Помощь в написании студенческих работ
Антистрессовый сервис

Культивирование клеток и тканей растений. 
Сущность метода и его практическое применение

РефератПомощь в написанииУзнать стоимостьмоей работы

Известно, что физиологическое действие условий in vitro приводит к генетической гетерогенности системы. Речь идет о так называемой сомаклональной изменчивости, которая возникает при длительном культивировании. На генетической изменчивости клеток в культуре in vitro основана селекция штаммов, обеспечивающая большой выход ценных продуктов вторичного метаболизма растительных клеток. При клонировании… Читать ещё >

Культивирование клеток и тканей растений. Сущность метода и его практическое применение (реферат, курсовая, диплом, контрольная)

История развития метода культуры тканей начинается на рубеже XIX—XX вв. с опытов немецких ученых Фехтинга, Рехингера и Хаберландта, которые пытались выращивать на растворах сахарозы изолированные из растений кусочки тканей, группы клеток, волоски. Не достигнув экспериментальных успехов, эти исследователи, однако, высказали ряд важных идей и гипотез, которые были подтверждены значительно позже. В 1947 г. Телл и Готре впервые показали способность синтеза вторичных соединений, а именно алкалоидов, в клеточной культуре белены черной. В нашей стране систематические исследования в этой области были начаты Р. Г. Бутенко в 1957 г. в Институте физиологии растений им. К. А. Тимирязева АН СССР, которая получила клеточные культуры женьшеня и ряда других лекарственных растений. До начала 70-х годов спектр соединений, образуемых клеточными культурами в количествах, характерных для целого растения, был очень ограничен. Это Nicotiana tabacum, в которой некоторые исследователи наблюдали синтез относительно больших количеств никотина (0.7%), Dioscorea deltoidea, накапливающая до 1.6% диосгенина, Ammi visnaga, содержащая в 20 раз больше виснагина в культуре ткани, чем в растении, и некоторые другие. Экспериментальные данные, накопившиеся к этому периоду, указывали, что биосинтез многих соединений в недифференцированных тканях сильно подавлен, а появление продуктов во многих случаях было связано с регенерацией корней, побегов и других морфологических структур, т. е. с процессом дифференциации ткани. С начала 70-х годов список фармакологически ценных вторичных продуктов биосинтеза, обнаруженных в культурах тканей, значительно расширился. В 80-е годы на основе метода культуры тканей возникли новые направления биотехнологии, важнейшим из которых была клеточная инженерия — генетическое конструирование новых форм.

Культивирование растительных клеток и тканей основано на тотипотентности живой клетки растения — способности любой соматической клетки полностью реализовать свой потенциал развития (образовать целый организм).

Основной тип культивируемых клеток — каллусные клетки; это один из типов клеточной дифференцировки, присущей высшему растению. Каллус — ткань, возникающая на растении в исключительных обстоятельствах (обычно при травмах) и функционирующая непродолжительное время; она защищает место поранения, накапливает питательные вещества для регенерации анатомических структур. Каллусную ткань in vitro (в искусственной среде) возможно получить практически из любой живой ткани высшего растения.

Дедифференцировка и каллусогенез начинаются при механическом повреждении ткани. В клетках экспланта (кусочка ткани, высаживаемого на питательную среду) в начале культивирования наблюдаются изменения в метаболизме, связанные с травматическими синтезами, дедифференцировкой и подготовкой к делению. Предполагают, что травма приводит к высвобождению из клеток элиситоров (стимуляторов) клеточных делений, например, продуктов разрушения полисахаридов клеточной стенки. Действием элиситоров можно объяснить и быструю дедифференцировку (переход дифференцированных клеток к делению) специализированной клетки. В первую очередь идет метаболизация запасных веществ — липидов, крахмала, белков; перестраиваются пластидный аппарат, ЭПР и элементы цитоскелета. При подготовке к делению в клетке стимулируется синтез РНК, начинается репликация ядерной ДНК, исчезают тканеспецифичные белки-антигены и появляются белки, специфичные для делящихся клеток и для каллусной ткани.

Для получения культивируемых каллусных клеток первичные экспланты помещают на питательную среду в пробирки, колбы или чашки Петри. Это требует полной асептики, так как грибная и/или бактериальная инфекция ингибирует рост клеток и приводит культуру к гибели; поэтому эксплант поверхностно стерилизуют растворами, содержащими активный хлор или ртуть, к которым добавляют детергенты. В состав питательных сред для культуры тканей и клеток растений входят минеральные соли (макрои микроэлементы); источник углеродного питания (сахароза, глюкоза и др.); витамины; регуляторы роста (фитогормоны или их искусственные аналоги) — ауксины, цитокинины, гиббереллины; агар-агар (для твердых сред). Иногда включают комплексные органические добавки.

