Помощь в написании студенческих работ
Антистрессовый сервис

Восстановление деталей. 
Восстановление деталей

РефератПомощь в написанииУзнать стоимостьмоей работы

Наряду с достоинствами процесс хромирования имеет и недостатки, к числу которых следует отнести: сравнительно низкую производительность процесса (не более 0,03мм/ч) из-за малых значений электрохимического эквивалента (0,324 г/А-ч) и выхода металла по току (12 … 15%); невозможность восстановления деталей с большим износом, так как хромовые покрытия толщиной более 0,3 … 0,4 мм имеют пониженные… Читать ещё >

Восстановление деталей. Восстановление деталей (реферат, курсовая, диплом, контрольная)

ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ

Сборка и испытание агрегатов Учебные вопросы:

  • 1. Способы сборки. Сборка типовых соединений и передач.
  • 2. Сборка агрегатов, технологический процесс сборки. (отработать самостоятельно, (1), с.74−79).
  • 3. Приработка и испытание агрегатов.
  • 1. Сборку агрегатов автомобилей осуществляют из предварительно собранных отрегулированных и испытанных узлов с выполнением в полном объеме необходимых регулировочных и контрольных операций приработки, обкатки и испытаний. Сборочный процесс составляет 20…40% общей трудоемкости ремонта автомобиля и является завершающей стадией сборки автомобиля.

Сборку подразделяют на узловую и общую.

Под узловой понимают последовательную сборку подгрупп и групп, а под общей — сборку готовых изделий.

Технологический процесс сборки складывается из ряда операций, заключающихся в соединении деталей в узлы, а узлов в агрегаты и автомобиль, отвечающий требованиям чертежей и ТУ.

При сборке применяются соединения: резьбовые, прессовые, шлицевые, шпоночные и другие, а из передач — зубчатые.

Сборка резьбовых соединений- 25−30% соединений деталей, при резьбовых соединениях должно быть обеспечено:

соосность осей болтов, шпилек, винтов и резьбовых отверстий и необходимая плотность посадки в резьбе;

отсутствие перекосов торца гайки или головки болта относительно поверхности сопрягаемой детали, т.к. перекос является основной причиной обрыва винтов и шпилек;

соблюдение очередности и постоянство усилий затяжки группы гаек (головка цилиндров и др.).

Восстановление деталей. Восстановление деталей.

ремонт автомобиль деталь конструирование где: Р — сила затяжки, Н; d — Ш номинальный резьбы, М.

Сборка прессовых соединений, качество сборки формируется под воздействием следующих факторов:

материала сопрягаемых деталей;

геометрических размеров;

формы и шероховатости поверхностей;

соосности деталей;

прилагаемого усилия;

наличия смазки и др. агрегат деталь лакокрасочный покрытие Используются универсальные г/прессы, при сборке с натягом необходимо знать величину усилия запрессовки, т.к. от него подбирается необходимое оборудование.

Сборка зубчатых передач, зубчатые колеса насаживают на посадочные поверхности валов с небольшим зазором или натягом, вручную или при помощи специальных приспособлений.

Процесс сборки зубчатых передач заключается в установке и закреплении их на валу, проверке и регулировке этих передач.

Для правильного зацепления зубчатых цилиндрических колес необходимо, чтобы оси валов лежали в одной плоскости и были параллельны. Их выверка производится регулированием положения гнезд под подшипники в корпусе. После установки зубчатые колеса проверяют по зазору, зацеплению и контакту.

На вновь собираемых зубчатых передачах допускаются следующие величины зазоров:

Восстановление деталей. Восстановление деталей.

боковой зазор ,.

где: b = 0,02…0,1 — коэффициент, принимается в зависимости от окружной скорости и типа передач;

m — модуль, мм.

Восстановление деталей. Восстановление деталей.

радиальный зазор. .

Качество сборки конических передач определяется правильностью пересечения осей валов передачи, точностью углов между осями колес и величинами бокового и радиального зазора.

Отклонения д для осей конических зубчатых колес устанавливаются в зависимости от величины модуля:

Восстановление деталей. Восстановление деталей.

.

Зазоры в передачах с конических зубчатых колесами регулируют перемещением парных колес вдоль вала.

Червячные передачи требуют более точного изготовления и сборки, их работа зависит от наличия и величины бокового зазора между нитками червяка и зубьями колеса и опр.

mТ — торцевой модуль передачи.

Сборка шлицевого соединения, центрование детали может производится по наружному диаметру выступов вала или по внутреннему диаметру впадин вала и боковым сторонам шлицев. (в основном в автомобиле применяется первый тип) и может быть третий вид — это центрование детали только по боковым сторонам, применяется в том случае, если на валу более 10 шлицев.

После сборки шлицевого соединений нужно проверить детали (шестерни) на биение. Проверку выполняют на проверочной плите, устанавливая вал в центра или на призмы. Проверка на биение производится с помощью индикатора.

При подвижной посадке шестерня должна свободно перемещаться по валу без заедания и в то же время не качаться.

Сборка конусных соединений, особое внимание обращается на прилегание конусных поверхностей, их развертывают или притирают с помощью паст, проверяют по цвету или краской. Чтобы работало правильно, оно должно иметь натяг, если нет натяга — оно быстро разрабатывается.

Сборка шпоночных соединений (призматические — обыкновенные, сегментные шпонки), особое внимание подгонке шпонок по торцам и зазору по наружной стороне шпонки (т.к. через торцы шпонок обычно передаются Мкр от одной детали к другой и они должны быть очень точно пригнаны).

Сборка деталей машин с подшипниками качения, при запрессовке размер его колец изменяется: внутреннее увеличивается, наружное — уменьшается, это вызывает уменьшение зазора между рабочими поверхностями колец и шариков.

Внутреннее кольцо, сопряженное с цапфой вала, должно иметь посадку с натягом, а наружное — с небольшим зазором так, чтобы кольцо имело возможность во время работы незначительно проворачиваться.

Широкое распространение в авторемонтном производстве находят сварные, паяные и заклепочные соединения, применяются в основном, когда необходимо упростить сборку, особенно в тех случаях, когда затруднен доступ к одной из соединяемых деталей.

