Помощь в написании студенческих работ
Антистрессовый сервис

Липиды нервной ткани

РефератПомощь в написанииУзнать стоимостьмоей работы

Информация, благодаря которой нейроны устанавливают только определенные связи с определенными нейронами, кодируется в структуре полисахаридных веточек мембранных гликопротеинов. Образование таких связей, не заложенных в период эмбрионального развития, является результатом опыта индивидуального организма и составляет материальную основу для хранения информации, определяющей особенности поведения… Читать ещё >

Липиды нервной ткани (реферат, курсовая, диплом, контрольная)

Функции липидов нервной ткани следующие.

  • 1. Структурная: входят в состав клеточных мембран нейронов.
  • 2. Функция диэлектриков (обеспечивают надежную электрическую изоляцию).
  • 3. Защитная. Ганглиозиды являются очень активными антиоксидантами — ингибиторами перекисного окисления липидов (ПОЛ). При повреждении ткани мозга ганглиозиды способствуют ее заживлению.
  • 4. Регуляторная. Фосфатидилинозиты являются предшественниками биологически активных веществ.

Большая часть липидов нервной ткани находится в составе плазматических и субклеточных мембран нейронов и в миелиновых оболочках. В нервной ткани по сравнению с другими тканями организма содержание липидов очень высокое.

Особенность липидного состава нервной ткани: есть фосфолипиды (ФЛ), гликолипиды (ГЛ) и холестерин (ХС), нет нейтральных жиров. Эфиры холестерина можно встретить только в участках активной миелинизации. Сам холестерин синтезируется интенсивно только в развивающемся мозге. В мозге взрослого человека низка активность ОМГ-КоА-редуктазы — ключевого фермента синтеза холестерина. Содержание свободных жирных кислот в мозге очень низкое.

Некоторые нейромедиаторы после взаимодействия со специфическими рецепторами изменяют свою конформацию и изменяют конформацию фермента фосфолипазы С, которая катализирует расщепление связи в фосфатидилинозите между глицерином и остатком фосфата, в результате чего образуется фосфоинозитол и диацилглицерин. Эти вещества являются регуляторами внутриклеточного метаболизма. Диацилглицерин активирует протеинкиназу С, а фосфоинозитол вызывает повышение концентрации Са2+. Ионы кальция влияют на активность внутриклеточных ферментов и участвуют в работе сократительных элементов нервных клеток: микрофиламентов, что обеспечивает передвижение различных веществ в теле нервной клетки, аксоне и растущем кончике аксона. Протеинкиназа С участвует в реакциях фосфорилирования белков внутри нервных клеток. Если это белки-ферменты, то меняется их активность, если это рибосомальные или ядерные белки, то изменяется скорость биосинтеза белков.

Липиды постоянно обновляются. Скорость их обновления различна, но в целом низка. Некоторые липиды (например: холестерин, цереброзиды, фосфатидилэтаноламины, сфингомиелины) обмениваются медленно — в течение месяцев и даже лет. Исключение составляют фосфатидилхолин и, особенно, фосфатидилинозиты (содержат глицерин, фосфат, спирт (инозит), жирные кислоты) — они обмениваются очень быстро (сутки, недели).

Синтез цереброзидов и ганглиозидов протекает с большой скоростью в развивающемся мозге в период миелинизации. У взрослых почти все цереброзиды (до 90%) находятся в миелиновых оболочках, а ганглиозиды — в нейронах.

Нуклеиновые кислоты.Нервные клетки не делятся, значит, не происходит синтез ДНК. Однако, содержание РНК в них самое высокое по сравнению с клетками остальных тканей организма. Скорость синтеза РНК тоже очень велика.

В клетках нервной ткани не могут синтезироваться пиримидины (в нервной ткани отсутствует фермент карбамоилфосфатсинтаза). Пиримидины обязательно должны поступать из крови — гематоэнцефалический барьер для них проницаем. Гематоэнцефалический барьер легко проницаем и для пуриновых мононуклеотидов, но, в отличие от пиримидиновых, они могут синтезироваться в нервной ткани.

В нервной ткани, так же, как и в других, нуклеиновые кислоты обеспечивают хранение и передачу генетической информации и ее реализацию при синтезе клеточных белков.

Например, сильные раздражители: громкие звуки, сильные зрительные стимулы и эмоции приводят к повышению скорости синтеза и РНК, и белка в определенных участках мозга. Это указывает на то, что изменения в нервной системе, отражающие индивидуальный опыт организма, кодируются в виде синтезированных макромолекул.

Информация, благодаря которой нейроны устанавливают только определенные связи с определенными нейронами, кодируется в структуре полисахаридных веточек мембранных гликопротеинов. Образование таких связей, не заложенных в период эмбрионального развития, является результатом опыта индивидуального организма и составляет материальную основу для хранения информации, определяющей особенности поведения данного организма.

Метаболизм углеводов и особенности энергетического обеспечения нервной ткани В нервной ткани, составляющей только 2% от массы тела человека, потребляется 20% кислорода, поступающего в организм.

При этом энергетические возможности нервной ткани ограничены.

  • 1. Основной путь получения энергии — только аэробный распад глюкозы по ГБФ-пути. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ.
  • 2. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах.
  • 3. Постоянный и непрерывный приток глюкозы и кислорода из кровеносного русла является необходимым условием энергетического обеспечения нервных клеток. Жесткая зависимость от поступления глюкозы обусловлена тем, что содержание гликогена в нервной ткани ничтожно (0,1% от массы мозга) и не может обеспечить мозг энергией даже на короткое время. С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого являются быстрое наступление коматозного состояния и необратимых изменений в ткани мозга.
  • 4. Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Гексокиназа мозга отличается низким значением Км и высокой Vmax, обладает в 20 раз большей активностью, чем соответствующий изофермент печени и мышц. Ключевыми ферментами ГБФ-пути в нервной ткани являются фосфофруктокиназа и изоцитратдегидрогеназа. Фосфофруктокиназу ингибируют фруктозо-1,6-бисфосфат, АТФ и цитрат, активируют фруктозо-6-фосфат, АДФ, АМФ и неорганический фосфат. Активность изоцитрат ДГ даже при нормальном уровне утилизации глюкозы в состоянии покоя максимальна. Поэтому при повышенном энергопотреблении нет возможностей ускорения реакций цикла трикарбоновых кислот.
  • 5. Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ГМФ-пути распада глюкозы.
Показать весь текст
Заполнить форму текущей работой