Помощь в написании студенческих работ
Антистрессовый сервис

Изучение обыкновенных дробей по нетрадиционной системе во втором классе

РефератПомощь в написанииУзнать стоимостьмоей работы

Какие геометрические фигуры перед вами? Что общего у всех этих кругов? Посмотрите на первый круг слева. Насколько равных частей они разделены? Покажите заштрихованную часть круга. Какая это часть круга? Запишите соответствующую дробь под этим кругом. На сколько равных частей разделен следующий круг? Покажите заштрихованную часть круга. Какая это часть? Запишите соответствующую дробь под кругом… Читать ещё >

Изучение обыкновенных дробей по нетрадиционной системе во втором классе (реферат, курсовая, диплом, контрольная)

С целью расширения математического кругозора учащихся при изучении темы «Доли» термины: дробь, числитель и знаменатель, рассматривается образование, чтение, запись и сравнение дробей с числителем больше единицы.

Для формирования представления о дроби, используются решения текстовых задач. Первой учащимся можно предложить задачу: «Два брата разделили между собой поровну 6 яблок. Сколько яблок досталось каждому брату?»

Ученики самостоятельно записывают решение задачи: (6:2=3) и дают ответ на ее вопрос, объясняя выбор арифметического действия. Далее предлагается следующая задача: «Два брата разделили между собой одно яблоко поровну. Сколько яблок досталось каждому брату?»

Учитель берет одно яблоко и просит разделить его между братьями поровну. Как поступить в данном случае? Ученики предлагают разрезать яблоко на две равные части. Учитель разрезает яблоко, показывает одну из равных частей и спрашивает: «Как можно назвать эту часть яблока (половина)?». Почему (яблоко разрезали пополам)? Кто догадался, как можно по-другому назвать половину (одна вторая)? Докажите. (яблоко разделили на две равные части и взяли одну из частей).

Учитель показывает вторую часть яблока и предлагает учащимся назвать ее.

Вспомните вопрос задачи и ответьте на него (каждому брату досталась половина или одна вторая яблока). Одна вторая — это дробное число. Оно записывается так —½. Запишите решение задачи.

На доске оформляется запись: 1:2=½.

Далее поясняется, что в записи дроби ½ число, которое стоит под чертой, показывает, насколько равных частей делят предмет. Это число называется знаменателем дроби. Число, которое стоит над чертой, показывает, сколько таких частей взято. Это число называется числителем дроби.

Затем, для решения предлагается задача:

«Три брата разделили между собой три яблока поровну. Сколько досталось яблок каждому брату?» Учащиеся самостоятельно записывают решение этой задачи, формулируют ответ на ее вопрос, выясняют значение числителя и знаменателя дроби одна третья.

Что бы научить детей сравнивать дроби (доли) на основе наглядности, можно использовать учебное задание с элементами самоконтроля.

На доске расположены шесть карточек, на которых изображены одинаковые квадраты, разделенные на равные части различным образом. Квадраты расположены в следующем порядке:

Учитель задает вопросы: Какие фигуры изображены? Что общего у всех этих квадратов? Просит учащихся разбить эти квадраты на группы и объяснить, по какому признаку они это сделали.

Учитель задает вопросы: Какие фигуры изображены? Что общего у всех этих квадратов? Просит учащихся разбить эти квадраты на группы и объяснить, по какому признаку они это сделали.

На доске получилась иллюстрация:

Изучение обыкновенных дробей по нетрадиционной системе во втором классе.

Учитель предлагает:

Рассмотрите первую пару квадратов и скажите, какая часть каждого квадрата заштрихована? Покажите ½ часть первого квадрата. Обозначьте дробью. Что обозначает знаменатель этой дроби? Что означает числитель этой дроби? Покажите ½ другого квадрата. Обозначьте дробью. Сравните заштрихованные части этих квадратов. Запишите числовое равенство.

Учитель показывает, как правильно оформить запись ½=1/2

Аналогичная работа проводиться с остальными парами квадратов.

Затем квадраты расставляются в такой последовательности:

Изучение обыкновенных дробей по нетрадиционной системе во втором классе.

Ученикам предлагается поменять местами карточки, на которых изображены равные дроби. Если задание будет выполнено правильно, они прочитают слово К Л Ю К В, А — ответ к загадке:

Когда весною талые сойдут с болот снега

Она как бусы алые усеет берега

Данное задание ученики выполняют с интересом. Повышенную активность, даже у слабых учеников, вызывает вторая часть задания.

Для формирования умения сравнивать дроби, предлагаются учебные задания с элементами занимательности и самоконтроля.

Приведем одно из заданий:

На доске прикреплены модели кругов, разрезанные на две, на восемь, на шесть, на четыре, на три равные части.

