукты взаимодействия не удалось. Их обработка избытком триметилхлорсилана с целью перевода кобальт содержащих компонентов в растворимое состояние также не увенчалось успехом.

Предполагаемая схема взаимодействия:

Co[OSiPh (ONa)2]2 + 4(CH3)3SiCl > Co[OSiPh (OSi (CH3)3)2]2 + 4NaCl (6)

Однако в результате синтеза, растворимые продукты взаимодействия представляли из себя жидкое бесцветное вещество, которое не перегоняется в вакууме при 100 С/20 мм.рт.ст.

ИК-спектр полученного соединения представлен на рисунке 2.

Рис.2

Спектр имеет простую колебательную структуру. В области 1000 — 1100 см-1 имеется только один максимум поглощения при 1061 см-1 отвечающий колебаниям связи Si-O, максимум при 1131 см-1 и 1430 см-1 отвечает колебаниям связи Si-Ph, 1251 см-1 отвечает присутствию атома кремния связанного с тремя метильными радикалами. Таким образом можно сделать предварительный вывод, что выделенное вещество является трис-(триметилсилокси)фенилсилоксаном, его количество практически полностью соответствует введенному количеству фенилсилантриолята натрия. Не растворимое в органических растворителях вещество синего цвета по данным элементного анализа не содержит в своем составе кремний. Оно хорошо растворимо в воде с образованием раствора розового цвета и по видимому представляет собой кристаллосольват хлорида кобальта с диметилсульфоксидом

Таким образом, под действием избытка триметилхлорсилана, по-видимому происходит разрушение образующихся кобальт содержащих гетеросилоксанов и сделать окончательный вывод о их природе и составе на основании проведенных исследований не представляется возможным.

3. Экспериментальная часть

3.1 Синтез полифенилсилоксана (ПФС)

В трехгорлую колбу, снабженную механической мешалкой, обратным холодильником и капельной воронкой, помещали 400 мл воды и 200 мл диэтилового эфира. При охлаждении и энергичном перемешивании вводили в реакционную колбу 100 мл (0.3 моль) фенилтрихлорсилана в 100 мл диэтилового эфира так, чтобы не происходило сильного разогревания реакционной среды, охлаждали колбу льдом. После чего смесь перемешивали еще в течение 2 часов. В делительной воронке отделяли водный слой от эфирного, последний промывали водой до нейтральной реакции по универсальному индикатору и сушили над свежепрокаленным хлористым кальцием.

Растворитель отгоняли при 80 °C/10 мм.рт.ст., ПФС сушили до постоянного веса. Получили 38,1 г ПФС, что составляет 98,4% от теоретического выхода.

3.2 Синтез кристаллосольвата фенилсилантриолята натрия с ДМСО (ФСТН)

К раствору 15,96 г (0,12моль) полифенилсилоксана в 360 мл смеси толуол — этанол 1:1 прибавили 14,88 г (0,37 моль) гидроксида натрия и нагревали с обратным холодильником до полного растворения гидроксида натрия. Прибавили 120 мл ДМСО, растворитель частично отогнали при (t= 75−80 °C) до начала выпадения белых кристаллов. После охлаждения выпавшие кристаллы отделили на воронке Бюхнера и сушили до постоянного веса в вакууме при температуре 40 °C и давлении 12 мм.рт.ст. По данным элементного анализа на Na, состав выпавшего осадка отвечает следующей формуле: PhSi (ONa)3? 0,64ДМСО (Найдено: % Na = 25,4; вычислено % Na = 25,3) Выделено 32,1 г что составляет 98,6%.

3.3 Синтез поликобальтфенилсилоксана

К раствору 27,5 г (0,2 моль) ПФС в 276 мл бензола прибавляли 8 г (0,2 моль) гидроксида натрия и 78 мл (1 моль) диметилсульфоксида (ДМСО). Синтез проводили при температуре кипения растворителей до прекращения выделения воды в ловушку Дина-Старка и полного растворения щелочи. Полученный раствор фенилсиликоната натрия использовали для синтеза поликобальтфенилсилоксана без выделения первого.

