ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. 
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π΅. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ сущСствования ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°. Если Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ t Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅, Ρ‚ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹. Π“Π΄Π΅ — ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π½Π° Π΄ΡƒΠ³Π΅ Π­Ρ‚ΠΈ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π½Π΅ Π·Π°Π²ΠΈΡΡΡ‚ ΠΎΡ‚ ΡΠΏΠΎΡΠΎΠ±Π° дСлСния Π΄ΡƒΠ³ΠΈ L Π½Π° Ρ‡Π°ΡΡ‚ΠΈΡ‡Π½Ρ‹Π΅ Π΄ΡƒΠ³ΠΈ ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Π½Π΅ Π·Π°Π²ΠΈΡΡΡ‚ ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π°… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» — ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π», вычисляСмый вдоль ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΠΈ ΠΈΠ»ΠΈ Π² ΠΏΡ€ΠΎΡΡ‚ранствС. УтвСрТдСния Π² ΡΡ‚ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ для пространства, Π½ΠΎ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Ρ‹ Π½Π° ΠΏΡ€ΠΎΡΡ‚ранство ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ размСрности.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠŸΡƒΡΡ‚ΡŒ — гладкая, Π±Π΅Π· особых Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ ΡΠ°ΠΌΠΎΠΏΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΠΉ кривая (допускаСтся ΠΎΠ΄Π½ΠΎ самопСрСсСчСниС — случай Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ), заданная парамСтричСски.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

— (ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ) — рассматриваСм Ρ‡Π°ΡΡ‚ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

ΠŸΡƒΡΡ‚ΡŒ — Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ .

Π—Π°Π΄Π°Π΄ΠΈΠΌ Ρ€Π°Π·Π±ΠΈΠ΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ .

Π—Π° ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Ρ‡Π°ΡΡ‚ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ, .

Π’Π²Π΅Π΄Π΅ΠΌ ΠΌΠ΅Π»ΠΊΠΎΡΡ‚ΡŒ разбиСния ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ:. ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» кривая Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π’Π²Π΅Π΄Π΅ΠΌ Π½Π°Π±ΠΎΡ€ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ разбиСния ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ: .

Π—Π°Π΄Π°Π΄ΠΈΠΌ Π½Π°Π±ΠΎΡ€ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ разбиСния ΠΊΡ€ΠΈΠ²ΠΎΠΉ .

ΠŸΡƒΡΡ‚ΡŒ Π½Π°ΠΌ Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π°Π½Ρ‹ 4 Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ вдоль ΠΊΡ€ΠΈΠ²ΠΎΠΉ: ,, , .

Рассмотрим 4 ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ суммы.

1. Π˜Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Π°Ρ сумма ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π°:

.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π’Ρ€ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… суммы ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π°:

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

.

.

.

Если, Ρ‚ΠΎ Π³ΠΎΠ²ΠΎΡ€ΡΡ‚, Ρ‡Ρ‚ΠΎ функция ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π² ΡΠΌΡ‹ΡΠ»Π΅ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Π° ΡΠ°ΠΌ ΠΏΡ€Π΅Π΄Π΅Π» Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠΌ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚. Π—Π΄Π΅ΡΡŒ — Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π» ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

Если, ,, Ρ‚ΠΎ Π³ΠΎΠ²ΠΎΡ€ΡΡ‚, Ρ‡Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ Π² ΡΠΌΡ‹ΡΠ»Π΅ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Π° ΡΠ°ΠΌΠΈ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°ΠΌΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΈ ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π‘ΡƒΠΌΠΌΡƒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ² Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚:

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Если кривая Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Π° (Π½Π°Ρ‡Π°Π»ΠΎ совпадаСт с ΠΊΠΎΠ½Ρ†ΠΎΠΌ), Ρ‚ΠΎ Π² ΡΡ‚ΠΎΠΌ случаС вмСсто Π·Π½Π°Ρ‡ΠΊΠ° принято ΠΏΠΈΡΠ°Ρ‚ΡŒ .

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Бвойства.

1. Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ:

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

2. ΠΠ΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ: Ссли Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, Ρ‚ΠΎ.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

3. ΠœΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΡΡ‚ΡŒ: Ссли Π½Π°, Ρ‚ΠΎ.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

4. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ ΡΡ€Π΅Π΄Π½Π΅ΠΌ для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ вдоль Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ :

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ: .

