Помощь в написании студенческих работ
Антистрессовый сервис

Методы получения углеродных наноструктур

РефератПомощь в написанииУзнать стоимостьмоей работы

Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц, величина тока от 100 до 200 А, напряжение 10−20 В. Регулируя натяжение пружины, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием с давлением 100 торр. Скорость испарения графита в этой установке может достигать 10 г/В. При этом… Читать ещё >

Методы получения углеродных наноструктур (реферат, курсовая, диплом, контрольная)

С момента обнаружения первых нанотрубок, основные усилия ученых сфокусировались на разработке метода, позволяющего производить нанотрубки с заданными свойствами и в больших количествах. Именно отсутствие такого метода объясняет высокую стоимость нанотрубок на сегодняшний день (таблица 2.), связанную со сложной и дорогой технологией очищения и выделения нанотрубок, полученных каким-либо методом.

Можно выделить три основополагающих метода, использующихся в технологии: метод термического разложения графита в дуговом разряде, метод химического осаждения из газовой фазы с использованием катализатора, метод лазерного испарения графита. Отметим, что существует широкий набор их модификаций; возможны также сочетания нескольких методов в одном процессе. Также, относительно дешевым является альтернативный способ образования наноструктур за счет холодной деструкции графита. Данный метод является новаторским и мало изученным. При проведении исследовательской работы было впервые показано АСМ изображение нанотрубок, полученных при деструкции графита. Далее коротко описаны технологические особенности каждого из четырех методов.

Термическое разложение графита в дуговом разряде Метод основан на образовании углеродных нанотрубок при термическом распылении графитового электрода в плазме дугового разряда, горящего в атмосфере гелия. Этот метод, как и метод лазерного распыления, лежащий в основе эффективной технологии получения фуллеренов, позволяет получать нанотрубки в количестве, достаточном для детального исследования их физико-химических свойств.

Трубка может быть получена из протяженных фрагментов графита, которые далее скручиваются в цилиндр. Для образования протяженных фрагментов необходимы специальные условия нагрева графита. Оптимальные условия получения нанотрубок реализуются в дуговом разряде при использовании электролизного графита в качестве электродов. На рис. 8. показана упрощенная схема установки для получения фуллеренов.

Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц, величина тока от 100 до 200 А, напряжение 10−20 В. Регулируя натяжение пружины, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием с давлением 100 торр. Скорость испарения графита в этой установке может достигать 10 г/В. При этом поверхность медного кожуха, охлаждаемого водой, покрывается продуктом испарения графита, т. е. графитовой сажей. Если получаемый порошок соскоблить и выдержать в течение нескольких часов в кипящем толуоле, то получается темно-бурая жидкость. При выпаривании ее во вращающемся испарителе получается мелкодисперсный порошок, вес его составляет не более 10% от веса исходной графитовой сажи, в нем содержится до 10% фуллеренов и нанотрубок.

В описанном способе получения нанотрубок гелий играет роль буферного газа. Атомы гелия наиболее эффективно по сравнению с другими атомами «тушат» колебательные движения возбужденных углеродных фрагментов, препятствующих их объединению в стабильные структуры. Кроме того, атомы гелия уносят энергию, выделяющуюся при объединении углеродных фрагментов. Опыт показывает, что оптимальное давление гелия находится в диапазоне 100 торр. При более высоких давлениях агрегация фрагментов углерода затруднена.

Среди различных продуктов термического распыления графита (фуллерены, наночастицы, частицы сажи) небольшая часть (несколько процентов) приходится и на многослойные нанотрубки, которые частично прикрепляются к холодным поверхностям установки, частично осаждаются на поверхности вместе с сажей.

Однослойные нанотрубки образуются при добавлении в анод небольшой примеси Fe, Co, Ni, Cd (т.е. добавлением катализаторов). Кроме того, ОСНТ получаются при окислении многослойных нанотрубок. С целью окисления, многослойные нанотрубки обрабатываются кислородом при умеренном нагреве, либо кипящей азотной кислотой, причем в последнем случае происходит удаление пятичленных графитовых колец, приводящее к открытию концов трубок Окисление позволяет снять верхние слои с многослойной трубки и открыть ее концы. Так как реакционная способность наночастиц выше, чем у нанотрубок, то при значительном разрушении углеродного продукта в результате окисления доля нанотрубок в оставшейся ее части увеличивается.

Изменение параметров процесса и конструкции установки ведет к изменению эффективности процесса и состава продукта. Выход годных в различных модификациях колеблется от 20% до 80%, тем не менее нанотрубки растут достаточно короткими, а в случае ОСНТ наблюдаются множественные дефекты.