3. Приработка и испытание является завершающей операцией в технологическом процессе ремонта агрегатов, основными задачами являются:

подготовка агрегата к восприятию эксплуатационных нагрузок;

выявление возможных дефектов, связанных с качеством восстановления деталей и сборки агрегатов;

проверка характеристик агрегатов в соответствии с требованиями ТУ или другой нормативной документации.

Под приработкой понимается совокупность мероприятий направленных на изменение состояния сопряженных поверхностей трения с целью повышения их износостойкости.

В процессе приработки изменяются микрогеометрия и микротвердость поверхностей трения, сглаживаются отклонения от правильной геометрической формы.

Установлено, что в первый период приработки происходит интенсивное выравнивание шероховатостей, объясняющее интенсивное изнашивание и резкое падение потерь на трение.

Процесс снятия микронеровностей обычно продолжается десятки минут, а микрогеометрическая приработка заканчивается через 30…40 часов (при этом двигатель должен быть собран по ТУ).

Для определения условий работы детали существует некоторая оптимальная шероховатость, при которой интенсивность изнашивания имеет наименьшее значение. Отклонение состояния поверхности от оптимального как в сторону меньшей, так и в сторону большей шероховатости ведет к увеличению интенсивности изнашивания. При одинаковых условиях изнашивания (трущиеся материалы, режим работы, смазка), после приработки устанавливается примерно одинаковая, с точки зрения износа, шероховатость, не зависящая от первоначальной, полученной при механической обработке.

Приработка и испытание двигателей включают следующие стадии:

холодная приработка, когда коленчатый вал двигателя принудительно приводится во вращение от постоянного источника энергии;

горячая приработка без нагрузки; при работающем горячая приработка под нагрузкой двигателе.

Завершают приработку снятием контрольной точки характеристики двигателя по эффективной мощности на тормозном стенде. При этом в процессе испытания на стенде выявляются дефекты двигателя, подлежащие устранению — это есть завершающий этап КР двигателя.

Полная приработка двигателя так же, как и остальных агрегатов, состоит из двух этапов: макрои микрогеометрических приработок. В целях сокращения времени приработки двигателей рекомендуется в моторные масла вводить присадки на основе моноолеата меди.

Режим приработки и испытания двигателей обуславливают следующие требования к оборудованию испытательных станций:

испытательные стенды должны иметь приводные и нагрузочные устройства;

испытательные стенды должны быть оснащены измерительными устройствами и приборами для определения величины тормозного момента, частоты вращения коленвала, аппаратурой для соблюдения режимов смазки и охлаждения двигателей;

стенд должен быть автоматизирован, чтобы плавно повышать частоту вращения коленвала и нагрузки.

Восстановление деталей. Восстановление деталей.

Стадии приработки и испытания двигателя ЗиЛ-130.

Восстановление деталей. Восстановление деталей.

Холодная приработка: 1. 400 — 600 -1 > 15 мин.

Двигатель КамАЗ-740 — холодную обкатку проводят в 5-ть этапов, в целом 100 мин.

ТЕМА: «Общая сборка, испытание и выдача автомобилей из ремонта» .

Учебные вопросы:

  • 1. Организация сборки автомобилей.
  • 2. Механизация сборочных работ.
  • 3. Испытание и выдача автомобилей из ремонта.
  • 1. В зависимости от типа производства, трудоемкости процесса сборки и характерных особенностей автомобиля различают две организационные формы сборки — поточную и непоточную.

Непоточная сборка характеризуется выполнением сборочных (работ) операций на постоянном рабочем месте, к которому подаются все детали и узлы собираемого автомобиля, может выполняться по принципу концентрации и дифференциации операций. При концентрации сборочных операций автомобиль собирается на одном рабочем месте, необходимо иметь сборщиков высокой квалификации и сборка требует продолжительного времени.

При дифференциации операций сборка выполняется параллельно на нескольких рабочих местах.

Поточная сборка осуществляется при принудительном передвижении собираемого автомобиля. Автомобиль перемещается конвейером, на котором производится процесс сборки.

Движение конвейера (непрерывное или периодическое) принимается в зависимости от размера производственной программы, сложности сборочных операций и др. технологических факторов.

Отрезок времени между выходом со сборки двух готовых автомобилей называется тактом сборки.

Поточная сборка обеспечивает высокую производительность и является наиболее совершенной организационной формой сборки автомобилей. Характерными для поточной сборки являются следующие признаки:

за рабочим местом закреплена определенная сборочная операция;

собранный на предыдущем рабочем месте автомобиль передается на следующую операцию немедленно по окончании предыдущей;

на всех рабочих местах сборочной линии работа синхронизирована и производится по выбранному такту;

сборка механизирована.

Сборка грузового автомобиля заключается в установке на базовую сборочную единицу (раму) собранных агрегатов и узлов:

передних и задних мостов;

карданные передачи;

рулевого управления;

двигателя в сборе с КП;

радиатора;

кабины;

колес и остальных узлов и механизмов.

В процессе сборки выполняются необходимые регулировочные работы.

2. При сборке автомобилей для облегчения труда и повышения производительности применяют различные средства механизации сборочных работ.

Выбор этих средств зависит от количества собираемых автомобилей, а также от требуемой точности размерных и кинематических цепей автомобиля.

Наибольшая производительность и точность соединения деталей достигается с помощью различных механизированных инструментов и приспособлений. По принципу действия механизированный инструмент с электрическим, пневматическим и гидравлическим приводом делится на следующие группы:

ударного действия — клепальные молотки, шаберы, кернеры;

вращательного действия — дрели, шлифмашины, гайковерты, отвертки.

Приспособления, применяемые при сборке, подразделяются на следующие виды:

для установки и соединения деталей — подставки с призмами для сборки деталей на валу, поворотные столы для монтажа деталей и др.;

для напрессовки зубчатых колес, шкивов, подшипников и т. д.;

контрольные приспособления и стенды для проверки качества сборки и определения действительных эксплуатационных характеристик сборочного узла или автомобиля.