  • 5. ИзмСнСниС направлСния ΠΎΠ±Ρ…ΠΎΠ΄Π° ΠΊΡ€ΠΈΠ²ΠΎΠΉ интСгрирования Π½Π΅ Π²Π»ΠΈΡΠ΅Ρ‚ Π½Π° Π·Π½Π°ΠΊ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°
  • 6. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ‚ ΠΎΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠΉ.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ВычислСниС ΠŸΡƒΡΡ‚ΡŒ — гладкая, спрямляСмая кривая, заданная парамСтричСски (ΠΊΠ°ΠΊ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ). ΠŸΡƒΡΡ‚ΡŒ функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° вдоль ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π² ΡΠΌΡ‹ΡΠ»Π΅ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π°. Π’ΠΎΠ³Π΄Π°.

.

Π—Π΄Π΅ΡΡŒ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π° производная ΠΏΠΎ: .

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Бвойства:

1. Π›ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ:

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
  • 2. ΠΠ΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ:
  • 3.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅. Для ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ² Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° нСсправСдливы свойство монотонности, ΠΎΡ†Π΅Π½ΠΊΠ° модуля ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ ΡΡ€Π΅Π΄Π½Π΅ΠΌ.

ВычислСниС ΠŸΡƒΡΡ‚ΡŒ — гладкая, спрямляСмая кривая, заданная парамСтричСски (ΠΊΠ°ΠΊ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ). ΠŸΡƒΡΡ‚ΡŒ функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠ° вдоль ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π² ΡΠΌΡ‹ΡΠ»Π΅ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π°. Π’ΠΎΠ³Π΄Π°.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

.

.

.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Если ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΡ‚ΡŒ Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Ρ‚ΠΎ Π½Π΅Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π’Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠ² ΠŸΡƒΡΡ‚ΡŒ — гладкая, спрямляСмая кривая, заданная парамСтричСски (ΠΊΠ°ΠΊ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ), — Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€, ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊ ΠΊΡ€ΠΈΠ²ΠΎΠΉ. ΠŸΡƒΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ вдоль ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π² ΡΠΌΡ‹ΡΠ»Π΅ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π°.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π’ΠΎΠ³Π΄Π°.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠ΅ прилоТСния.

  • Β· Π Π°Π±ΠΎΡ‚Π° A ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ вдоль ΠΊΡ€ΠΈΠ²ΠΎΠΉ l ΠΏΠΎΠ΄ воздСйствиСм силы вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅
  • o
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
  • Β· Масса m ΠΊΡ€ΠΈΠ²ΠΎΠΉ l, линСйная ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ вдоль ΠΊΡ€ΠΈΠ²ΠΎΠΉ l Ρ€Π°Π²Π½Π° ΠΌ (x, y, z), выраТаСтся ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΠΎΠΌ
  • o
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
  • Β· ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (xc, yc, zc) Ρ†Π΅Π½Ρ‚Ρ€Π° масс (Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти) ΠΊΡ€ΠΈΠ²ΠΎΠΉ l с Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌ (x, y, z) находятся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ:
  • o ,
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
  • o ,
  • o ,
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
  • Β· Π³Π΄Π΅ m — масса ΠΊΡ€ΠΈΠ²ΠΎΠΉ l
  • Β· ΠœΠΎΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠΉ l ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… осСй:
  • o ,
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
  • o ,
  • o
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Β· Π‘ΠΈΠ»Π° притяТСния Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ массы ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ l Π΅ΡΡ‚ΡŒ.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π³Π΄Π΅ ΠΌ (z, y, z) — линСйная ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠΉ l, m0 — масса Ρ‚ΠΎΡ‡ΠΊΠΈ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ (x0, y0, z0); Π³ — постоянная тяготСния,.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ вычислСния ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°.

ΠŸΡƒΡΡ‚ΡŒ кривая L Π·Π°Π΄Π°Π½Π° уравнСниями Π². парамСтричСской Ρ„ΠΎΡ€ΠΌΠ΅ Рассмотрим Π΄ΡƒΠ³Ρƒ MN этой ΠΊΡ€ΠΈΠ²ΠΎΠΉ. ΠŸΡƒΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ М ΠΈ N ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°. Π Π°Π·Π΄Π΅Π»ΠΈΠΌ Π΄ΡƒΠ³Ρƒ MN Π½Π° Ρ‡Π°ΡΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ ΠΏΡ€ΠΈ этом ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ.

Рис. 344.

Рис. 344.

Рассмотрим ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π».