Химическое осаждение из газовой фазы Метод плазмохимического осаждения из газовой фазы (ПХО) основан на том, что газообразный источник углерода (чаще всего метан, ацетилен или моноксид углерода) подвергают воздействию какого-либо высокоэнергетического источника (плазмы или резистивно-нагреваемой катушки) для того чтобы расщепить молекулу на реакционно-активный атомарный углерод. Далее происходит его распыление над разогретой подложкой, покрытой катализатором (обычно это переходные металлы первого периода Fe, Co, Ni и др.), на котором осаждается углерод. Нанотрубки образуются только при строго соблюдаемых параметрах. Точное воспроизведение направления роста нанотрубок и их позиционирование на нанометровом уровне может быть достигнуто только используя метод каталитического ПХО. Возможен также точный контроль за диаметром нанотрубок и их скоростью роста. В зависимости от диаметра частиц катализатора могут расти исключительно ОСНТ либо МСНТ. На практике данное свойство широко используется в технологии создания зондов для сканирующей зондовой микроскопии (рис. 9). Задавая положение катализатора на конце кремниевой иглы кантилевера, выращивается нанотрубка, которая значительно улучшает воспроизводимость характеристик и разрешающую способность микроскопа, как при сканировании, так и при проведении литографических операций.

Пример использования каталитического осаждения при создании зондов АСМ [36].

Рис. 9. Пример использования каталитического осаждения при создании зондов АСМ [36]

Обычно синтез нанотрубок по ПХО методу происходит в два этапа: приготовление катализатора и собственно рост нанотрубок. Нанесение катализатора осуществляется распылением переходного металла на поверхность подложки, а затем, используя химическое травление или отжиг, инициализируют формирование частиц катализатора, на которых в дальнейшем происходит рост нанотрубок (рис. 10). Температура при синтезе нанотрубок варьируется от 600 до 900 °C. Выход годных составляет примерно 30% [47, 49].

Электронная микрофотография стенок из МСНТ, выращенных перпендикулярно к подложке (справа). Слева показана увеличенная структура вершины стенки.

Рис. 10. Электронная микрофотография стенок из МСНТ, выращенных перпендикулярно к подложке (справа). Слева показана увеличенная структура вершины стенки

В последнее десятилетие были разработаны различные методы, основанные на ПХО: плазменно-индуцированное ПХО, термическое ПХО, спиртосодержащее каталитическое ПХО, рост в паровой фазе, лазерноиндуцированное ПХО.

Среди данных методов следует отметить метод каталитического пиролиза углеводородов (рис. 11), в котором возможно реализовать гибкое и раздельное управление условиями образования нанотрубок.

В качестве катализатора обычно используется железо, которое образуется в восстановительной среде из различных соединений железа (хлорид железа (III), салицилат железа (III) или пентакарбонил железа). Смесь солей железа с углеводородом (бензолом) распыляется в реакционную камеру либо направленным потоком аргона, либо с использованием ультразвукового распылителя. Полученный аэрозоль с потоком аргона поступает в кварцевый реактор. В зоне печи предварительного нагрева аэрозольный поток прогревается до температуры ~250 °С, происходит испарение углеводорода и начинается процесс разложения металлсодержащей соли. Далее аэрозоль попадает в зону печи пиролиза, температура в котором составляет 900 °C. При этой температуре происходит процесс образования микрои наноразмерных частиц катализатора, пиролиз углеводорода, образование на частицах металла и стенках реактора различных углеродных структур, в том числе нанотрубок. Затем газовый поток, двигаясь по реакционной трубе, поступает в зону охлаждения. Продукты пиролиза осаждаются в конце зоны пиролиза на охлаждаемом водой медном стержне.

Схема установки каталитического пиролиза углеводородов.

Рис. 11. Схема установки каталитического пиролиза углеводородов

Метод лазерного испарения Альтернативой выращивания нанотрубок в дуговом разряде является метод лазерного испарения. В данном методе синтезируются в основном ОСНТ при испарении смеси углерода и переходных металлов лазерным лучом из мишени, состоящей из сплава металла с графитом. По сравнению с методом дугового разряда, прямое испарение позволяет обеспечить более детальный контроль условий роста, проводить длительные операции и производить нанотрубки с большим выходом годных и лучшего качества. Фундаментальные же принципы, лежащие в основе производства ОСНТ методом лазерного испарения такие же, как и в методе дугового разряда: атомы углерода начинают скапливаться и образовывать соединение в месте нахождения частиц металлического катализатора.

Схама установки лазерной абляции.

Рис. 12. Схама установки лазерной абляции

В установке используемой в работе (рис. 12) сканирующий лазерный луч фокусировался в 6−7 мм пятно на металл-графит содержащую мишень. Мишень помещалась в наполненную аргоном трубу при повышенном давлении и нагретой до 1200 oC. Сажа, которая образовывалась при лазерном испарении, уносилась потоком аргона из зоны высокой температуры и осаждалась на охлаждаемый водой медный коллектор, находящийся на выходе из трубы.

Изготовление мишени требует нескольких сложных шагов при смешивании металлической крошки и порошка природного графита с выдерживанием в течение нескольких часов под высоким давлением при температуре 1200 oC. Используется следующая концентрация металлов при изготовлении мишени: Co (1.0 ат%), Cu (0.6), Nb (0.6), Ni (0.6), Pt (0.2), Co/Ni (0.6/0.6), Co/Pt (0.6/0.2), Co/Cu (0.6/0.5), Ni/Pt (0.6/0.2).