В качестве подъемно-транспортных средств для обеспечения сборочного процесса используются мостовые краны, электрические и гидроподъемники. Транспортировка деталей и узлов осуществляется с помощью электрокаров и рольгангов. Для общей сборки автомобилей используются конвейеры модели П-501, П-502 и др.

Выбор средств механизации и автоматизации технологического процесса сборки автомобилей необходимо производить с учетом рекомендаций.

Рабочие места сборщиков располагают у рольгангов и др. транспортных средств в порядке последовательности операций технологического процесса сборки.

Техника безопасности:

сборка должна производиться на специальных стендах или приспособлениях, обеспечивающих устойчивое положение собираемого изделия и сборочной единицы;

инструмент должен находиться в исправном состоянии и соответствовать своему назначению;

электрические и пневматические инструменты перед началом работы необходимо опробовать вхолостую для проверки их исправности;

электрические провода и шланги пневмоинструмента не должны быть натянуты;

пользоваться неисправным оборудованием и инструментом запрещается;

при работе с незнакомым оборудованием и инструментом сборщик обязан изучить инструкцию по его использованию и получить дополнительные указания у мастера участка или цеха.

3. После сборки автомобиль поступает на пост контроля и испытания, где проверяются комплектность, качество сборочных, регулировочных и крепежных работ, проверка работы и технического состояния всех агрегатов, механизмов и приборов, дополнительные регулировки, а также выявляются соответствие технических показателей требуемым ТУ.

Испытания проводят на стенде с беговыми барабанами. Стенд позволяет проверить работу двигателя, агрегатов трансмиссии и ходовой части, а также оценить основные эксплуатационно-технические качества автомобиля (мощность двигателя, тяговое усилие на ведущих колесах, расход топлива на различных скоростных и нагрузочных режимах, путь и время разгона до заданной скорости, потери мощности на трение в агрегатах и ходовой части, наибольший тормозной путь с определенной скоростью и одновременность и интенсивность действия тормозных механизмов), проверить и отрегулировать установку углов управляемых колес.

Все выявленные при испытании неисправности необходимо устранить.

В дополнение к стендовым испытаниям каждый автомобиль после КР должен пройти испытание пробегом на определенное расстояние с заданной нагрузкой и со скоростью, не превышающей установленной величины для проверки на управляемость, а также для дополнительного определения соответствия технического состояния автомобиля требуемым технологическим нормам на различных режимах работы и в различных дорожных условиях.

После испытания пробегом автомобиль тщательно осматривают. Все выявленные пробегом и осмотром дефекты устраняют, затем автомобиль поступает на окончательную окраску и на склад готовой продукции.

На каждый выпускаемый из ремонта автомобиль АРП выдает заказчику паспорт этого автомобиля, в котором фиксирует комплектность, техническое состояние и соответствие отремонтированного автомобиля ТУ на его КР. ТУ устанавливают гарантированную исправную работу автомобиля в течение определенного времени и до определенного пробега за этот период.

В течение гарантийного срока все обнаруженные заказчиком неисправности по вине АРП должны быть устранены безвозмездно в течение 3 суток со дня предъявления рекламации.

Гарантийный срок эксплуатации автомобиля — 12 мес. со дня выдачи из ремонта при пробегах (I категории эксплуатации): не более 20 000 км. — автобусами;

не более 16 000 км. — прочими всех видов и назначения.

Гарантийный срок хранения отремонтированных товарных составных частей автомобилей — 12 мес. с момента выдачи из ремонта при условии соблюдения правил консервации и хранения.

При выпуске из КР прилагаются следующие документы:

К автомобилю:

паспорт автомобиля, сдававшегося в ремонт с отметкой АРП о произведенном ремонте, с указанием даты выпуска из ремонта, новых номеров шасси и двигателя, а также основного цвета окраски;

инструкция по эксплуатации с указанием особенностей эксплуатации отремонтированных автомобилей в обкаточный и гарантийный периоды, а также периодов и организации устранения дефектов в гарантийный период.

К двигателю:

паспорт;

инструкция по эксплуатации с указанием особенностей установки и эксплуатации двигателя в обкаточный и гарантийный периоды.

Выпуск из КР автомобилей, их составных частей и деталей (комплектов деталей) оформляется соответствующим приемо-сдаточным актом.

0,2 мм, а уменьшение опорной поверхности — 50%. Накатку производят роликом с шагом зубьев 1,5−1,8 мм, ск. Вращения детали 15 м/мин, продольная подача 0,6 мм/об, поперечная подача 0,1 мм/об, охлаждение машинным маслом Классификация способов восстановления деталей Учебные вопросы:

  • 1. Значение восстановления деталей.
  • 2. Способы восстановления деталей.
  • 1. Большое количество деталей автомобилей и агрегатов, поступающих в КР, в результате износа, усталости материала, механических и коррозийных повреждений утрачивают свою работоспособность. Однако лишь некоторые из этих деталей — наиболее простые и недорогие в изготовлении — утрачивают работоспособность полностью и требуют замены. Большинство деталей имеет остаточный ресурс и м. б. использованы повторно после проведения сравнительно небольшого объёма работ по их восстановлению.

Восстановление деталей является одним из основных источников повышения экономической эффективности автомобильного производства.

При восстановлении деталей сокращаются расходы, связанные с обработкой деталей, т.к. при этом обрабатываются не все поверхности деталей, а лишь те, которые имеют дефекты.

Расходы на приобретение запасных частей составляют от 40−60% от себестоимости КР автомобилей, их можно значительно сократить за счёт расширения восстановления деталей.

Значение восстановления деталей состоит так же в том, что оно позволяет уменьшить потребности в производстве запасных частей.

Учитывая большое значение восстановления деталей, необходимо всемерно расширять эту сторону деятельности авторемонтных предприятий.

2. Эффективность и качество восстановления деталей в значительной степени зависят от применяемых технологических способов их обработки. В зависимости от характера устраняемых дефектов все способы восстановления деталей подразделяются на три основные группы:

восстановление деталей с изношенными поверхностями;

восстановление деталей с механическими поверхностями;

восстановление противокоррозийных покрытий.