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π΅. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ сущСствования ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°. Если Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ t Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅, Ρ‚ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π³Π΄Π΅ — ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π½Π° Π΄ΡƒΠ³Π΅ Π­Ρ‚ΠΈ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π½Π΅ Π·Π°Π²ΠΈΡΡΡ‚ ΠΎΡ‚ ΡΠΏΠΎΡΠΎΠ±Π° дСлСния Π΄ΡƒΠ³ΠΈ L Π½Π° Ρ‡Π°ΡΡ‚ΠΈΡ‡Π½Ρ‹Π΅ Π΄ΡƒΠ³ΠΈ ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ Π½Π΅ Π·Π°Π²ΠΈΡΡΡ‚ ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Π΄ΡƒΠ³Π΅ ΠΎΠ½ΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°ΠΌΠΈ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ся Ρ‚Π°ΠΊ:

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅. Из Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ слСдуСт, Ρ‡Ρ‚ΠΎ ΠΊ Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ ΠΏΡ€Π΅Π΄Π΅Π»Ρƒ β€” ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡƒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρƒ β€” стрСмятся суммы, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π΅, Π³Π΄Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ Π΄ΡƒΠ³ΠΈ Π° систСма разбиСния Π΄ΡƒΠ³ΠΈ L Π½Π° части любая.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅. Из Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ слСдуСт, Ρ‡Ρ‚ΠΎ ΠΊ Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ ΠΏΡ€Π΅Π΄Π΅Π»Ρƒ — ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡƒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρƒ — стрСмятся суммы, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π΅, Π³Π΄Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ Π΄ΡƒΠ³ΠΈ, Π° ΡΠΈΡΡ‚Π΅ΠΌΠ° разбиСния Π΄ΡƒΠ³ΠΈ L Π½Π° Ρ‡Π°ΡΡ‚ΠΈ любая.

Бформулированная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ способ вычислСния ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°.

Π˜Ρ‚Π°ΠΊ, ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΈΠΌΠ΅Π΅ΠΌ.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π³Π΄Π΅ ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ послСднюю Ρ€Π°Π·Π½Π±ΡΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π›Π°Π³Ρ€Π°Π½ΠΆΠ°:

Π³Π΄Π΅ — Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΠΎΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ значСниями ΠΊΠ°ΠΊ Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° Π΄ΡƒΠ³Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π±ΠΈΡ€Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎ, Ρ‚ΠΎ Π²Ρ‹Π±Π΅Ρ€Π΅ΠΌ Π΅Π΅ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΅Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ соотвСтствовали Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Π΅ значСния Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (3), ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π‘ΠΏΡ€Π°Π²Π° стоит ΠΏΡ€Π΅Π΄Π΅Π» ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ суммы для Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ .

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, этот ΠΏΡ€Π΅Π΄Π΅Π» равняСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌΡƒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρƒ ΠΎΡ‚ ΡΡ‚ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ;

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Аналогично получаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°.

Бкладывая ΠΏΠΎΡ‡Π»Π΅Π½Π½ΠΎ эти равСнства, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ (1V).

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ искомая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для вычислСния ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°.

Аналогичным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ вычисляСтся ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π».

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠΏΠΎ ΠΏΡ€ΠΎΡΡ‚ранствСнной ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ уравнСниями.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ Ρ‚Ρ€ΠΎΠΉΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ-Ρ‚ΠΎ ΠΆΠ΅, ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ) вдоль ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° прямой, ΠΈΠ΄ΡƒΡ‰Π΅Π³ΠΎ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ.

РСшСниС.

Рис. 345,.

Рис. 345,.

Рис. 346.

Рис. 346.

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ парамСтричСскиС уравнСния Π»ΠΈΠ½ΠΈΠΈ MN, вдоль ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, напишСм ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, проходящСй Ρ‡Π΅Π΅Π· Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ:

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠ² всС эти ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠΉ Π±ΡƒΠΊΠ²ΠΎΠΉ t, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ уравнСния прямой Π² ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚ричСском Π²ΠΈΠ΄Π΅:

ΠŸΡ€ΠΈ этом Π½Π°Ρ‡Π°Π»Ρƒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° соотвСтствуСт, ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, Π° ΠΊΠΎΠ½Ρ†Ρƒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° — Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΎΡ‚ Ρ…, Ρƒ, z ΠΏΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρƒ t (ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ понадобятся ΠΏΡ€ΠΈ вычислСнии ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°) находятся Π»Π΅Π³ΠΊΠΎ;

Π’Π΅ΠΏΠ΅Ρ€ΡŒ искомый ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ (4):

