Помощь в написании студенческих работ
Антистрессовый сервис

Топология сети. 
Сети ЭВМ и телекоммуникации

РефератПомощь в написанииУзнать стоимостьмоей работы

Типичными и наиболее распространенными представителями искусственной среды передачи данных являются кабели. При создании сети передачи данных выбор осуществляется из следующих основных видов кабелей: волоконно-оптический (fiber), коаксиал (coaxial) и витая пара (twisted pair). При этом и коаксиал (коаксиальный кабель), и витая пара для передачи сигналов используют металлический проводник… Читать ещё >

Топология сети. Сети ЭВМ и телекоммуникации (реферат, курсовая, диплом, контрольная)

Сетевая тополомгия — способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

Существует множество способов соединения сетевых устройств. Выделяют 3 базовых топологии:

  • · Шина
  • · Кольцо
  • · Звезда

Топология типа общая шимна, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Достоинства данной топологии:

  • · Небольшое время установки сети;
  • · Дешевизна (требуется меньше кабеля и сетевых устройств);
  • · Простота настройки;
  • · Выход из строя рабочей станции не отражается на работе сети.

Недостатки:

  • · Неполадки в сети, такие как обрыв кабеля и выход из строя терминатора, полностью блокируют работу всей сети;
  • · Сложная локализация неисправностей;
  • · С добавлением новых рабочих станций падает производительность сети.

Шинная топология является топологией, в которой все устройства локальной сети подключаются к линейной сетевой среде передачи данных. Данную линейную среду часто называют каналом, шиной или трассой. Каждое устройство, например, рабочая станция или сервер, независимо подключается к общему шинному кабелю с помощью специального разъема. Шинный кабель обязан иметь на конце согласующий резистор, или терминатор, который поглощает электрический сигнал, не давая ему отражаться и двигаться в обратном направлении по шине.

Кольцом — это топология, где каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это дает возможность отказаться от применения внешних терминаторов.

Достоинства:

  • · Простота установки;
  • · Практически полное отсутствие дополнительного оборудования;
  • · Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки:

  • · Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
  • · Сложность конфигурирования и настройки;
  • · Сложность поиска неисправностей.
  • · Необходимость иметь две сетевые платы, на каждой рабочей станции.

Звездам — базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Данный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе не возможны, потому что управление полностью централизовано.

Достоинства:

  • · выход из строя одной рабочей станции не отражается на работе всей сети в целом;
  • · хорошая масштабируемость сети;
  • · лёгкий поиск неисправностей и обрывов в сети;
  • · высокая производительность сети (при условии правильного проектирования);
  • · гибкие возможности администрирования.

Недостатки:

  • · выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
  • · для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
  • · конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Схемы топологий шина, кольцо, звезда представлены в приложении Б.

1.3 Среда передачи данных

Под средой передачи данных понимают физическую субстанцию, по которой осуществляется передача электрических сигналов, использующихся для переноса той или иной информации, представленной в цифровой форме.

Среда передачи данных может быть естественной и искусственной. Естественная среда — это существующая в природе среда; чаще всего естественной средой для передачи сигналов является атмосфера Земли. Соответственно под искусственными понимают среды, которые были специально изготовлены для использования в качестве среды передачи данных. Представителями искусственной среды могут быть, например, электрические и оптоволоконные (оптические) кабели.

Типичными и наиболее распространенными представителями искусственной среды передачи данных являются кабели. При создании сети передачи данных выбор осуществляется из следующих основных видов кабелей: волоконно-оптический (fiber), коаксиал (coaxial) и витая пара (twisted pair). При этом и коаксиал (коаксиальный кабель), и витая пара для передачи сигналов используют металлический проводник, а волоконно-оптический кабель — световод, сделанный из стекла или пластмассы.

Коаксиальный кабель (coaxial), или коаксиал.

Коаксиальный кабель обладает широкой полосой пропускания; это означает, что в ней можно организовать передачу трафика на высоких скоростях. Он также устойчив к электромагнитным помехам (по сравнению с витой парой) и способен передавать сигналы на большое расстояние. Также, с технологией передачи сигналов по коаксиальному кабелю хорошо освоились многие поставщики и инсталляторы как кабельных систем, так и различных сетей передачи данных.

Коаксиальный кабель состоит из четырех частей. Внутри кабеля размещена центральная жила (проводник, сигнальный провод, линия, носитель сигнала, внутренний проводник), окруженная изоляционным материалом (диэлектриком). Указанный слой изоляции охвачен тонким металлическим экраном. Ось металлического экрана совпадает с осью внутреннего проводника — отсюда и следует название «коаксиал». И, наконец, внешней частью кабеля является пластиковая оболочка.

