Помощь в написании студенческих работ
Антистрессовый сервис

Развитие алгебры. 
История происхождения, развития и применения алгебры

РефератПомощь в написанииУзнать стоимостьмоей работы

Третий (современный) этап развития алгебры как науки об алгебраических операциях начался в середине XIX века и был связан с появлением разнообразных примеров алгебраических операций над объектами совсем иной природы, нежели действительные числа. Первыми такими примерами явились умножения подстановок и операции над комплексными числами. В 1900 году Давид Гильберт на Международном конгрессе… Читать ещё >

Развитие алгебры. История происхождения, развития и применения алгебры (реферат, курсовая, диплом, контрольная)

Решение уравнений 3-ей и 4-ой степени.

В 1505 году Сципион Феррео впервые решил один частный случай кубического уравнения. Это решение однако не было им опубликовано, но было сообщено одному ученику — Флориде. Последний, находясь в 1535 году в Венеции, вызвал на состязание уже известного в то время математика Тарталью из Брешии и предложил ему несколько вопросов, для разрешения которых нужно было уметь решать уравнения третьей степени. Но Тарталья уже нашел раньше сам решение таких уравнений и, мало того, не только одного того частного случая, который был решен Феррео, но и двух других частных случаев. Тарталья принял вызов и сам предложил Флориде также свои задачи. Результатом состязания было полное поражение Флориде. Тарталья решил предложенные ему задачи в продолжение двух часов, между тем как Флориде не мог решить ни одной задачи, предложенной ему его противником (число предложенных с обеих сторон задач было 30). Тарталья продолжал, подобно Феррео, скрывать свое открытие, которое очень интересовало Кардано, профессора математики и физики в Милане. Последний готовил к печати обширное сочинение об арифметике, алгебре и геометрии, в котором он хотел дать также решение уравнений 3-ей степени. Но Тарталья отказывался сообщить ему о своем способе. Только когда Кардано поклялся над Евангелием и дал честное слово дворянина, что он не откроет способа Тартальи для решения уравнений и запишет его в виде непонятной анаграммы, Тарталья согласился, после долгих колебаний, раскрыть свою тайну любопытному математику и показал ему правила решений кубических уравнений, изложенные в стихах, довольно туманно. Остроумный Кардано не только понял эти правила в туманном изложении Тартальи, но и нашел доказательства для них. Не взирая, однако, на данное им обещание, он опубликовал способ Тартальи, и способ этот известен до сих пор под именем «формулы Кардано» (у3 +ру+q=0). Вскоре было открыто и решение уравнений четвертой степени. Один итальянский математик предложил задачу, для решения которой известные до той поры правила были недостаточны, а требовалось умение решать биквадратные уравнения. Большинство математиков считало эту задачу неразрешимою. Но Кардано предложил ее своему ученику Луиджи Феррари, который не только решил задачу, но и нашел способ решать уравнения четвертой степени вообще, сводя их к уравнениям третьей степени. В сочинении Тартальи, напечатанном в 1546 году, мы также находим изложение способа решать не только уравнения первой и второй степени, но и кубические уравнения, причем рассказывается инцидент между автором и Кардано, описанный выше. Сочинение Бомбелли, вышедшее в 1572 г., интересно в том отношении, что рассматривает так называемый неприводимый случай кубического уравнения, который приводил в смущение Кардано, не сумевшего решить его посредством своего правила, а также указывает на связь этого случая с классическою задачей о трисекции угла.

Дальнейшее развитие алгебры было связано с совершенствованием символики и разработкой общих методов решения уравнений. В этом преуспел Франсуа Виета. Виет первым стал обозначать буквами не только неизвестные, но и данные величины. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т. е. ввести понятие математической формулы. Этим он внёс решающий вклад в создание буквенной алгебры, чем завершил развитие математики эпохи Возрождения и подготовил почву для появления результатов Ферма, Декарта, Ньютона.

Виет показал, что, оперируя с символами, можно получить результат, который применим к любым соответствующим величинам, т. Е. решить задачу в общем виде. Это положило начало коренному перелому в развитии алгебры: стало возможным буквенное исчисление. Непосредственно применение трудов Виета очень затруднялось тяжёлым и громоздким изложением. Из-за этого они полностью не изданы до сих пор. Более или менее полное собрание трудов Виета было издано в 1646 году в Лейдене нидерландским математиком ван Скоотеном под названием «Математические сочинения Виета». Г. Г. Цейтен отмечал, что «чтение работ Виета затрудняется несколько изысканной формой, в которой повсюду сквозит его большая эрудиция, и большим количеством изобретённых им и совершенно не привившихся греческих терминов. Потому влияние его, столь значительное по отношению ко всей последующей математике, распространялось сравнительно медленно».

