Помощь в написании студенческих работ
Антистрессовый сервис

Лантаноиды и актиноиды

РефератПомощь в написанииУзнать стоимостьмоей работы

Соединения U+4 в подкисленных водных растворах легко окисляются до шестивалентного состояния с образованием ярко-желтых солей уранила. Поскольку с увеличением заряда иона актиноида усиливается его взаимодействие с водой (гидролиз), то в водном растворе ионы Э5+ и Э6+ не существуют. В воде они превращаются соответственно в ионы ЭО2+ и ЭО22+. Связи атомов кислорода с ионами акти-ноидов в состоянии… Читать ещё >

Лантаноиды и актиноиды (реферат, курсовая, диплом, контрольная)

1. Строение.

Лантаноиды и актиноиды располагаются в третьей побочной группе Периодической системы. Эти элементы следуют в таблице сразу после лантана и актиния и поэтому их называют соответственно лантаноиды и актиноиды. В короткой форме Периодической системы Д. И. Менделеева они вынесены в два последних ряда. Они относятся к f-элементам.

У в атомах лантаноидов и актиноидов происходит запол-нение соответственно 4fи 5f-подуровней.

Лантаноиды очень сходны по хими-ческим свойствам. Близость свойств соединений лантаноидов обусловлена тем, что застройка внутренней 4f-оболочки атомов мало сказывается на со-стоянии валентных электронов. В образовании химической связи 4f-электроны лантаноидов обычно не принимают участия.

Электроны заполняют 4f-, а не 5d-подуровень потому, что в этом случае они обладают меньшей энергией. Однако разница в энер-гиях 4fи 5d-состояний очень мала. Благодаря этому один из 4fэлектронов (а в некоторых случаях, например, у церия, два 4f—электрона) легко возбуждается, переходя на 5d-подуровень, и становится, таким образом, валентным электроном. Поэтому в большинстве своих соединений лантаноиды имеют степень окисления +3, а не +2. Это обстоятельство объясняет близость свойств лантаноидов к свойствам элементов подгруппы скандия.

В пределах одного периода с возрастанием поряд-кового номера размеры атомов элементов уменьшаются. Подобная закономер-ность наблюдается не только для элементов главных подгрупп, но, за немно-гими исключениями, и для элементов побочных подгрупп. Такое же уменьше-ние радиусов атомов имеет место и в случае лантаноидов (лантаноидное сжатие).

Как и в случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5f); строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причи-ной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5f- и 6d-подуровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5f-электроны легко переходят на подуровень 6d и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисления элементов возрастает от +4 до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая ста-билизация 5f-состоянии, а возбуждение электронов на 6d-подуровень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисления элементов понижается от +6 до +3 (хотя для нептуния и плутония полу-чены соединения со степенью окисления этих элементов +6 и +7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисления +3.

2. Свойства.

Ш Свойства лантаноидов.

В виде простых веществ все лантаноиды представляют собой серебри-сто — белые металлы (желтизна празеодима и неодима обусловлена образованием на поверхности пленки оксидов). Они хорошо куются. Почти все лантаноиды парамагнитны, только гадолиний, диспрозий и голь-мий проявляют ферромагнитные свойства.

В ряду Се—Lu в изменении плотности, температур плавления и кипения проявляется внутренняя перио-дичность, т. е. указанные свойства металлов подсемей-ства церия изменяются с такой же последовательно-стью, как и у металлов подсемейства тербия (табл.1).

Таблица 1.

Физические свойства лантаноидов

Металл

Плотность, кг/м3

Температура, 0 С

плавления

кипения

Подсемейство церия

Лантан

Церий

Празеодим

Неодим

Прометии

-;

-;

-;

Самарий

Европий

Гадолиний

Подсемсйстео тербия

Тербий

Диспрозий

Гольмий

Эрбий

Тулий

Иттербий

Лютеций

Температуры плавления в этом ряду возрастают, исключение составляют только европий и иттербий. Они имеют также относительно более низкие, чем у остальных элементов, температуры кипения.