Изучение обыкновенных дробей по нетрадиционной системе во втором классе.

Работа проходит следующим образом:

Какие геометрические фигуры перед вами? Что общего у всех этих кругов? Посмотрите на первый круг слева. Насколько равных частей они разделены? Покажите заштрихованную часть круга. Какая это часть круга? Запишите соответствующую дробь под этим кругом. На сколько равных частей разделен следующий круг? Покажите заштрихованную часть круга. Какая это часть? Запишите соответствующую дробь под кругом. Что означает знаменатель этой дроби, что означает числитель этой дроби?

Аналогичная работа проводится с другими кругами.

Далее предлагается таблица:

1/6.

½.

1/3.

1/8.

¼.

И.

К.

А.

Н.

Г.

Используя эту таблицу, учащиеся заменяют дроби буквами и отгадывают загадку: «Не куст, а с листочками, не рубашка, а сшита, не человек, а говорит.»

(КНИГА).

Затем на доске делается запись:

½ и 1/8 ¼ и 1/8 1/3 и 1/8 1/3 и 1/6 ½ и 1/6 ¼ и 1/6 1/3 и ¼

1/8 и ½ 1/8 и ¼ 1/8 и 1/3 1/6 и 1/3 1/6 и ½ 1/6 и ¼ ¼ и 1/3

Используя в качестве наглядности круги, требуется поставить вместо и соответствующие знаки сравнения. Учащиеся выполняют это задание самостоятельно, а затем проводят проверку у доски.

Убедившись в том, что у учеников сформировались представления о дроби и умение сравнивать дроби с опорой на наглядность, мы решили ввести дроби с числителем больше единицы.

Для этого предлагаем решить следующую задачу:

«Мама к чаю подала торт, разрезанный на 10 равных кусков. Брат съел 2 куска торта, а сестра один кусок. Какую часть торта съел брат? Какую часть торта съела сестра?»

Для решения этой задачи используем наглядный материал ;

Изучение обыкновенных дробей по нетрадиционной системе во втором классе.

круг, разделенный на 10 равных частей. Работа над задачей проходит так: На сколько равных частей мама разделила торт? Сколько торта съела сестра? Покажите на рисунке.

Какую часть торта составляет один кусок? Кто может записать соответствующую дробь? Сколько кусков торта съел брат? Покажите на рисунке. Какую часть торта составляют два куска? Кто сможет записать дробь две десятых?

Этот вопрос сначала вызывает затруднение. Однако поразмыслив, многие приходят к верному выводу и записывают: 2/10.

— Назовите знаменатель этой дроби. Объясните, что он означает. Назовите числитель этой дроби. Объясните его значение. Затем учащиеся выполняют сравнение дробей с опорой на наглядность и записывают соответствующие неравенства:

1/10<2/10, 2/10>1/10

Кому из детей досталось больше торта? А кому меньше? Сколько всего кусков торта съели дети? Покажите на рисунке. Какую часть торта составляют три куска? Запишите дробь. Объясните значение числителя и знаменателя этой дроби.

Выполнение этого задания, вызывает интерес даже у малоактивных детей. В работе принимают участие все ученики класса.

Далее ведется работа по изучению тем «Нахождение доли числа» и «Нахождение числа по доле». Обе эти темы вводятся одновременно. Причем, первой решалась задача, в которой требовалось по доле найти число. Затем предлагается составить обратную задачу, т. е. найти долю числа.

Деятельность учащихся должна быть организована следующим образом: Вначале учащимся предлагается задача: " Береза прожила 50 лет, что составляет одну пятую продолжительности ее жизни. Какая продолжительность жизни березы?".

На доске дана модель этой задачи. Дети, используя модель рассуждают так: «Одна пятая часть составляет 50 лет, а в целом пять таких частей. Можно узнать продолжительность жизни березы, для этого надо 50 умножить на 5». Под моделью выполняется запись: 50*5=250

Дети дают ответ на вопрос задачи.

Учитель предлагает составить задачу, обратную данной. Ученики быстро и правильно справляются с этим заданием: «Продолжительность жизни березы 250 лет. Она прожила 1/5 своей жизни. Сколько лет прожила береза?».

Составленную задачу ученики решают самостоятельно, используя модель, данную к первой задаче. Получив ответ, они убеждаются в правильности решения исходной задачи.

Рассмотренная методика изучения темы «Доли» подтверждает, что учащимся 2-го класса доступно усвоение терминов дробь, числитель, знаменатель, а также образование, чтение, запись и сравнение дробей с числителем больше единицы. Применение нестандартных учебных заданий при изучении темы способствует активизации деятельности и интереса учащихся по изучаемому материалу.

Показать весь текст
Заполнить форму текущей работой