Развитие алгебры в странах Европы.

Неожиданный переход к алгебре, основанной на арифметике, произошёл в работах Диофанта, который ввёл буквенные обозначения: неизвестное число он назвал «число», вторую степень неизвестного — «квадрат», третью — «куб», четвёртую — «квадрато-квадрат», пятую — «квадрато-куб», шестую — «кубо-куб». Также он ввёл обозначения для отрицательных степеней, свободного члена, отрицательного числа (или вычитания) и знака равенства. Диофант знал и использовал правило переноса вычитаемого из одной части уравнения в другую и правило сокращения равных членов. Исследуя уравнения третьей и четвёртой степеней Диофант для нахождения рациональной точки на кривой использует такие методы геометрической алгебры как провести касательную в рациональной точке кривой или провести прямую через две рациональные точки.

Первым европейским математиком, которому удалось осветить многие вопросы и внести в математику свой вклад, был Леонардо Пизанский (Фибоначчи, 1180−1240), написавший «Книгу абака». В ней рассмотрены различные задачи, указаны методы их решения, причем арифметика и алгебра линейных и квадратных уравнений изложены с небывалой до этого времени точностью и полнотой.

Существо задачи Леонардо излагает словесно; неизвестную он называет res (вещь) или radix (корень); квадрат неизвестной — census (имущество) или quadratus (квадрат); данное число — numerus. Все это латинские пероводы соответствующих латинских слов.

Французский епископ Николь Орем (1323−1382) рассматривал «дробно — рациональные отношения», соответствующе современным степеням aЅ, aј, a3/2 и т. д., сформулировал правила операций с этими отношениями типа:

, ,, .

Выдающимся алгебраистом своего времени стал монах-францисканец Лука Пачоли (ок. 1445 — ок.1514) близкий друг Леонардо да Винчи, работавший профессором Математики в университетах и различных учебных заведениях Рима, Болоньи, Неаполя, Флоренции, Милана и других городов.

Он ввел «алгебраические буквы», дал обозначения квадратному и кубическому корням, корню четвертой степени; неизвестную х он обозначал со (cosa — вещь), х2 — се (censo — квадрат), х3 — cu, x4 — се. Се., x5 — р°г° (primo relato — «первое relato», x6 — р°г° х — се. Cu. (censo de «второе relato»), х8 — ce. Ce. Ce. (de censo), x9 — cu. Cu. (cubo de cubo), x10 — ce. P°r° (censo de primo relato), x13 — 3°r° (tersio relato — «третье relato») и т. Д.; свободный член уравнения — n° (numero — число). Как видим, некоторые степени Пачоли получал мультипликативным способом с по­мощью показателей 2 и 3 (х4 = х2Ч2, х6 = х2Ч3, х9 = х3Ч3 и т. Д.), а в случаях, когда так не получалось, пользовался словом relato (например, при образовании х5, х7, х11 и т. Д.). Специальными символами Пачоли обозначил вторую неизвестную и ее степени. Для обозначения операции сложения он воспользовался знаком (plus — больше), для обозначения вычитания — знаком (minus — меньше). Он сформулировал правила умножения чисел, перед которыми стоят знаки и .

Некоторый шаг в совершенствовании алгебраической символики сделал бакалавр медицины Н. Шюке, который в книге «Наука о числах в трех частях» изложил правила действий с рациональными и иррациональными числами и теорию уравнений. Для сложения и вычитания он вслед за Пачоли пользовался знаками и, причем, знак служил и для обозначения отрицательного числа. Неизвестную величину он называл premier («первое число»), а ее степени — вторыми, третьими и т. Д, числами.

Значительного успеха в совершенствовании «алгебраических букв» Луки Пачоли достигли немецкие алгебраисты — «коссисты». Они вместо и ввели знаки + и -, знаки для неизвестной, и ее степеней, свободного члена.

В Германии первое сочинение об алгебре принадлежит Христиану Рудольфу из Иayepa, и появилось впервые в 1524 г. А затем вновь издано Стифелем в 1571 г. Сам Стифель и Шейбль, независимо от итальянских математиков, разработали некоторые алгебраические вопросы.