Ланта-ноиды, как и лантан, по реакционной способности уступают лишь щелочным и щелочноземельным метал-лам. Во влажном воздухе они быстро тускнеют (вследствие образования оксида), а при нагревании до 200—400°С на воздухе воспламеняются и сгорают с образованием смеси оксидов (Э203) с ни-тридами (ЭN). Церий в порошкообразном состоянии даже при обычных условиях легко воспламеняется на воздухе. Это свойство церия нашло применение при изготовлении кремней для зажигалок.

4Э +3О2 =2Э2О3

Лантаноиды взаимодействуют с галогенами, а при нагревании — с азотом, серой, углеродом, кремнием, фосфором, водородом.

2Э +3Cl2=2ЭCl3

2Э +N2= 2ЭN

Э +2S = ЭS2

Э + 2 С = ЭС2 или 2Э + 3С = Э2С3

Э + Н2 = ЭН2

Карбиды, нитриды и гидриды лантаноидов взаимодействуют с водой с образованием гидроксида и соответственно ацетилена или различных углеводородов, аммиака и водорода.

ЭN + 3Н2О = Э (ОН)3 +NН3

ЭС2 + Н2О = Э (ОН)32Н2

ЭН22О = Э (ОН)32

Находясь в ряду напряжений значительно левее водорода (электродные потенциалы их колеблются е пределах от —2,4 до —2,1 В), ланта-ноиды окисляются горячен водой по реакции:

2Э + 6Н20 = 2Э (ОН)3 + 3Н2.

Они хорошо взаимодействуют с разбавленными растворами НС1, HN03 и H2S04.

2 Э +6НCl =2 ЭСl3 +3H2

В растворах фосфор-ной и плавиковой кислот лантаноиды устойчивы, так как образуют защитные пленки малорастворимых со-лей. В водных растворах щелочей лантаноиды не рас-творяются. Химическая активность элементов в ряду Се—Lu несколько снижается, что связано с умень-шением радиусов их атомов и ионов.

Оксиды лантаноидов от-личаются высокой химической прочностью и тугоплав-костью. Например, La203 плавится при температуре выше 2000 °C, а Се02 — около 2500 °C. В воде они практически нерастворимы, хотя интенсивно (с выделением теплоты) взаимодействуют с ней с образованием соответствующих гидроксидов Э (ОН)3. Гидроксиды также труднорастворимы в воде. В ряду лантаноидов основная сила гидроксидов постепенно уменьшается с уменьшением радиусов в результате лантаноидного сжатия. С уменьшением ионных радиусов увеличивается прочность связи с кислородом. Поэтому гидроксиды последних лантаноидов — иттербия и лютеция — проявляют слабую амфотерность .

Оксиды и гидроксиды лантаноидов растворяются в кислотах (кроме HF и Н3Р04).

Соли лантаноидов со степенью окисления +3 почти не гидролизуются, поскольку Э (ОН)3 -довольно силь-ные основания. Хорошо растворимые соли (хлориды, нитраты, сульфаты) обра-зуют различные кристаллогидраты. Мало растворимы фториды, карбонаты, фос-фаты, оксалаты. Многие соли Э3+ образуют с аналогичными солями щелочных металлов хорошо кристаллизующиеся двойные соли. Раньше их применяли для разделения РЗЭ кристаллизацией.

Э2(SO4)3 + Ме2SO4 = Ме2SO4· Э2(SO4)3

Ионы Э3+ в водном растворе образуют гидратные комплексы [Э (H20)n]3+, n=8. Гидратированные ионы окрашены: Се3+— бесцветный, Рr+3 — желто-зеленый, Nd3+ — красно-фиолетовый, Рm3+ — розовый, Sm3+ -желтый, Eu3+, Gd3+, Tb3+ — бесцветные, Dy3+ — бледно-желто-зеленый, Но+3— коричневато-желтый, Ег+3— розовый, Тm — бледно-зеленый, Yb3+, Lu3+ — бесцветные. Ион Ce4+(p) имеет ярко-желтую окраску.