Наиболее широкое применение при восстановлении автомобильных деталей получили различные виды слесарно-механической обработки к ним относятся:

собственно слесарная обработка;

механическая обработка, связанная с подготовкой деталей к нанесению покрытий и обработка после их нанесения, обработка деталей под ремонтный размер, постановка дополнительных ремонтных деталей (ДРД).

Пластическое деформирование как способ восстановления основан на использовании пластических свойств материала деталей. Этим способом восстанавливают не только размеры деталей, но так же их форму и физико-механические свойства.

Сварка и наплавка являются самыми распространёнными способами восстановления деталей. Сварку применяют при устранении механических повреждений на деталях (трещин, пробоин и т. д.), а наплавку — для нанесения покрытий с целью компенсации износа рабочих поверхностей. На АРП применяют как ручная, так и механизированные способы сварки и наплавки.

Пайка в авторемонтном производстве широко применяются при восстановлении герметичности в полых деталях, а так же как способ компенсации износа деталей.

Напыление как способ восстановления деталей основано на нанесении распылённого металла на изношенные поверхности деталей.

Восстановление деталей. Восстановление деталей.

Восстановление деталей нанесением гальванических и химических покрытий основано на осаждении металла на поверхности деталей из растворов солей гальваническим и химическим методами. В целях компенсации износа деталей наиболее часто применяют хромирование, железнение и химическое никелирование. Для защиты деталей от коррозии применяют гальванические процессы:

хромирование;

никелирование;

цинкование;

кадмирование;

а так же химические процессы:

оксидирование;

фосфатирование.

Синтетические материалы (пластмассы) применяют для компенсации износа деталей, работающих в условиях неподвижных посадок, а так же при устранении механических повреждений (трещин, пробоин) в корпусных деталях.

Перечисленные способы восстановления деталей нашли применение в авторемонтном производстве и обеспечивают требуемый уровень качества и надёжную работу деталей в течение установленных межремонтных пробегов автомобилей.

ТЕМА: «Восстановления деталей слесарно — механической обработкой» .

Учебные вопросы:

  • 1. Виды слесарно — механической обработки, применяемые при восстановлении деталей.
  • 2. Обработка деталей под ремонтный размер.
  • 3. Постановка дополнительных ремонтных деталей (ДРД).
  • 4. Организация рабочих мест и техника безопасности (самостоятельно, (1) с. 93)
  • 1. Слесарные работы обычно применяются в качестве работ, дополняющих или завершающих механическую обработку восстанавливаемых деталей. Их применяют так же при подготовке деталей к восстановлению другими способами, например сварке, пайке, склеиванию и т. д. К слесарным относятся такие виды как опиловка при подготовке поломанных частей детали, сверление, развёртывание и зенкерование отверстий, прогонка и нарезание резьбы, шабрение, притирка и доводка для более плотного прилегания поверхностей и т. п. Механическая обработка при ремонте автомобилей применяется как самостоятельный способ восстановления деталей, а так же в качестве операций, связанных с подготовкой или окончательной обработкой деталей, восстановленных другими способами (токарная, сверлильная, расточная, фрезерная, шлифовальная, полировальная, хонинговальная и др.).

В зависимости от твёрдости наплавленного металла обработку ведут, при твёрдости менее HRC 35 — 40 — токарную, при большей — шлифованием на пониженных оборотах, черновое, а затем чистовое; при токарной обработке — резцы с пластинками из твёрдого сплава.

При точении напылённых покрытий рекомендуется применять резцы с пластинами из твёрдых сплавов, шлифование — алмазными кругами на вулканитовой (основе) связке, а при их отсутствии мелко и среднезернистыми карборундовыми кругами на керамической связке.

Хромированные детали ввиду высокой твёрдости электролитического хрома обрабатывают шлифованием. Детали с хромовыми покрытиями, нанесёнными с декоративными целями, подвергаются полированию, которое проводится мягкими кругами с применением полировочных паст ГОИ (Государственный оптический институт).

При обработке пластмассовых покрытий необходимо применять хорошо заточенный инструмент из теплостойкого материала с интенсивным охлаждением воздухом или керосином.

При механической обработке восстанавливаемых деталей необходимо обеспечивать требуемую шероховатость, точность размеров формы и взаимного расположения рабочих поверхностей. Точность взаимного расположения поверхностей на детали зависит от правильного выбора технологической базы при её обработке.

Технологическая база — это те поверхности, которые определяют положение детали в приспособлении по отношению к режущему инструменту.

При выборе технологической базы необходимо выдержать следующие требования: т3.

в качестве технологической базы применяют те поверхности детали, которые определяют её положение в собранном изделии, т. е. сборочные и измерительные базовые поверхности (правило единства баз);

базовые поверхности должны быть наиболее точно расположены относительно обрабатываемых поверхностей;

в качестве базовых следует выбирать такие поверхности, при установке на которые можно было бы обрабатывать все поверхности детали, подлежащие обработке (правило постоянства баз);

поверхности, выбранные в качестве технологических баз, должны обеспечивать минимальные деформации детали от усилий резания и закрепления.

2. При этом способе восстановления одна из сопряженных деталей, обычно наиболее сложная и дорогостоящая (коленчатый вал), обрабатывается под ремонтный размер, а вторая (вкладыш подшипников) заменяется новой или восстановленной также до ремонтного размера.

Обработкой под ремонтный размер восстанавливают геометрическую форму, требуемую шероховатость и точные параметры изношенных поверхностей деталей.

Восстановление поверхности могут иметь несколько ремонтных размеров. Их величина и количество зависят от величины износа детали за межремонтный пробег автомобиля, от припуска на обработку и от запаса прочности детали.

Пусть вал и отверстие при поступлении деталей в ремонт имеют форму и размеры, показанные на рисунке:

Восстановление деталей. Восстановление деталей.

Где: dp1, Dp1- первый ремонтный размер, мм вала и отверстия по рабочему чертежу.

Иmin, Иmax — минимальный и максимальный износ поверхности детали на сторону.

Zприпуск на механическую обработку на сторону, мм.

Dn, dn — размер вала и отверстия по чертежу, мм.

Для того чтобы придать поверхности детали правильную геометрическую форму, необходимо подвергнуть их механической обработке.

После обработки размеры поверхностей будут отличаться от первоначальных на удвоенную величину максимального одностороннего износа и припуска на механическую обработку на сторону.