В трехгорлую колбу, снабженную механической мешалкой, ловушкой Дина-Старка и обратным холодильником, помещали 23,8 г (0,1 моль) СоСl2? 6Н2О, 93,6 мл диметилсульфоксида (ДМСО) и 200 мл бензола. Смесь кипятили до прекращения выделения воды в ловушку Дина-Старка. К полученной суспензии прибавляли раннее полученный раствор фенилсиликоната натрия. Синтез вели в течении четырех часов без нагревания до приобретения раствором интенсивно синей окраски, затем при температуре кипения растворителей — до прекращения выделения воды в ловушку Дина-Старка. Выпавший осадок хлорида натрия отделяли центрифугированием. Из центрифугата бензол удаляют перегонкой, в конце под разрежением (насос Камовского). Раствор полимера в ДМСО, при энергичном перемешивании приливали к четырехкратному объему воды, выпавший осадок поликобальтфенилсилоксана отделяли фильтрованием и промывали водой. Полимер сушили в вакууме до постоянного веса. Получено 31,5 г полимера что составляет 94,8% от теоретически возможного.

3.4 Взаимодействие поликобальтфенилсилоксана с гидроксидом натрия

К раствору 3,3 г (0,01 моль) поликобальтфенилсилоксана в 30 мл ацетона прибавляли 0,8 г (0,02моль) гидроксид натрия. Постепенно прибавляя воду синтез вели при нагревании до полного растворения гидроксида натрия и образования гомогенного раствора. Выпавшие при охлаждении бесцветные кристаллы отделяли фильтрованием на фильтре Шота. Масса выделившихся кристаллов составляет 1,75 г. По данным элементного состава их состав отвечает формуле: PhSi (ONa)3? 6,5H2O (Найдено: % Si = 7,9; %Na = 20,3. Вычислено: % Si = 8,2; % Na = 20,3.) Количество выделенного фенилсилантриолята натрия составляет 80% от теоретически возможного в пересчете на NaOH.

3.5 Исследование взаимодействие поликобальтфенилсилоксана с фенилсилантриолятом натрия

В колбу снабженную ловушкой Дина-Старка и обратным холодильником помещали 1,66 г (0,007 моль) СоСl2? 6Н2О, 7 мл диметилсульфоксида (ДМСО) и 50 мл бензола. Смесь кипятили до прекращения выделения воды в ловушку Дина-Старка. К полученной суспензии прибавляли 3,08 г (0,014 моль) PhSi (ONa)3? 0,64ДМСО. Реакционную смесь перемешивали до полного обесцвечивания раствора в конце при нагревании. К реакционной смеси при охлаждении и перемешивании прибавляли 7 мл (0,049 моль) триметилхлорсилана. Нерастворимые продукты отделяли фильтрованием. Фильтрат промывали водой для удаления ДМСО и сушили над хлористым кальцием. После отгонки растворителя выделено 3,75 г (72,1%) кремнеорганических продуктов которые по данным ИК спектроскопии отвечает следующей формуле: PhSi[OSi (CH3)3]3.

3.6 Анализ мононатровой и тринатровой соли фенилтригидроксисилана на натрий

Навеску тринатровой соли массой 0,2 г помещали в коническую колбу прибавляли 25 мл 0,1 н раствора соляной кислоты. Раствор нагревали до кипения и титровали раствором щелочи с точно известным титром. В качестве индикатора использовали метилоранж, переход окраски от розовой в желтую. Процентное содержание натрия рассчитывли по формуле:

а — навеска вещества, г;

ЭNa — эквивалент натрия, г.

Состав анализируемой соли отвечал следующей бруттоформуле PhSi (ONa)3? 0,64ДМСО.

3.7 Определение кремния гравиметрическим методом

К навеске 0,2 г анализируемого вещества прибавили 2,5 г иодата калия и 20 мл серной кислоты. Анализируемую смесь упарили досуха. После охлаждения прибавляли 50 мл соляной кислоты (3:2) и 350 мл воды, доводили до кипения. Отфильтровывали осадок и прокаливали до постоянного веса при T = 1000? C. Процент кремния прасчитывали по следующей формуле:

0,4672 — фактор пересчета

а — масса навески

ИК — спектры регистрировались на приборе SPEKTRUM 1000 BX-¦KBr и тонком слое.

Выводы

1. Взаимодействие поликобальтфенилсилоксана с гидроксидом натрия ведет к разрушению гетеросилоксанового фрагмента с образованием фенилсилантриолята натрия.

2. Продукты взаимодействия хлорида кобальта и фенилсилантриола натрия в мольном соотношении 1:2, разрушаются под воздействием триметилхлорсилана, что ведет к образованию трис-(триметилсилокси) фенилсилоксана.