Некоторые лантанои-ды имеют, помимо характеристической, еще степени окисления +4 и +2. Среди лантаноидов, проявляющих степень окисления +4, выделяется церий. Относительно более стабильные соединения в степени окисления +2 дает европий.

Диоксид СеО2 образуется при непосредственном взаимодействии компонентов. Он плавится при 2600 0 С под давлением кислорода, начинает отщеплять кислород только при 2300 0С. При 1250 0С Се02 восстанавливается водородом до Се203. Диоксид церия не растворяется в воде, а после прокали-вания и в кислотах, и в щелочах. СеО2 -.является сильным окислите-лем, например, выделяет хлор из соляной кислоты:

2CeO2 +8HCI = 2CeCl3 +CL2 + H20

Гидроксид церия Се (ОН)4 при взаимодействии с кислотами-восстано-вителями образует соли со степенью окисления це-рия +3:

2Се (ОН)4 + 8НС1 = 2СеС13 + С12 + ЗН20.

Из солей кислородсодержащих кислот, содержащих ионы лантаноидов со степенью окисления +4, известны только произ-водные церия. Сульфат Ce (S04)2 получается нагреванием Се02 с горячей концентрированной серной кислотой. Ce (S04)2 — порошок желтого цвета, хорошо растворяется в воде, подвергается гидроли-зу. Сульфат церия из водных растворов выделяется в виде розовых кристаллов с различным содержанием воды, среди которых домини-руют кристаллогидраты с 8 молекулами воды. Известны только ос-новные нитраты и карбонаты: Ce (OH)(N03)3 и Се2(ОН)2(СО3)3. В то же время Се (+4) образует устойчивые ацетат и перхлорат: Се (СН3СОО)4, Се (С104)4.

Для Ce (+4) известны довольно устойчивые комплексы [Се (С2О4)3]'2_ и [Се (N03)6]-2. Из галогенидных комплек-сов наиболее устойчивы фторидные.

Степень окисления +2 наиболее характерна для европия, хотя известны оксиды, галогениды и сульфаты самария и иттербий в степени окисления +2. На-греванием на воздухе Eu203 с графитом до 1700 0С получен темно-коричневый оксид ЕuО. Монооксид европия — тугоплавкие куби-ческие кристаллы — медленно разлагается водой с выделением во-дорода, т. е. является сильным восстановителем. Известны также монооксиды самария и иттербия. Восста-новлением EuF3 водородом при 1000 0С можно получить дифторид EuF2. Известны дихлориды, дибромиды, дииодиды Sm, Eu, Tm и Yb. Их устойчивость в указанном ряду лан-таноидов снижается слева направо и, естественно, от хлоридов к иодпдам.

Катодным восстановлением сульфатов Э (+3) получены белый EuSO4, светло-зеленый YbSO4, и красный SmSO4.

Все производные лантаноидов в степени окисления +2 являются восстановителями, например :

2 YbSO4 +H2SO4 = Yb2(SO4)3 + H2

Ш Свойства актиноидов

Из актиноидов наибольшее значение имеют лишь торий, уран и плутоний. Поэтому рассмотрим их более подробно.

Торий, уран и плутоний — серебристо-белые твердые ме-таллы, на воздухе быстро покрываются темной пленкой из оксидов и нитри-дов. Некоторые физические свойства некоторых актиноидов указаны в табл. 2

Таблица 2.