Каллусные клетки способны дать начало различным процессам дифференцировки и морфогенеза от появления в каллусной ткани дифференцированных клеток до гисто-, органои эмбриогенеза. На эти процессы влияет соотношение фитогормонов в среде.

Культуры растительных клеток могут синтезировать самые разнообразные по химической природе вещества. Среди них эфирные масла, фенольные соединения, алкалоиды, стероиды, терпеноиды и др. Но несмотря на то, что биомасса культивируемых клеток с начала 80-х годов используется в качестве источника экономически важных продуктов, ряд трудностей и нерешенных вопросов сдерживает широкомасштабное применение культивируемых клеток, обусловливает нерентабельность биотехнологических производств многих ценных видов растений. Содержание практически важных вторичных метаболитов в высших растениях определяется активностью их синтеза, эффективностью транспорта и депонирования в органах запаса растения. Все эти признаки определяются генетически, находятся под контролем развития организма и максимально реализуются в оптимальных внешних условиях.

В самом общем смысле культура клеток и тканей — это искусственное in vitro индуцирование делений клеток или выращивание в пересадочной культуре тканей, возникших путём пролиферации клеток изолированных сегментов разных частей растения.

Все объекты, культивируемые in vitro, выращиваются стерильными. Стерилизуются исходные кусочки ткани растений (экспланты), питательная среда; антисептически в специальных боксах стерильным инструментом проводятся манипуляции по выращиванию объектов. Сосуды в которых культивируются ткани и клетки, закрываются так, чтобы предотвратить инфицирование в течение продолжительного времени. В культуре тканей лекарственных растений можно выделить три главных направления: получение недифференцированной каллусной массы, создание источников генетического разнообразия форм растений, а также клеточную селекцию и клональное микроразмножение растений. В природе каллусообразование — естественная реакция на повреждение растений. В культуре изолированных тканей при помещении экспланта (т. е. фрагмента ткани или органа) на питательную среду его клетки дедифференцируются, переходят к делению, образуя однородную недифференцированную массу — каллус. В асептических условиях каллус отделяют и помещают на поверхность агаризованной питательной среды для дальнейшего роста. В результате получают культуру каллусной ткани, которую можно поддерживать неограниченно долго, периодически разделяя её на трансплантаты и пересаживая её на свежую среду. Каллусы легко образуются на эксплантах из различных органов и частей растений: отрезков стебля, листа, корня, проростков семян, фрагментов паренхимы, тканей клубня, органов цветка, плодов, зародышей и т. д. Культивирование каллусных клеток проводят главным образом двумя способами: на агаризованных питательных средах или различных гелеобразующих подложках (силикагель, биогели, полиакриламидные гели, пенополиуретан и др.) и в жидкой питательной среде. В жидкой питательной среде каллус легко распадается на отдельные агрегаты клеток и даёт начало так называемой суспензионной культуре.

Каллусные клетки в культуре in vitro подвержены значительной генетической изменчивости. Изменчивость геномов может приводить к генетическим изменениям у растений-регенерантов, полученных из культуры каллусных клеток, клеточных суспензий или изолированных протопластов. Такие растения получили названия сомаклональных вариантов. Сомаклональные варианты, сохраняя основные свойства прототипа, часто выгодно отличаются от него устойчивостью к болезням, экологическим стрессам, а иногда несколько изменённой биосинтетической способностью и более высокой продуктивностью.

Неотселектированные недифференцированные клетки накапливают, как правило, незначительное, по сравнению с интактным растением, количество веществ специализированного обмена. Только благодаря правильно разработанной стратегии получения высокопроизводительных штаммов к настоящему времени получены культуры тканей, в которых содержание вторичных продуктов достаточно велико, чтобы служить лекарственным сырьем. Однако для многих культур неоднократные попытки различных исследователей определить условия накопления продуктов, характерных для родительских растений, были неудачными. Это касается, в частности, индукции морфинановых алкалоидов в культуре ткани Papaver somniferum, винбластина — в Catharanthus roseus, хинолиновых алкалоидов — в Cinchona ledgeriana, дигоксина — Digitalis lanata и др. Чаще всего в клеточных культурах при длительном культивировании снижается или совсем теряется способность клеток накапливать соединения вторичного метаболизма из-за возникновения малоактивных, но более жизнеспособных вариантов. Снижение биосинтетического потенциала в культуре in vitro происходит из-за подавления дифференциации клеток и их специализации, т. е. в результате потери способности к реализации генетической информации, относящейся ко вторичному обмену.