Следовательно, первый размер может быть определён по формулам:

для валов dp1= dn-2(Иmax+ Z);

для отверстий Dp1= Dn+2(Иmax+ Z);

Припуск на механическую обработку:

— при чистовой обточке и расточке 0,05 — 0,1 мм; на сторону 0,03 — 0,05 мм Коэффициент неравномерности износа: 0,5 — 1,0=.

Имея в виду, что Иmax=И и подставляя это значение в формулу для определённых ремонтных размеров получением: dp1= dn-2(+ Z); в этих формулах.

Dp1= Dn+2(+ Z);

Называется межремонтным интервалом — 2(И+ Z)=.

Следовательно, формулы будут иметь вид:

dp1= dnDp1= Dn+.

dp2= dn-2 и Dp2= Dn+2.

dpn= dn-n Dpn= Dn+n, а Число ремонтных размеров определяют по формулам:

Восстановление деталей. Восстановление деталей.

3. Дополнительные ремонтные детали (ДРД) применяют с целью компенсации износа рабочих поверхностей деталей, а также при замене изношенной или повреждённой части детали.

В первом случае ДРД устанавливают непосредственно на изношенную поверхность детали. Этим способом восстанавливают посадочные отверстия под подшипники качения в картерах коробок передач, задних мостах, ступицах колес; отверстия с изношенной резьбой и др. детали.

В зависимости от вида восстанавливаемой поверхности ДРД могут иметь форму гильзы, кольца, шайбы, пластины, резьбовой втулки или спирали.

ДРД изготавливаются обычно из того же материала, что и восстанавливаемая деталь. При восстановлении посадочных поверхностей в чугунных деталях втулки м.б. изготовлены также из стали. Рабочая поверхность ДРД по своим свойствам должна соответствовать свойствам восстанавливаемой поверхности детали. В связи с этим ДРД в случае необходимости должны подвергаться соответствующей термообработке.

Крепление ДРД обычно производиться за счёт посадок натягом. В отдельных случаях могут быть использованы дополнительные крепления приваркой по торцу, постановкой стопорных винтов или штифтов.

При запрессовке втулок для предупреждения их деформации рекомендуется сопрягаемые поверхности покрывать смесью машинного масла и графита.

Восстановление деталей. Восстановление деталей.

После постановки и закрепления ДРД производят их окончательную механическую обработку до требуемых размеров.

Восстановление деталей постановкой ДРД нашло широкое применение при ремонте автомобилей. Это объясняется простатой технологического процесса и применяемого оборудования. Однако не всегда оправдано с экономической точки зрения из-за больших расходов материала на изготовление ДРД. Кроме того, он в ряде случаев приводит к снижению механической прочности восстанавливаемой детали.

Восстановления деталей способом давления (пластического деформирования) Учебные вопросы:

  • 1. Сущность процесса восстановления деталей давлением.
  • 2. Восстановление размеров изношенных поверхностей деталей.
  • 3. Восстановление формы и механических свойств материала деталей.
  • 1. Устранение дефектов при восстановлении деталей автомобиля способом давления основано на использовании пластических свойств металла, из которого они изготовлены.

Под пластичностью металлов понимают их способность под действием нагрузок изменять форму и размеры без разрушения.

Пластическую деформацию деталей производят как в холодном, так и в горячем состоянии в специальных приспособлениях на прессах. При обработке деталей в холодном состоянии пластическая деформация происходит за счёт сдвига отдельных частей кристаллов относительно друг друга по плоскости скольжения. При сдвиге кристаллов происходит искажение кристаллической решетки и образование на плоскостях скольжения мелких осколков кристаллов, которые создают шероховатость, препятствующую дальнейшему перемещению кристаллов. Таким образом, пластическая деформация металла в холодном состоянии упрочняет металл. Это явление упрочнения металла при деформации в холодном состоянии получило название наклёпка.

Пластическая деформация деталей в холодном состоянии требует приложения больших усилий, поэтому при восстановлении деталей очень часто их нагревают. Температура нагрева деталей должна быть минимальной, но не ниже той, при которой повышаются пластические свойства металла.

После обработки деталей пластическим деформированием в горячем состоянии их необходимо подвергать повторной термической обработке.

2. Изменение размеров изношенных поверхностей деталей при восстановлении их способом давления достигается за счёт перемещения металла с нерабочих элементов деталей на изношенные.

Процесс восстановления деталей состоит из подготовки детали, деформирования и обработки после деформирования.

Подготовка деталей к деформирования включает отжиг или высокий отпуск обрабатываемых поверхностей перед холодным деформированием или нагрев их перед горячим деформированием.

Стальные детали с твёрдостью не более HRC 25. .30, а также детали из цветных металлов подвергаются деформированию в холодном состоянии без предварительной термообработки. Во всех остальных случаях производится термообработка деталей перед холодным деформированием или нагрев перед горячим деформированием.

Обработка деталей после деформации сводится к механической обработке восстановленных поверхностей до требуемых размеров. При необходимости применяют так же термическую обработку. Пластическое деформирование деталей с целью восстановления изношенных поверхностей производят с помощью следующих видов обработки: осадки, раздачи, обжатия, вытяжки и накатки.

Осадку применяют для уменьшения внутреннего и увеличения наружного диаметра полых деталей, а также увеличение наружного диаметра сплошных деталей за счёт уменьшения их длины. Осадку втулок из цветных металлов производят в специальных приспособлениях в холодном состоянии.

Для сохранения во втулках отверстий и прорезей в них устанавливают вставки, копирующие форму и размеры этих элементов деталей.

Осадкой восстанавливают так же стальные детали: шейки валов, расположенные на концах детали, толкатели клапанов и др. Деформацию деталей при этом производят в специальных штампах при нагреве до температуры ковки.

Раздачей восстанавливают наружные размеры полых деталей за счёт увеличения их внутренних размеров. Раздачей восстанавливают поршневые пальцы, посадочные поверхности под подшипники чашек дифференциала, наружные поверхности труб полуосей и др.