Физические свойства некоторых актиноидов

Металл

Плотность, кг/м3

Температура, °С

плавления

кипения

Актиний

1 100

Торий

3 000−4 400

Протактиний

15 370

1 873

-;

Уран

19 040

1 132

Нептуний

20 450

-;

Плутоний

19 740

3 235

Америций

13 670

2 607

Кюрий

13 500

Данные элементы радиоактивны, периоды полураспада для 232Th, 238U и 239Pu состав-ляют соответственно 1,40 *1010, 4,5*109 и 24 400 лет.

Строение внешних электронных оболочек атомов: 6d27s2, U 5f 36d17s2, Pu 5f6 7s2. Таким образом, в атоме Pu происходит «провал» электрона на 5f-оболочку.

Торий, являющийся аналогом церия, проявляет степени окисления +2, +3 и +4, две первые редки, последняя — характерна. Стабильность степени окисления +4 связана с тем, что ион Th4+ имеет электронную конфигурацию атома Rn. Как уже указано выше, характерными степенями окисления урана являются +4 и +6, последняя представлена большим числом соединений (ион U6+ имеет электронную конфигурацию Rn). Плутоний проявляет степени окисления от +3 до +7, наиболее распространены соединения Pu+4 .

Для остальных актиноидов характерны следующие степени окисления :

протоактиний +4, +5 и +6

нептуний и плутоний наиболее характерна степень окисления +3 и

+4, получены соединения со степенями

окисления+6 и +7

америций и кюрий наиболее характерна степень окисления +3,

имеются соединения со степенью окисления

+4.

берклий следующие наиболее характерна степень окисления +3.

за ним элементы

Актиноиды, подобно лантаноидам, характеризуют-ся высокой химической активностью. В высокодисперсном состоянии Th, U и Pu активно погло-щают водород, образуя нестехиометрические металлоподобные соединения, состав которых приближается к ЭНз. Термическое разложение UH3 можно ис-пользовать для получения особо чистого водорода.

При нагревании в присутствии кислорода эти металлы образуют' оксиды: бесцветный ТhO2, темно-коричневый UO2, желто-коричневый РuO2.

Э +О2 =ЭО2

Это туго-плавкие соединения, особенно ТhO2 (т. пл. 3220 °С). При более сильном нагревании (до красного каления) уран образует темно-зеленый оксид U3O8, формулу этого соединения можно записать U2+4U+6O8 .

Гидроксиды Э (ОН)3 малорастворимы в воде и имеют основный характер. Гидроксиды Э (ОН)4 имеют основный характер и также нерастворимы в воде

Рассматриваемые метал-лы реагируют с кислотами, образуя соли Э+4.

Э + 2Н2SO4 = Э (SO4)2 + 2H2

Соли, в которых актиноиды находятся в состоянии окисления +4, напоминают по свойствам соли Се4+. Соли актиноидных метал-лов, в которых последние находятся в степени окисле-ния +3, сходны по свойствам с аналогичными солями лантаноидов.

При действии на уран избытка фтора образуется гексафторид UF6 бесцветное, легко возгоняющееся кристаллическое вещество (давление его пара 101 кПа при 56,5 °С). Это единственное соединение урана, сущест-вующее в газообразном состоянии при низкой температуре. Данное обстоя-тельство имеет большое практическое значение, поскольку разделение изо-топов 235U и 238U (с целью получения атомной энергии) осуществляют с по-мощью процессов, протекающих в газовой фазе (центрифугирование, газовая диффузия). При растворении в воде UF6 гидролизуется

UF6 +2Н2О = UО2F2 +4HF

Тетрафторид UF4 получают действием HF на UО2.

2 + 4 HF = UF4 + 2Н2О

Аналогичными свойствами обладают гексафториды нептуния и плутония.

С хлором уран образует легко растворяющийся в воде тетрахлорид UCl4. При избытке хлора получает-ся UCI5, легко диспропорционирующий на UCl4 и UC16 .

При нагревании уран активно взаимодействует с азотом, серой и другими элементными веществами.