Витая пара (TP — twisted pair) — кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание осуществляется для уменьшения внешних наводок (наводок от внешних источников) и перекрестных наводок (наводок от одного проводника другому проводнику из одной и той же пары).

По сравнению с волоконно-оптическими и коаксиальными кабелями, использование витой пары имеет ряд существенных преимуществ. Такой кабель более тонкий, более гибкий и его проще устанавливать. Он также недорог. И вследствие этого, витая пара является идеальным средством передачи данных для офисов или рабочих групп, где нет электромагнитных помех.

Однако, витая пара имеет и недостатки: сильное воздействие внешних электромагнитных наводок, возможность утечки информации и сильное затухание сигналов. Также, проводники витой пары подвержены поверхностному эффекту — при высокой частоте тока, электрический ток вытесняется из центра проводника, что приводит к уменьшению полезной площади проводника и дополнительному ослаблению сигнала.

Экранированная (STP — shielded twisted pair) и неэкранированная (UTP — unshielded twisted pair) являются самыми важными типами витой пары. При этом кабель UTP не содержит никаких экранов, а кабель STP может иметь экран вокруг каждой витой пары и, в дополнение к этому, еще один экран, охватывающий все витые пары (кабель S-STP). Применение экрана позволяет повысить помехоустойчивость.

Волоконно-оптический кабель (fiber-optic cable).

Данный кабель имеет огромную ширину полосы пропускания и может пересылать голосовые сигналы, видеосигналы и сигналы данных на очень большие расстояния. В связи с тем, что волоконно-оптический кабель для передачи данных использует световые импульсы, а не электричество, он оказывается невосприимчивым к электромагнитным помехам. Отличительной особенностью волоконно-оптического кабеля является и то, что он обеспечивает более высокую безопасность информации, чем медный кабель. Это связано с тем, что нарушитель не может подслушивать сигналы, а должен физически подключиться к линии связи. К недостаткам волоконно-оптического кабеля следует отнести высокую стоимость и меньшее число возможных перекоммутаций по сравнению с электрическими кабелями, так как во время перекоммутаций появляются микротрещины в месте коммутации, что ведет к ухудшению качества оптоволокна.

По своей структуре волоконно-оптический кабель подобен коаксиальному кабелю. Однако вместо центральной жилы в его центре располагается стержень, или сердцевина, которая окружена не диэлектриком, а оптической оболочкой, которая, в свою очередь, окружена буферным слоем (слоем лака), элементов усиления и внешнего покрытия. Стержень и оболочка изготавливается как одно целое. Диаметр стержня составляет от 2 до нескольких сотен микрометров. Толщина оболочки — от сотен микрометров до единиц миллиметров. Буферный слой может быть свободным (жесткая пластиковая трубка) или плотноприлегающим. Свободный защищает от механических повреждений и температуры, прилегающий — только от механических повреждений. Элементы усиления изготавливаются из стали, кевлара и т. д., однако, могут иметь отрицательный эффект, например, элементы из стали могут притягивать разряды молний. окрытию электрических кабелей.

Волоконно-оптический кабель бывает одномодовым и многомодовым. Одномодовый кабель обладает меньшим диаметром световода (5−10 мкм) и допускает только прямолинейное распространение светового излучения (по центральной моде). В стержне многомодового кабеля свет может распространяться не только прямолинейно (по нескольким модам). Чем больше мод, тем уже пропускная способность кабеля.

Одномодовый кабель обладает наилучшими характеристиками, но и является самым дорогим.

Рассмотрим естественную среду передачи — атмосферу. Наибольшее распространение как носители данных в атмосфере получили электромагнитные волны. Здесь следует отметить, что от длины волны зависит характер распространения электромагнитных волн в атмосфере. Спектр электромагнитного излучения делится на радиоизлучение, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение, гамма-излучение. В настоящее время в связи с техническими трудностями ультрафиолетовое, рентгеновское и гамма-излучение не используются. Используемые радиоволны, в свою очередь, зависят от длины волны. Они делятся на (приведем отечественную классификацию): сверхдлинные (декакилометровые), длинные (километровые), средние (гектаметровые), короткие (декаметровые), метровые, дециметровые, сантиметровые, миллиметровые, субмиллиметровые. Последние пять диапазонов принято также называть ультракороткими волнами. Кроме того, в последние три диапазона входит СВЧ-излучение (а по некоторым источникам — и часть дециметрового диапазона 0.3…0.1 м).

Показать весь текст
Заполнить форму текущей работой