В результате при лазерном испарении было обнаружено образование исключительно ОСНТ с большим процентом выхода. Оптимизация процесса позволила увеличить процент выхода ОСНТ до 70% .

Холодная деструкция графита В данной работе будут представлены исследования углеродных наноструктур, полученных как отработанными методами, описанными выше (каталитическое осаждение и лазерная абляция), так и сравнительно новым и мало изученным методом холодной деструкции графита. Из теоретических предпосылок следует, что в этом методе должны образовываться структуры нанометровых размеров. Применение ИК-спектроскопии дало косвенное доказательство существования низкоразмерных структур углерода, таких как фуллерены и нанотрубки. Но ИК спектр данных образований достаточно близок к спектру аморфного углерода и нанометровых фрагментов графита. Попытки исследования материала в электронном микроскопе не дали положительных результатов. Поэтому, до проведения работы, описанной ниже, не было получено визуального доказательства существования нанотрубок в смеси, созданной методом холодной деструкции графита.

Смесь представляет собой углеродный материал, обладающий огромной реакционной способностью по отношению к любым углеводородным соединениям. Реакционная способность углеродной смеси обусловлена тем, что при ее изготовлении из природного чешуйчатого графита, графита в виде порошка, или другого графитсодержащего сырья происходит не только расслаивание кристаллитов на отдельные пакеты базисных плоскостей, как при известных способах изготовления расширенного графита, но и разрыв межгексагональных ковалентных связей. Это приводит к образованию энергетически напряженных атомарных соединений углерода.

В качестве исходного графитсодержащего сырья используют или природный чешуйчатый графит, или графит в виде порошка.

Для обеспечения оптимального режима изготовления смеси весовое соотношение исходного графитсодержащего сырья и галоген-кислородного соединения равно 2:1. На рис. 13 изображен вариант устройства для холодной деструкции графита. Изготовление углеродной смеси производят путем химической обработки исходного графитсодержащего сырья по крайней мере одним галоген-кислородным соединением общей формулы MXOn, где M — одно из химических веществ ряда: H, NH4, Na, K; X — одно из химических веществ ряда: Cl, Br, J; а n=1−4, с образованием инициирующих комплексов, способных в результате фотохимического, электрохимического, механического, термохимического, сонохимического или прямого химического воздействия к экзотермическому взрывообразному разложению с последующим инициированием автокаталитического процесса распада соединения. Инициирующие комплексы вводятся в межслоевые пространства графита, инициируется их взрывообразное разложение и происходит разрыв не только ван-дер-ваальсовых, но и ковалентных связей, что приводит к образованию углеродной смеси, имеющую тенденцию к высокой реакционности. Процесс осуществляется в любой емкости (сосуде и т. п.), в том числе и без доступа кислорода.

Рис. 13.

Рис. 13.

Процесс преобразования графита (разрыв ван-дер-ваальсовых связей) осуществляется под воздействием микро-взрывов, вводимых в межслойные пространства графита взрывчатых веществ, в данном случае, названных инициирующими комплексами. Взрывчатое вещество находится в межслоевом пространстве на молекулярном уровне и химическим путем инициируется до взрыва. В результате энергий, высвобождаемых микро-взрывом, происходят разрывы не только ван-дер-ваальсовых связей, но и межатомарных связей с образованием не только свободных радикалов С, С2, С3, С4, С5, но и радикалов в виде гексагонов (одного или нескольких) с присоединенными к ним радикалами вида С, С2, С3, С4 и С5, обеспечивающих в совокупности высокую реакционную способность получаемой углеродной смеси.

Устройство выполнено в виде герметичного корпуса 1, внутри которого в верхней части корпуса расположена загрузочная емкость 2, в которую загружается исходное графитсодержащее сырье 3 после соответствующей химической обработки. Под загрузочной емкостью размещается приемный сетчатый бункер 4, в который поступает готовый продукт 5.

После загрузки исходного сырья, любым из вышеуказанных способов инициируется взрывообразный процесс. Блок, инициирующий данный процесс, на схеме устройства не показан. В результате преобразования графита и образования углеродной смеси нанообъектов объем исходного вещества увеличивается в несколько сотен раз и готовая смесь, поднимаясь, высыпается через край загрузочной емкости 2 и попадает в приемный сетчатый бункер 4. Образующиеся внутри устройства пары и газы через поглотитель 6 откачиваются компрессором 7. Поглотитель: паров и газов представляет собой молекулярное сито для улавливания вредных составляющих газовой смеси, например, паров соляной кислоты и хлора, и в виде уже безвредных паров воды, углекислого газа и др. выбрасывается в атмосферу. Для выхода газа из корпуса в его нижней части предусмотрен патрубок, снабженный клапаном.

Показать весь текст
Заполнить форму текущей работой