Соединения U+4 в подкисленных водных растворах легко окисляются до шестивалентного состояния с образованием ярко-желтых солей уранила. Поскольку с увеличением заряда иона актиноида усиливается его взаимодействие с водой (гидролиз), то в водном растворе ионы Э5+ и Э6+ не существуют. В воде они превращаются соответственно в ионы ЭО2+ и ЭО22+. Связи атомов кислорода с ионами акти-ноидов в состоянии окисления +5 и +6 настолько прочны, что ионы ЭО2+ и ЭО22+остаются неизменными при многих химических превращениях. Гидроксид уранила при нагревании разлагается, образуя оксид UО3. При действии Н2О2 на раствор нитрата ура-нила образуется желтый пероксид урана:

U02(N03)2 + Н202 + 2Н20 = U04 *2Н20 + 2HN03

Для соединений актиноидов чрезвычайно характер-ны реакции диспропорционирования. Например, ион пятивалентного плутония РuО2+ в водном растворе диспропорционирует на ионы трехвалентного и шести-валентного плутония:

3Pu02+ + 4Н+ = Рu3+ + 2PuO22+ + 2Н20

Многие соли актиноидов хорошо растворимы в различных органических растворителях, не смешиваю-щихся с водой. На этом основана экстракция соеди-нений актиноидов органическими веществами из вод-ных растворов. Экстракционные процессы нашли широкое применение в технологии выделения и разделения, близких по свойствам актиноидов.

3. f -элементы в природе и их применение.

В природе лантаноиды очень рас-сеяны и в свободном виде не встречаются, а лишь в; сочетании друг с другом или с лантаном и иттрием. При отделении рассматриваемых элементов друг от друга большие трудности возникают ввиду чрезвычай-ного сходства свойств лантаноидов. Содержание лан-тана и лантаноидов в земной коре составляет 0,01%' (масс), т. е. примерно такое же, как меди. Наиболее распространены гадолиний, церий и неодим, наиболее редко гольмий, тулий и лютеций.

Очень редко встречается радиоактивный элемент прометий. Впервые он выделен в 1947 г. из продуктов деления урана в ядерном реакторе.

Лантаноиды обычно получают электролизом рас-плавленных хлоридов или фторидов. Они могут быть также получены металлотермическим способом при восстановлении фторидов или хлоридов активными металлами.

Лантаноиды используют в производстве особых марок чугуна и высококачественных сталей.

Введение

этих элементов в чугун в виде ферроцерия (сплав церия с железом) или сплава различных лантаноидов повышает прочность чугуна. Небольшие добавки лан-таноидов к стали очищают ее от серы, азота и других примесей, так как лантаноиды, являясь химически активными металлами, взаимодействуют с примесями. При этом повышаются прочность, жаропрочность и коррозионная устойчивость сталей. Такие стали пригодны для изготовления деталей сверхзвуковых самолетов, оболочек искусственных спутников Земли. С помощью лантаноидов получают также жаропроч-ные сплавы легких металлов —магния и алюминия. Благодаря сплавам лантаноидов проводят металлотермическое восстановление многих металлов (титана, ва-надия, циркония, ниобия, тантала и др.), используя в этом процессе большое сродство лантаноидов к кис-лороду.

Важную роль играют лантаноиды и в силикатной промышленности. При добавлении к жидкой массе стекла оксидов лантаноидов стекло приобретает высо-кую прозрачность. Оно становится при этом устойчи-вым не только к действию ультрафиолетовых лучей, но и к рентгеновскому излучению. Стекла с добавкой лантаноидов необходимы для астрономических и спек-троскопических приборов. Стекла окрашиваются в ярко-красный цвет от присутствия Nd203, в зеленый — от Рr203. Оксиды лантаноидов пригодны также для окраски фарфора, глазурей и эмалей.

Оксиды гадолиния, самария и европия входят в состав защитных керамических покрытий от тепловых нейтронов в ядерных реакторах. Соединения ланта-ноидов входят в состав красок, лаков, люминофоров (светящиеся составы), катализаторов.