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ ΠΏΠ°Ρ€Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ вдоль плоской ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ N (2; 8) (рис. 346). РСшСниС, Для вычислСния искомого ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π½Π°Π΄ΠΎ ΠΈΠΌΠ΅Ρ‚ΡŒ парамСтричСскиС уравнСния Π΄Π°Π½Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ. Однако Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ явно ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ являСтся частным случаСм парамСтричСского: здСсь ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ слуТит абсцисса Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚ричСскиС уравнСния ΠΊΡ€ΠΈΠ²ΠΎΠΉ Ρ‚Π°ΠΊΠΎΠ²Ρ‹:

ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ мСняСтся ΠΎΡ‚ Π΄ΠΎ ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΏΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρƒ Π»Π΅Π³ΠΊΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π£ΠΊΠ°ΠΆΠ΅ΠΌ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ прилоТСния ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°.

1. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ области, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Ρ‡Π΅Ρ€Π΅Π· ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π». ΠŸΡƒΡΡ‚ΡŒ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΠΈ ΠžΡ…Ρƒ Π΄Π°Π½Π° такая ограничСнная ΠΊΠΎΠ½Ρ‚ΡƒΡ€ΠΎΠΌ L ΠΎΠ±Π»Π°ΡΡ‚ΡŒ D, Ρ‡Ρ‚ΠΎ всякая прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… осСй ΠΈ ΠΏΡ€ΠΎΡ…одящая Ρ‡Π΅Ρ€Π΅Π· Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ области, пСрСсСкаСт Π³Ρ€Π°Π½ΠΈΡ†Ρƒ L ΠΎΠ±Π»Π°ΡΡ‚ΠΈ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… (Ρ‚. Π΅. ΠΎΠ±Π»Π°ΡΡ‚ΡŒ D ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ) (рис. 347).

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π½Π° ΠΎΡΡŒ ΠžΡ… ΠΎΠ±Π»Π°ΡΡ‚ΡŒ D ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ируСтся Π² ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΏΡ€ΠΈΡ‡Π΅ΠΌ снизу ΠΎΠ½Π° ограничиваСтся ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

Π° ΡΠ²Π΅Ρ€Ρ…Ρƒ — ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ искомый ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ (4):

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΎΡ‚ ΠΏΠ°Ρ€Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ вдоль плоской ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΎΡ‚Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ N (2; 8) (рис. 346). РСшСниС, Для вычислСния искомого ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Π½Π°Π΄ΠΎ ΠΈΠΌΠ΅Ρ‚ΡŒ парамСтричСскиС уравнСния Π΄Π°Π½Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ. Однако Π·Π°Π΄Π°Π½Π½ΠΎΠ΅ явно ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ являСтся частным случаСм парамСтричСского: здСсь ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ слуТит абсцисса Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚ричСскиС уравнСния ΠΊΡ€ΠΈΠ²ΠΎΠΉ Ρ‚Π°ΠΊΠΎΠ²Ρ‹:

ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ мСняСтся ΠΎΡ‚ Π΄ΠΎ ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ ΠΏΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρƒ Π»Π΅Π³ΠΊΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.
ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π£ΠΊΠ°ΠΆΠ΅ΠΌ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ прилоТСния ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π°.

1. Π’Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ области, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Ρ‡Π΅Ρ€Π΅Π· ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π». ΠŸΡƒΡΡ‚ΡŒ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΠΈ ΠžΡ…Ρƒ Π΄Π°Π½Π° такая ограничСнная ΠΊΠΎΠ½Ρ‚ΡƒΡ€ΠΎΠΌ L ΠΎΠ±Π»Π°ΡΡ‚ΡŒ D, Ρ‡Ρ‚ΠΎ всякая прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… осСй ΠΈ ΠΏΡ€ΠΎΡ…одящая Ρ‡Π΅Ρ€Π΅Π· Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ области, пСрСсСкаСт Π³Ρ€Π°Π½ΠΈΡ†Ρƒ L ΠΎΠ±Π»Π°ΡΡ‚ΠΈ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… (Ρ‚. Π΅. ΠΎΠ±Π»Π°ΡΡ‚ΡŒ D ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ) (рис. 347).