Важной характеристикой клеточной популяции является ее стабильность в отношении синтеза, транспорта и депонирования метаболитов «интереса». Стабильность может сохраняться в течение всего времени существования популяции. При этом сохраняются и активно работают гены синтеза, системы транспорта и депонирования. Возможен случай постепенного (в течение нескольких лет) увеличения числа клеток со сниженным синтезом метаболитов. И, наконец, в случае полной нестабильности клетки популяции очень быстро теряют свой биосинтетический потенциал. Вопрос о стабильности и нестабильности тесно связан с изучением биологии клеток разных популяций. В организме растения синтез метаболитов, их транспорт и отложение в запас находятся под строгим контролем развития. Часто эти события не только разведены во времени, но и происходят в разных органах растения. Клетка вне организма обычно не транспортирует метаболиты в соседние клетки или в питательную среду, хотя в ряде случаев это явление наблюдается (биосинтез алкалоидов в клеточных культурах мака). На выход вторичных продуктов в культурах растительных клеток влияют многие факторы, однако все способы регуляции вторичного метаболизма в культуре in vitro можно разделить на две группы: физиологическая и генетическая регуляции синтеза вторичных метаболитов.

Подбор физических и химических условий культивирования является наиболее простым и часто применяемым подходом для повышения продуктивности. В основе физиологического регулирования процессов вторичного синтеза лежит изучение влияния факторов культивирования на рост и метаболизм клеток. Большое внимание уделяется таким факторам культивирования, как регуляторы роста, минеральные вещества, витамины, сахара, свет, аэрация, температура, а также иммобилизация клеток и обработка элиситорами. Во многих случаях эти работы привели к успеху, однако они выполняются эмпирически и поэтому длительны и трудоемки. К тому же следует оговориться, что несмотря на эффективность повышения уровня биосинтеза физиологическими методами, добиться количественно значимых изменений в дедифференцированных клеточных культурах, сопоставимых с уровнем в интактном растении, лишь за некоторым исключением, не удается. Стимулирование же синтеза элиситорами носит, к сожалению, временный характер.

Более эффективной в этом плане является генетическая регуляция синтеза вторичного метаболизма в системе in vitro. С использованием экспериментального мутагенеза стало возможным получение довольно продуктивных штаммов. С помощью этого метода в ИФР РАН был получен мутантный штамм Dioscorea deltoidea DM-0.5 (мутаген — Nнитрозометилмочевина, доза — 0.5 ммоль/ч) — сверхпродуцент фуростаноловых гликозидов, высокая способность к синтезу — 6−8% в сухой массе клеток — сохранялась в течение длительного времени (около 30 лет). Следует отметить, что метод индуцированного мутагенеза носит также эмпирический характер и не менее трудоемок, чем физиологические способы регуляции вторичного метаболизма. Ряд перспективных культур был получен в результате генетической трансформации и других генно-инженерных манипуляций. Особенно следует отметить трансформанты, полученные с помощью плазмид агробактерий (Agrobacterium rhizogenes A. Tumefaciens), в частности «бородчатых корней», продуктивность которых оказалась достаточно высокой. Поскольку одной из основных причин снижения уровня биосинтеза в культурах in vitro является дедифференциация ткани, то один из путей повышения синтеза вторичных соединений в клеточных культурах связан с дифференцировкой ткани и органогенезом. Повышение содержания вторичных соединений было отмечено в органогенных культурах видов Senecio, Lichroa ledgeriana.