Все актиноиды радиоактивны. За период существо-вания Земли большинство из них полностью распа-лось и в настоящее время в природе не встречаются. Поэтому их получают искусственно. Существование в природе тория, протактиния и урана объясняется тем, что они имеют сравнительно стабильные изотопы, т. е. изотопы с большим периодом полураспада.

Промышленным источником тория служат монацитовые пески. Они также являются сырьем для полу-чения редкоземельных элементов. Известны богатые по содержанию минералы торит ThSi04 и торианит (Th, U)02. Однако они редко встречаются в природе и не образуют больших скоплений.

Протактиний чрезвычайно рассеянный элемент. Его добывают из отходов переработки урана. Однако в настоящее время изотоп протактиния-231 синтези-руют искусственным путем в ядерных реакторах. Та-ким способом его получают в больших количествах, чем из уранового сырья.

Для урана известно около 200 минералов. Однако промышленное значение имеют лишь немногие. К их числу относится минерал настуран (урановая смолка, или урановая обманка). Обычно ему приписывают формулу U3O8. Довольно широко распространен так-же минерал отэнтит — Ca (U02)2(P04)2*H20. В нич-тожных количествах в природе также встречаются нептуний и плутоний. Однако их существование объ-ясняется тем, что в природе происходят ядерные про-цессы, подобные тем, которые человек производит в ядерных реакторах.

В настоящее время в различных странах мира су-ществует хорошо налаженное производство актиноид-ных металлов в следующих масштабах (за один год):

Нептуний Десятки килограмКалифорДоли грамма

мов ний Плутоний Тонны ЭйнштейДоли миллиграмма Америций Десятки килограмний

мов Фермий Миллиарды атомов Кюрий Килограммы Менделевий Тысячи атомов Берклий Дециграммы

Из актиноидов наибольшее применение нашли уран и плутоний. Дело в том, что ядра двух изотопов урана (235U и 233U), а также двух изотопов плутония (239Рu и 241Рu) при захвате нейтрона способны де-литься на два осколка, причем в каждом акте ядер-ного деления, наряду с осколками, делящееся ядро испускает два или три нейтрона. Благодаря этому ста-новится возможным не только продолжение начавшегося деления ядер, но и ла-винообразное его нараста-ние (рис. 1).

Деление ядер связано с огромным выделением энер-гии. Так, при делении урана-235 происходит выделе-ние около 75 млн. кДж энергии на 1 г урана. Это обусловило использование урана и плутония в качестве ядерного горючего в атомных энергетических установках и в качестве взрывчатого вещества в атом-ных бомбах.

Для взрыва ядерного материала необходимо такое развитие цепного процесса, при котором выделив-шаяся

энергия достигнет взрывного порога. Это может быть обеспечено при определенной массе делящегося вещества. Минимальную массу этого вещества, необ-ходимую для взрыва, называют критической. Однако, если два куска делящегося материала, которые в сум-ме составляют критическую массу, находятся на каком-то расстоянии друг от друга, то взрыва не про-исходит. Достаточно соединить эти куски и произой-дет взрыв. После сказанного будет понятен принцип устройства атомной бомбы (рис. 2): запал 4 обеспе-чивает взрыв обычного взрывчатого вещества 1, это приводит в соприкосновение куски ядерного горючего 2, которые вместе составляют критическую массу, и происходит взрыв.

4. Используемая литература.

1. Петров М. М. и др. Неорганическая химия. — Л.: Химия, 1998.

2. Угай Я. А. Неорганическая химия: Учебник для хим. Спец. Вузов. — М.: Высшая школа, 1989.

3. Карапетьянц М. Х., Дракин С. И. Общая и неорганическая химия. Учебник для вузов. — М.: Химия, 1993.

4. Глинка Н. Л. Общая химия.- Л.: Химия, 1975.

Показать весь текст
Заполнить форму текущей работой