ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

УравнСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, записанныС Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Для симмСтричного Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ° Π›-Ρ„ΠΎΡ€ΠΌΡƒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (4.1) ΠΈ (4.2) Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ ΠΈΠ½ΠΎΠ³Π΄Π° Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° g, полагая, А = D = chg, Π’ = Zcshg, Π‘ = shg/Zc. ΠŸΡ€ΠΈ этом AD — Π’Π‘ = = ch2g — sh2g = 1 ΠΈ. Если Π’ ΠΈ Π‘ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ Π·Π½Π°ΠΊΠΈ, Ρ‚ΠΎ ZBX = 1/ZH (ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния), Ссли Π·Π½Π°ΠΊΠΈ Ρƒ Π’ ΠΈ Π‘ Ρ€Π°Π·Π½Ρ‹Π΅, Ρ‚ΠΎ ZBX = -1/ZH (ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния). Π˜ΠΌΠ΅Π΅Ρ‚… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

УравнСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, записанныС Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Для симмСтричного Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ° Π›-Ρ„ΠΎΡ€ΠΌΡƒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (4.1) ΠΈ (4.2) Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ ΠΈΠ½ΠΎΠ³Π΄Π° Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° g, полагая А = D = chg, Π’ = Zcshg, Π‘ = shg/Zc. ΠŸΡ€ΠΈ этом AD — Π’Π‘ = = ch2g — sh2g = 1 ΠΈ.

УравнСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, записанныС Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

УбСдимся Π² ΡΠΏΡ€Π°Π²Π΅Π΄Π»ΠΈΠ²ΠΎΡΡ‚ΠΈ Π·Π°ΠΌΠ΅Π½Ρ‹ А Π½Π° chg:

УравнСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, записанныС Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π€ΠΎΡ€ΠΌΡƒ записи Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² (см. Π³Π». 5).

Для нСсиммСтричного Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ° уравнСния Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ запишСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

УравнСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, записанныС Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π³Π΄Π΅ Π“ — ΠΌΠ΅Ρ€Π° ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ; chr = J~AD; shT = [Π’Π‘.

Если нСсиммСтричный Π²Π·Π°ΠΈΠΌΠ½Ρ‹ΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ Π½Π° Zc2,.

ВО й2 = ^2^с2:

УравнСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, записанныС Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠΈ.

УравнСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, записанныС Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ИмСя Π² Π²ΠΈΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ Π΅Π³ = chr + shr, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ.

УравнСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, записанныС Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠœΠ΅Ρ€Π° ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π“ = Π°' + jb' = In (-JaD + Ρƒ/Π²Π‘). Если Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊ симмСтричный, Ρ‚ΠΎ Zcl = Zc2, D = А, Π“ = g. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π»Jzcl /Zc2 = фА/D, Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π° ΠΏΠΎ Π½Π°ΠΏΡ€ΡΠΆΠ΅Π½ΠΈΡŽ для нСсиммСтричного Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° ^с2> составляСт.

1ΠΏ{Π³=1ΠΏ + In (Π»/ AD + yjΠ’Π‘).

ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π° ΠΏΠΎ Ρ‚ΠΎΠΊΡƒ ln^- = In— + ln (VAD + VbC).

I2 A

ΠšΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ ΠΈ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ сопротивлСния

Если Ρƒ Π½Π΅Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ° Π’ = Π‘ = 0 ΠΈ ΠΎΠ½ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ Π½Π° Π·Π°ΠΆΠΈΠΌΠ°Ρ… pq Π½Π° ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ZH, Ρ‚ΠΎ Π²Ρ…ΠΎΠ΄Π½ΠΎΠ΅ сопротивлСниС со ΡΡ‚ΠΎΡ€ΠΎΠ½Ρ‹ Π·Π°ΠΆΠΈΠΌΠΎΠ² Ρ‚ΠΏ

УравнСния Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ°, записанныС Ρ‡Π΅Ρ€Π΅Π· гипСрболичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π³Π΄Π΅ ΠΊΠ³ = D/А, Ρ‚. Π΅. Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ (ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΡƒΠ΅Ρ‚) сопротивлСниС ZH Π² ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ZH//c1. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ коэффициСнтом конвСртирования. Если А ΠΈ D ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ Π·Π½Π°ΠΊΠΈ, Ρ‚ΠΎ ZBX

ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‚ ΠΆΠ΅ Π·Π½Π°ΠΊ, Ρ‡Ρ‚ΠΎ ΠΈ ZH (ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния), Ссли Ρ€Π°Π·Π½Ρ‹Π΅, Ρ‚ΠΎ Π·Π½Π°ΠΊ ZBX ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ Π·Π½Π°ΠΊΡƒ ZH (ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния).

Если Ρƒ ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Π° А = 1, Ρ‚ΠΎ ΠΊΡ… = D; ΠΉΠ³ = ΠΉ2; Π” = kj2. Π’ ΡΡ‚ΠΎΠΌ случаС ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ΠΎΠΌ с ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ‚ΠΎΠΊΠ° (ΠΏΡ€ΠΈ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΌ напряТСнии).

Если Ρƒ ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Π° D = 1, Ρ‚ΠΎ = 1 /А; U1=U2/kl;il=i2. Π’Π°ΠΊΠΎΠΉ ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ΠΎΠΌ с ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ напряТСния.

Π£ ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Π° Π΅ΡΡ‚ΡŒ Н- ΠΈ G-ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, Π½ΠΎ ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ZΠΈ Π£-ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹.

Если Ρƒ Π½Π΅Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊΠ° А = D = 0, Ρ‚ΠΎ ZBX = B/(CZH) ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΠΏΠΎΠ»ΡŽΡΠ½ΠΈΠΊ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ΠΎΠΌ сопротивлСния, Π° Π’/Π‘ = ΠΊ2 — коэффициСнтом инвСртирования.

Если Π’ ΠΈ Π‘ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ Π·Π½Π°ΠΊΠΈ, Ρ‚ΠΎ ZBX = 1/ZH (ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния), Ссли Π·Π½Π°ΠΊΠΈ Ρƒ Π’ ΠΈ Π‘ Ρ€Π°Π·Π½Ρ‹Π΅, Ρ‚ΠΎ ZBX = -1/ZH (ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния).

Π£ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Π° Π²Ρ…ΠΎΠ΄Π½ΠΎΠ΅ сопротивлСниС Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ‚ ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, ΠΊ ΠΊΠ°ΠΊΠΈΠΌ Π·Π°ΠΆΠΈΠΌΠ°ΠΌ (pq ΠΈΠ»ΠΈ Ρ‚ΠΏ) ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½Π° Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°.

Π£ ΠΈΠ½Π²Π΅Ρ€Ρ‚ΠΎΡ€Π° Π΅ΡΡ‚ΡŒ Π£ΠΈ Z-ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, Π½ΠΎ ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Н- ΠΈ G-ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