Известно, что физиологическое действие условий in vitro приводит к генетической гетерогенности системы. Речь идет о так называемой сомаклональной изменчивости, которая возникает при длительном культивировании. На генетической изменчивости клеток в культуре in vitro основана селекция штаммов, обеспечивающая большой выход ценных продуктов вторичного метаболизма растительных клеток. При клонировании суспензионной культуры клеток паслена были выделены линии, накапливающие больше 3% соланидина, получен штамм клеток руты душистой, содержащей в 20 раз больше алкалоида рутакридона по сравнению с растением. Биотехнологическое использование клеточных культур в качестве сырья в промышленных масштабах становится реальностью. Методы выращивания изолированных тканей растений были разработаны Ф. Уайтом и Р. Готре. Сущность метода заключается в том, что выделенные кусочки ткани или отдельные клетки выращивают на искусственной питательной среде в стерильных условиях. Если полностью дифференцированную клетку изолировать, то в стерильных условиях на соответствующей питательной среде она снова начинает делиться, и затем из нее может развиться целый растительный организм. Так, из одной полностью дифференцированной клетки флоэмы, выделенной из корнеплода моркови, из клетки сердцевинной паренхимы табака и других можно получить целое, полностью развившееся растение. В опытах Р. Г. Бутенко с клетками флоэмы моркови при выращивании на питательной среде в стерильных условиях сначала клетки быстро делились. Получалась недифференцированная масса мелких клеток — каллюс меристематической структуры (увеличенное число рибосом, митохондрий и т. д.) с интенсивным синтезом РНК и белка. При этом возрастала интенсивность дыхания и увеличивалась доля пентозофосфатного пути. Затем в массе однородных клеток возникали очаги дифференциации, клетки дифференцировались вторично. Процесс вторичной дифференцировки можно разделить на две фазы. Первая фаза — это образование в массе однородных клеток очагов регенерационной меристемы и возникновение зародышевых структур (эмбриоидов), которые напоминают настоящие и имеют зачаточную почечку и зачаточный корешок. На второй фазе происходит рост этих зародышевых структур. При этом в зависимости от соотношения фитогормонов (ауксинов и цитокининов) происходит преимущественный рост тех или иных органов. В настоящее время ведутся исследования с изолированными протопластами, которые выделяют путем разрушения клеточных стенок специальными ферментами. Изолированные протопласты при помещении их на подходящую питательную среду образуют новую оболочку, т. е. превращаются в клетки. Вместе с тем протопласты способны сливаться вежду собой и образовывать клеточную оболочку. Таким образом, можно получить гибридную клетку, а из нее растение. Рост и дифференциация и в этом случае зависят от соотношения физических и гормональных веществ в питательной среде. Метод выращивания изолированных тканей, клеток, протопластов позволяет решать многие теоретические вопросы, связанные с раскрытием механизмов дифференцировки (морфогенеза), регуляции физиологических процессов и др. Этот метод получил также широкое практическое применение в области сельского хозяйства, биотехнологической промышленности.

Биотехнология — наука, использующая биологические принципы в практических целях. Эта отрасль науки охватывает очень широкий круг вопросов. Ряд из них решается с помощью клеточных культур. Так, все более важное значение приобретает клональное размножение. Клон — ряд поколений генетически однородных потомков одной исходной особи, образующейся в результате бесполого размножения. Клонирование позволяет получать большое количество посадочного материала, полностью идентичного исходной особи. При клональном микроразмножении в большинстве случаев в качестве исходного материала используются фрагменты верхушечной апикальной меристемы. Верхушечные меристемы не содержат патогенных микроорганизмов, поэтому растения, полученные от них, являются здоровыми. Изолированные меристемы выращивают в стерильных условиях на ряде последовательно меняющихся питательных сред. В результате получаются растения с корневой системой, пригодные для посадки в почву. Этим методом от клеток меристемы одного растения можно получить практически неограниченное число потомков. Метод широко применяется для размножения декоративных, ягодных и других растений. Все большее значение в селекции приобретает метод изолированных клеток. Здесь возможны разные направления: направленный отбор клеток, оказавшихся устойчивыми к тем или иным неблагоприятным условиям среды или болезням, и выращивание из них устойчивых растений (клеточная селекция). Важное значение имеет получение гаплоидных растений, содержащих одинарный набор хромосом. Этот метод предполагает получение растений из мужских либо из женских гамет. Гаплоидные растения после обработки колхицином имеют два набора идентичных хромосом, полностью соответствующих материнскому растению. Большие надежды возлагаются на соматическую гибридизацию, заключающуюся в слиянии двух протопластов. Таким путем были получены гибриды между картофелем и томатами, названные «помато». Преимущества такой гибридизации заключаются в том, что наследуются признаки, не только закодированные в ядре, но и в органеллах цитоплазмы. Следовательно, можно управлять такими важными процессами, как фотосинтез, дыхание и др. Наконец, нельзя не отметить широкое использование культуры изолированных тканей для промышленного получения ряда важнейших лекарственных и пищевых препаратов. В качестве примера можно привести получение тонизирующих веществ из клеток женьшеня, стероидных сапонинов из клеток дискореи дельфитовидной и др.

Показать весь текст
Заполнить форму текущей работой