Раздачу деталей производят сферическими прошивками в холодном состоянии. Если деталь подвергалась закалке или цементации, что их перед раздачей подвергают отжигу или высокому отпуску, а после раздачи восстанавливают первоначальную термическую обработку.

Обжатие применяют для уменьшения внутреннего диаметра полых деталей за счёт уменьшения их наружного диаметра. Этим способом можно восстанавливать втулки из цветных металлов, отверстия в проушинах рулевых сошек, рычагах поворотных цапф и т. п.

После восстановления обжатием детали должны быть проверены на отсутствие трещин.

Вытяжка применяется для увеличения длины деталей за счёт местного обжатия. Этим способом восстанавливают длину всевозможных тяг, толкателей и др. деталей. Деформацию производят чаще всего в холодном состоянии.

Накатка применяется при компенсации износа наружных цилиндрических поверхностей деталей за счёт выдавливания металла из восстанавливаемых поверхностей. При накатке детали её устанавливают в патроне или центрах токарного станка, а оправку с накаточным роликом или шариком — на суппорте станка вместо резца. Накаткой восстанавливают поворотные цапфы, валы коробок передач и др. детали.

Высота подъёма металла на сторону не должна превышать. Накатку следует применять при восстановлении поверхностей деталей, воспринимающих удельную нагрузку не более 7 МПа.

Преимущества способа: простота технического процесса и применяемого оборудования, особенно при выполнении деформирования в холодном состоянии; высокая экономическая эффективность процесса, т. к отсутствуют дополнительные расходы материалов, а трудоёмкость работ небольшая.

К недостаткам этого способа следует отнести ограниченную номенклатуру восстанавливаемых деталей, а так же некоторое снижение механической прочности деталей.

Восстановление деталей. Восстановление деталей.

Принципиальные схемы восстановления деталей давлением:

  • а) осадка;
  • б) раздача;
  • в) обжатие;
  • г) вытяжка;
  • д) накатка.

Русилие д — деформация.

Восстановление деталей. Восстановление деталей.

3. В процессе эксплуатации многие детали автомобилей теряют свою первоначальную форму вследствие деформаций изгиба и скручивания.

Этот дефект деталей устраняется правкой. Правке подвергают балки передних мостов, детали рамы, коленчатые и распределительные валы, шатуны и др.

В авторемонтном производстве применяют два способа правки: статическим нагружением (под прессом) и наклёпом. Подавляющее большинство деталей правят под прессом в холодном состоянии. Для повышения стабильности правки и увеличения несущей способности деталей их подвергают после правки термической обработке. Это наглядно видно из приведённого ниже графика.

Восстановление деталей. Восстановление деталей.

Правка наклёпом не имеет недостатков, её ведут пневматическим молотком с закруглённым бойком для нанесения ударов по нерабочим поверхностям детали (правку коленчатых валов производят наклёпом щёк).

Преимуществами правки наклёпом являются: стабильность правки во времени; высокая точность (до 0,002 мм); высокая производительность; отсутствие снижения усталостной прочности. Детали, при их восстановлении различными методами компенсации износа утрачивают свою первоначальную усталостную прочность и износостойкость. Восстановить эти утраченные свойства можно путём поверхностного пластического деформирования металла (наклёпа).

Наклёп повышает твёрдость поверхностного слоя металла и создаёт в нем благоприятные остаточные напряжения.

К числу наиболее распространенных способов упрочнения деталей поверхностным пластическим деформированием относятся:

обкатка рабочих поверхностей деталей роликами и шариками;

чеканка;

алмазное выглаживание;

дробеструйная обработка и др.

Обкатка роликами и шариками применяется для упрочнения наружных и внутренних поверхностей деталей. Обкатывание наружных поверхностей производится на токарных станках при помощи специального инструмента — накатки, которая устанавливается на суппорт станка и прижимается к детали за счет поперечной подачи, усталостная прочность повышается на 20−30%.

Сущность алмазного выглаживания заключается в обработке поверхностного слоя детали, инструментом, рабочей частью которого является сферическая поверхность алмазного кристалла с радиусом закругления 1−3 мм. Алмаз устанавливается в наконечнике, который входит в пружинную оправку, закрепленную в резцедержателе суппорта токарного станка.

Режим обработки: подача 0,02 — 0,06 мм/об; скорость выглаживания 40−100 м/мин; усилие прижима алмазного наконечника 150−300 Н. Твёрдость повышается на 25−30%; износостойкость на 40−60%; усталостная прочность на 30−60%.

При восстановления пружин, рессор, торсионных валов с целью повышения их усталостной прочности применяют дробеструйную обработку механическими и пневматическими дробемётами.

Восстановления деталей сваркой и наплавкой Учебные вопросы:

  • 1. Общая характеристика сварки и наплавки, как способов восстановления деталей.
  • 2. Автоматическая электродуговая наплавка под флюсом.
  • 3. Механизированная сварка и наплавка в среде защитных газов.
  • 4. Автоматическая вибродуговая наплавка.
  • 5. Лазерная и плазменная сварка и наплавка.
  • 6. Особенности сварки чугунных деталей и деталей из алюминиевых сплавов.
  • 7. Организация рабочего места и охрана труда при выполнении сварочных и наплавочных работ.
  • 1. Сварка и наплавка являются наиболее распространёнными в авторемонтном производстве способами восстановления деталей (около 40%). Широкое применение сварки и наплавки обусловлено простотой технологического процесса и применяемого оборудования, возможностью восстановления деталей из любых материалов и сплавов, высокой производительностью и низкой себестоимостью.

Сварку применяют при устранении механических повреждений в деталях (трещин, отколов, пробоин и т. п.), а наплавку — для нанесения металлических покрытий на поверхности деталей с целью компенсации их износа.

При устранении механических повреждений деталей применяют электродуговую, газовую, аргонно-дуговую, в среде углекислого газа, электроконтактную и др. виды сварки.

Для нанесения металлических покрытий на изношенные поверхности деталей наиболее широкое применение получили следующие механизированные способы наплавки: автоматическая электродуговая наплавка под слоем флюса; наплавка в среде углекислого газа; вибродуговая; плазменная и электроконтактная.