В Англии первый трактат об алгебре принадлежит Роберту Рекорду, преподавателю математики и медицины в Кембридже. Его сочинение об алгебре называется «The Whetstone of Wit». Здесь впервые вводится знак равенства (=).

Во Франции в 1558 году появилось первое сочинение об алгебре, принадлежащее Пелетариусу.

В Голландии Стевин в 1585 г. Не только изложил исследования, известные уже до него, но и ввел некоторые усовершенствования в алгебру. Например, он уже обозначал неизвестные. Правда, для обозначения неизвестных он использовал всего лишь числа, обведенные в кружочек. Так первая неизвестная (теперь обычно обозначаемая x) у него обозначалась обведенной в кружочек единицей, вторая — обведенной двойкой, и так далее.

Громадные успехи сделала алгебра после сочинений Виета, который первый рассмотрел общие свойства для уравнений произвольных степеней и показал способы для приблизительного нахождения корней каких бы то ни было алгебраических уравнений. Он же первый обозначил величины, входящие в уравнения буквами, и тем придал алгебре ту общность, которая составляет характеристическую особенность алгебраических исследований нового времени. Он же подошел весьма близко к открытию формулы бинома, найденной впоследствии Ньютоном, и, наконец, в его сочинениях можно даже встретить разложение отношения стороны квадрата вписанного в круг к дуге круга, выраженное в виде бесконечного произведения.

Фламандец Албер Жирар или Жерар, трактат которого об алгебре появился в 1629 г. Первый ввел понятие мнимых величин в науку.

Англичанин Гарриот показал, что всякое уравнение может рассматриваться, как произведение некоторого числа множителей первого порядка, и ввел в употребление знаки > и <. Его труды были опубликованы в 1631 г. Варнером.

Вплоть до XVIII века под алгеброй понималась наука о буквенных вычислениях, тождественных преобразованиях буквенных формул, решении уравнений первой — четвертой степеней, о логарифмах, прогрессиях, комбинаторики. В настоящее время все эти разделы алгебры принято называть элементарной алгеброй.

В XVIII—XIX вв.еках предмет алгебры — это прежде всего изучение многочленов, теория алгебраических уравнений с одним неизвестным, теория систем линейных уравнений с несколькими неизвестными, а также теория матриц и определителей.

Третий (современный) этап развития алгебры как науки об алгебраических операциях начался в середине XIX века и был связан с появлением разнообразных примеров алгебраических операций над объектами совсем иной природы, нежели действительные числа. Первыми такими примерами явились умножения подстановок и операции над комплексными числами. В 1900 году Давид Гильберт на Международном конгрессе математиков представил список из 23 нерешённых математических проблем. Эти проблемы охватили множество областей математики и сформировали центр приложения усилий математиков XX столетия. Сегодня десять проблем из списка решены, семь частично решены, и две проблемы всё ещё открыты. Оставшиеся четыре сформулированы слишком обобщённо, чтобы имело смысл говорить об их решении.

Во второй половине XX века, в связи с появлением компьютеров, произошла существенная переориентация математических усилий. Значительно выросла роль таких разделов, как численные методы, теория оптимизации, общение с очень большими базами данных, имитация искусственного интеллекта, кодирование звуковых и видеоданных и т. П. Возникли новые науки — кибернетика и информатика. В XX в. Были созданы новые математические теории, как, например, топология, математическая логика, и коренным образом преобразованы старые, изменился сам язык математики, так что математику XIX в. Для чтения современных книг пришлось бы переучиваться заново. Понятия, методы и конструкции современной математики носят весьма общий характер. Соответственно чрезвычайно расширилось поле применения математических методов. Математические методы проникли почти во все отделы физики, в химию, а в последние десятилетия — в биологию, медицину, лингвистику, экономику. Сама математика необыкновенно расширилась количественно и претерпела глубокие качественные изменения. В целом она поднялась на более высокую ступень абстракции.

В связи с тем, что наука не стоит на месте, математика постоянно расширяется, появляются новые разделы математики, поэтому и символика должна постоянно совершенствоваться.

В 12 веке алгебра попала в Европу. С этого времени начинается её бурное развитие. Были открыты способы решения уравнений 3 и 4 степеней. Распространения получили отрицательные и комплексные числа. Было доказано, что любое уравнение выше 4 степени нельзя решить алгебраическим способом.

алгебраический кубический диофант рекуррентный.

Показать весь текст
Заполнить форму текущей работой