1 Андрианов, К. А. Технология элементоорганических мономеров и полимеров./ К. А. Андрианов, Л. М. Хананашвили — М.: Химия, 1973. — 400с.

2 Соболевский, М. В. Свойства и области применения кремнийорганических продуктов./ М. В. Соболевский, О. А. Музовская, Г. С. Попелева. — М.: Химия, 1975. — 295с

3 Каталитическая активность магнийорганосилоксанов. И. М. Колесников, Г. М. Панченков, К. А. Андрианов, А. А. Жданов, Н. Н. Белов, М. М. Левицкий: Изв. АН ССР. Сер.хим., 1976. — № 6, 473 — 474с.

4 Свидерский, В.А. деструкция и стабилизация полимеров: тезисы докладов 9-ой конференции./ В. А. Свидерский, Н. А. Ткач. — М.: 2001. — 172−173с.

5 Талашкевич, Е. А. Твердофазный синтез полиметаллооргансилоксанов: международная научно — практическая конфренция./ Е. А. Талашкевич, Е. Ю. Гаденко, Л. В. Шевченко. — Находка.: 1999. — 32−33.

6 Андрианов, К. А. Методы элементоорганической химии. Кремний. / К. А. Андрианов. — М: Наука, 1976. — 560с.

7 Жданов, А. А. Новые проблемы в синтезе и изучении свойст полиметаллоорганосилоксанов.: Тез.док. Всерос. Конф. «Кремний органические соединения. Синтез, свойства, применение». / А. А. Жданов. — М: 2000. — 113с.

8 Воронков, М. Г. Гетеросилоксаны. / М. Г. Воронков, Е. А. Малетина, В. К. Роман. — Новосибирск.: Наука, 1984. — 495с.

9 Воронков, М. Г. Силоксановая связь. / М. Г. Воронков, В. П. Милешкевич, Ю. А. Южелевский. — Новосибирск.: Наука, 1976. — 414с.

10 Борисов, С. Н. Кремнеэлементоорганические соединения./ С. Н. Борисов, М. Г. Воронков, Э. Я. Лукевиц. — Л.:.Химия, 1966. — 542с.

11 Талашкевич Е. А. Получение полиметаллорганосилоксанов методом механохимической активации и исследование их свойств: Автореф. Дис. кан. хим. наук. / Е. А. Талашкевич. — Владивосток: 2000. — 28с.

12 Синтез и исследование дикалиевых производных олигодиорганилсилоксан-?, ?-диолов. / Н. П. Шапкин, А. А. Капустина, Н. И. Симанчук, Е. В. Моисеева. — Известия вузов. Химия и хим.техн., 1995. — Т.38, Вып.3. 24−29с.

13 Жданов, А. А. Синтез и исследование свойств полиметаллоорганосилоксанов. / А. А. Жданов, К. А. Андрианов, М. М. Левицкий.// ВМС. — 1976. — т.18. № 10. 2264−2269с.

14 Шапкин, Н. П. Дис. канд.хим.наук./ Н. П. Шапкин. — Владивосток, 1971. — 155с.

15 Щеголихина, Н. А. Дис. канд.хим.наук./ Н. А. Щеголихина. — Иркутск, 1981. — 122с.

16 Шапкина, В. Я. Дис. канд.хим.наук./ В. Я. Шапкина. — Владивосток, 1983. — 146с.

17 Андрианов, К. А. Синтез полиферроорганосилоксанов и полиферроалюмоорганосилоксанов./ К. А. Андрианов, Т. Н. Ганина, Н. Н. Соколов.// ВМС. — 1962. — т.4.№ 5.678−682с.

18 Жданов, А. А. Исследование в области полиэлементоорганосилоксанов: Дис. докт.хим.наук./ А. А. Жданов. — Москва. ИНЭОС. 1983. — 146с.

19 Жданов, А. А. Особенности синтеза металлосилоксанов каркасной структуры./ А. А. Жданов, О. И. Щеголихина, Ю. А. Молодцова. // Изв. АН РФ. Сер. хим. — 1993. — № 5. 957−961с.

20 Воронков, М. Г. Новый способ получения полиметаллофенилсилоксанов. / М. Г. Воронков, А. В. Аликовский, Г. Я. Золотарь.// Докл. АН СССР. — 1985. — т.281.№ 4. 858−860с.

Показать весь текст
Заполнить форму текущей работой