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π½Π° ΠΎΡΡŒ ΠžΡ… ΠΎΠ±Π»Π°ΡΡ‚ΡŒ D ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ируСтся Π² ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΏΡ€ΠΈΡ‡Π΅ΠΌ снизу ΠΎΠ½Π° ограничиваСтся ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

Π° ΡΠ²Π΅Ρ€Ρ…Ρƒ — ΠΊΡ€ΠΈΠ²ΠΎΠΉ.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π’ΠΎΠ³Π΄Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ области D Ρ€Π°Π²Π½Π°.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Но ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π΅ΡΡ‚ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΅ΡΡ‚ΡŒ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ этой ΠΊΡ€ΠΈΠ²ΠΎΠΉ; ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π΅ΡΡ‚ΡŒ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Ρ‚. Π΅.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

На ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ свойства 1 ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΈΠΌΠ΅Π΅ΠΌ.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠŸΡ€ΠΈ этом кривая L ΠΎΠ±Ρ…одится Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки.

Рис. 347,.

Рис. 347,.

Рис. 348.

Рис. 348.

Если Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ L ΡΠΎΡΡ‚авляСт ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ оси ΠžΡƒ, Ρ‚ΠΎ ΠΈ Ρ€Π°Π²Π΅Π½ΡΡ‚Π²ΠΎ (5) остаСтся справСдливым ΠΈ Π² ΡΡ‚ΠΎΠΌ случаС (рис. 348).

Аналогично ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Бкладывая ΠΏΠΎΡ‡Π»Π΅Π½Π½ΠΎ равСнства (5) ΠΈ (6) ΠΈ Π΄Π΅Π»Ρ Π½Π° 2, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π΅Ρ‰Π΅ ΠΎΠ΄Π½Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для вычислСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ S:

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠŸΡ€ ΠΈ ΠΌΠ΅Ρ€ 3. Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ эллипса РСшСниС. По Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (7) Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ:

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (7), Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ (5) ΠΈ (6) справСдливы ΠΈ Π΄Π»Ρ ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ, Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ линиями, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ осям, Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… (рис. 349).

Рис. 349.

Рис. 349.

Рис. 350.

Рис. 350.

Для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° этого Ρ€Π°Π·ΠΎΠ±ΡŒΠ΅ΠΌ Π΄Π°Π½Π½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ (рис. 349) с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π»ΠΈΠ½ΠΈΠΈ I Π½Π° Π΄Π²Π΅ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ области. Для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ… справСдлива Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (7). Бкладывая Π»Π΅Π²Ρ‹Π΅ ΠΈ ΠΏΡ€Π°Π²Ρ‹Π΅ части, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ слСва ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΄Π°Π½Π½ΠΎΠΉ области, справа — ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» (с ΠΊΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ΠΎΠΌ ½), взятый ΠΏΠΎ Π²ΡΠ΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Π΅, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» ΠΏΠΎ Π»ΠΈΠ½ΠΈΠΈ Ρ€Π°Π·Π΄Π΅Π»Π° бСрСтся Π΄Π²Π°ΠΆΠ΄Ρ‹ — Π² ΠΏΡ€ΡΠΌΠΎΠΌ ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ направлСниях ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ.

2. Π—Π°Π΄Π°Ρ‡Π° ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»Π΅Π½ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ силы F Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ ΠΏΡƒΡ‚ΠΈ L. Как Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π² Π½Π°Ρ‡Π°Π»Π΅ § 1, Ρ€Π°Π±ΠΎΡ‚Π°, ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½Π°Ρ силой ΠΊ Π²Π΄ΠΎΠ»ΡŒ Π»ΠΈΠ½ΠΈΠΈ, Ρ€Π°Π²Π½Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡƒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρƒ:

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ, ΠΊΠ°ΠΊ производится вычислСниС Ρ€Π°Π±ΠΎΡ‚Ρ‹ силы Π² ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… случаях.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρƒ, А ΡΠΈΠ»Ρ‹ тяТСсти F ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ массы ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΏΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ L (рис. 350).

РСшСниС. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ силы тяТСсти F Π½Π° ΠΎΡΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ€Π°Π²Π½Ρ‹ Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, искомая Ρ€Π°Π±ΠΎΡ‚Π°.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹. ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π² ΡΡ‚ΠΎΠΌ случаС ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π» Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ‚ ΠΎΡ‚ ΠΏΡƒΡ‚ΠΈ интСгрирования, Π° Π·Π°Π²ΠΈΡΠΈΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π΅ΠΊ. Π’ΠΎΡ‡Π½Π΅Π΅, Ρ€Π°Π±ΠΎΡ‚Π° тяТСсти зависит Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ Ρ€Π°Π·Π½ΠΎΡΡ‚ΠΈ высот ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ ΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΡƒΡ‚ΠΈ.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