Технологический процесс восстановления деталей сваркой и наплавкой включает в себя:

подготовку деталей к сварке, наплавке;

выполнение сварочных, наплавочных работ;

обработку деталей после сварки и наплавки.

Объём и характер работ, выполняемых при подготовке детали к сварке, зависят от вида дефекта. Так, при заварке трещины сначала сверлят отверстия Ш 4−5 мм на концах трещины для предупреждения возможности её дальнейшего распространения. Затем разделывают трещину шлифовальным кругом с помощью ручной шлифовальной машины. При толщине стенок детали менее 5 мм трещину можно не разделывать, а ограничиться только зачисткой её кромок, если больше 5 мм, то производят «V» — образную разделку кромок трещины, а при толщине стенок свыше 12 мм — «X» — образную разделку.

При восстановлении резьбы в отверстии менее 25 мм подготовка к сварке заключается в удалении старой резьбы сверлением с последующей разделкой кромок сверлом большего диаметра.

Восстановление деталей. Восстановление деталей.

Точно так же подготавливают к восстановлению гладкие отверстия небольшого диаметра.

Подготовка изношенных поверхностей деталей к наплавке заключается в их механической обработке и очистке от загрязнений и окислов.

Порядок выполнения сварочных и наплавочных работ зависит от выбранного способа сварки (наплавки). Особое внимание при этом должно быть уделено выбору материала электродов и присадочных прутков, т.к. от них зависит качество наплавленного металла. Большое внимание необходимо уделить выбору средств защиты металла от окисления и определению параметров режима сварки и наплавки.

2. При этом способе наплавки механизированы два основных движения электрода — подача его по мере оплавления к детали и перемещения вдоль сварочного шва.

Деталь устанавливают в патроне или центрах специально переоборудованного токарного станка, а наплавочный аппарат на его суппорте. Электродная проволока подаётся из кассеты роликами подающего механизма наплавочного аппарата в зону горения электрической дуги. Движение электрода вдоль сварочного шва достигается за счёт вращения детали. Перемещение электрода по длине наплавляемой поверхности обеспечивается за счёт продольного движения суппорта станка. Наплавка производится винтовыми валиками с взаимным их перекрытием на одну треть. Флюс в зону горения дуги поступает из бункера.

При автоматической наплавке эл. дуга горит не на открытом воздухе, а под слоем расплавленного флюса. Выделяющееся при плавлении электрода, (эл. дуга горит) основного металла и флюса газы образуют над сварочной ванной свод, ограниченный сверху жидкими шлаками, а снизу расплавленным металлом. В зоне сварки всегда избыточное давление газов, которое препятствует доступу воздуха к расплавленному металлу.

Восстановление деталей. Восстановление деталей.

Наплавка металла под флюсом обеспечивает наиболее высокое качество наплавленного металла, т.к. сварочная дуга и ванна жидкого металла полностью защищены от вредного влияния кислорода и азота воздуха, а медленное охлаждение способствует наиболее полному удалению из наплавленного металла газов и шлаковых включений. Медленное охлаждение наплавленного металла обеспечивает так же более благоприятные условия для наиболее полного протекания диффузных процессов и, следовательно, легирования металла через проволоку и флюс. Применяют два вида флюсов: плавленые (АН — 348А, АН — 20, АН — 30) и керамические (АНК — 18, АНК — 19).

При наплавке автомобильных деталей применяют проволоку Ш 1,6 — 2,5 мм. в зависимости от диаметре наплавляемой детали, следующих марок св. 08, св. 5, Нп — 65, Нп -30 хгса.

Наплавку под флюсом применяют при восстановлении коленчатых валов двигателей, шлицевых поверхностей на различных валах, полуосей и др. деталей ремонтируемых автомобилей.

3. Эффектным способом защиты расплавленного металла от кислорода воздуха и азота при сварке является применение защитных газов. Наибольшее применение получили автоматическая и полуавтомотическая сварка и наплавка в среде углекислого газа и аргонно — дуговая сварка. При сварке и наплавке защита металла от окисления осуществляется струёй углекислого газа, который надежно изолирует зону наплавки от окружающей среды и обеспечивает получение наплавленного металла высокого качества с минимальным количеством пор и окислов.

Однако в процессе наплавки часть углекислого газа попадает в зону горения эл. дуги и подвергается диссоциации: 2ССЬ- 2СО + Ch. Образующийся при этом кислород может вызвать окисление металла. Для того чтобы исключить появление окислов при наплавке и сварке деталей в среде углекислого газа, применяют электродную проволоку с повышенным содержанием раскисляющих элементов (кремния и марганца).

При автоматической наплавке в среде углекислого газа используют сварочные автоматы, применяемые при наплавке под слоем флюса, но на них устанавливают специальный мундштук с горелкой для подачи газа. При наплавке используют токарный станок, в патроне которого устанавливают деталь, а на суппорте крепят наплавочную головку. Подача углекислого газа в зону наплавки осуществляется по схеме: баллон с углекислым газом — подогреватель — осушитель — понижающий редуктор — расходомер — горелка.

При выходе из баллона газ за счёт резкого расширения переохлаждается. Чтобы подогреть, его пропускают через электрический подогреватель. Содержащуюся в углекислом газе воду удаляют с помощью осушителя, который представляет собой патрон, наполненный обезвоженным медным купоросом или силикогелем. Давление газа понижают с помощью кислородного редуктора, а расход его контролируют ротаметром.

Восстановление деталей. Восстановление деталей.

Принципиальная схема установки для электродуговой наплавки в среде углекислого газа:

кассета с проволокой;

наплавочный аппарат;

ротаметр;

редуктор;

осушитель;

подогреватель;

баллон с углекислым газом;

деталь Наплавка в среде углекислого газа по сравнению с автоматической наплавкой под флюсом имеет следующие достоинства:

меньший нагрев детали;

возможность сварки и наплавки при любом пространственном положении детали;

более высокую производительность процесса по площади покрытия в ед. времени (на 20. .30%);

возможность наплавки детали диаметром менее 40 мм;

отсутствие трудоёмкой операции по удалению шлаковой корки. Недостатки этого способа наплавки:

повышенное разбрызгивание металла;

необходимость применения легированной электродной проволоки для получения наплавленного металла с требуемыми свойствами.

Аргонно — дуговая сварка, эл. дуга горит между неплавящимся вольфрамовым электродом и деталью.

В зону сварки подаётся защитный газ — аргон, который, окружая сварочную дугу, создаёт зону сосредоточенного нагрева детали. Присадочный материал вводится в сварочную дугу в виде проволоки так же, как при газовой сварке. Аргон надёжно защищает расплавленный металл от окисления кислородом воздуха. Наплавленный металл получается плотным, без пор и раковин.

Аргонно — дуговую сварку осуществляют с помощью специальных установок, наибольшее распространение получили установки, работающие на переменном токе. Для закрепления вольфрамового электрода, подвода к нему сварочного тока и подачи в зону горения дуги аргона применяются специальные горелки, рассчитанные на величину тока от 200 до 400 А.

В качестве неплавящегося электрода используют прутки лантанированного вольфрама диаметром 4… 10 мм. Величину тока устанавливают в зависимости от диаметра электрода.

Преимуществами аргонно — дуговой сварки являются:

высокое качество сварного шва (отсутствие пор и раковин);

высокая производительность процесса (в 3. 4 раза выше, чем при газовой);

небольшая зона термического влияния;

снижение потерь энергии дуги на световое излучение, т.к. аргон задерживает ультрафиолетовые лучи.

Недостатки:

высокая стоимость процесса;

дефицитность аргона.

Аргонно — дуговая сварка нашла широкое применение при сварке деталей из алюминиевых сплавов и титана.

4. Наплавка деталей вибрирующим электродом с применением охлаждающей жидкости была впервые предложена в 1948 году Г. П. Клековкиным. Основным преимуществом этого процесса наплавки является небольшой нагрев деталей (около 100 С), малая зона термического влияния и возможность получения наплавленного металла с требуемой твердостью и износостойкостью без дополнительной термической обработки.

Восстановление деталей. Восстановление деталей.

Схема установки для вибродуговой наплавки:

насос;

бак с охлаждающей жидкостью;

деталь, подлежащая наплавке;

мундштук;

механизм подачи проволоки;

кассета с проволокой;

электромагнитный вибратор;

реостат;

дроссель низкой частоты.

Деталь 3, подлежащая наплавке, устанавливаются в патроне или центрах токарного станка.

На суппорте станка монтируется наплавочная головка, состоящая из механизма 5 подачи проволоки с кассетой 6, электромагнитного вибратора 7 с мундштуком 4. Вибратор колеблет конец электрода с частотой переменного тока и обеспечивает замыкание и размыкание сварочной цепи. Питание установки осуществляется от источника тока напряжением 12 или 24 В. Последовательно с ним включён дроссель низкой частоты 9, который призван стабилизировать величину сварочного тока. Реостат 8 служит для регулирования силы тока в цепи. В зону наплавки при помощи насоса 1 из бака 2 подаётся охлаждающая жидкость.

Сущность процесса вибродуговой наплавки заключается в периодическом замыкании и размыкании находящихся под током электродной проволоки и поверхности детали. Каждый цикл вибрации проволоки включает в себя четыре последовательно протекающих процесса:

короткое замыкание;

отрыв электрода от детали;

электрический разряд;

холостой ход.

При отрыве электрода от детали на её поверхности остаётся частичка приварившегося металла.

Вибродуговую наплавку используют при восстановлении деталей из стали, ковкого и серого чугуна, при наращивании изношенных наружных и внутренних поверхностей, а так же резьбовых поверхностей и шлиц.

Наплавку производят с охлаждением струёй жидкости (5% раствор кальцинированной соды), без охлаждения и в среде углекислого газа.

Восстановления деталей пайкой Учебные вопросы:

  • 1. Общие сведения.
  • 2. Пайка деталей низкотемпературными припоями.
  • 3. Пайка деталей высокотемпературными припоями.
  • 1. Пайкой называется процесс получения неразъёмных соединений деталей в твёрдом состоянии при помощи расплавленного сплава, называемого припоем.

Пайку применяют при восстановлении радиаторов, топливных и масленых баков, трубопроводов, приборов эл. оборудования и др. деталей, а так же при восстановлении размеров деталей путём постановки ленты или навивки проволоки с последующей их припайкой к поверхности детали.

Припои, применяют как чистые металлы, так и их сплавы.

Требования к припоям:

температура плавления припоя должна быть ниже температура плавления металла спаиваемых деталей;

при температуре пайки припой должен хорошо смачивать спаиваемые поверхности и заполнять соединительные зазоры;

припой должен обеспечивать получение соединений с требуемыми свойствами по механической прочности, противокоррозийной стойкости, электропроводности и т. п.

коэффициент термического расширения припоя и спаиваемых материалов должны быть близкими по своей величине.

Низкотемпературные припои — tпл С < 450 с;

Высокотемпературные — tпл С > 450 с.

Наиболее часто применяемыми припоями при ремонте автомобилей являются:

оловянно-свинцовые;

медно-цинковые;

серебряные;

алюминиевые.

Оловянно-свинцовые припои относятся к низкотемпературным, температура плавления не более 280 с. Они обладают достаточно высокой противокоррозийной стойкостью и высокими технологическими свойствами, прочность пайки по пределу прочности на разрыв не превышает 50.80МПа.

Низкотемпературные.

Марка припоя.

Химический состав, % (по массе).

Температура С.

Олово.

Сурьма.

Свинец.

Начала плавления.

Полного расплавления.

ПОС — 90.

89−91.

0,1−0,15.

j.

ПОС-61.

60−62.

0,5 — 0,8.

ПОС — 40.

39−41.

0,5 — 0,8.

остальное.

ПОС -10.

9−10.

ПОССу-18−2.

17−18.

1,5−2,0.

Медно-цинковые припои относятся к высокотемпературным, 1плс 825−905 с, Содержат 36−65% меди, остальное цинк, обеспечивают прочность пайки до 300. .350МПа, имеют высокие противокоррозийные свойства. Недостаток-возможность испарения цинка, пары интенсивно окисляются, что вредно для здоровья работающих.

Применяются при пайке стальных и чугунных деталей, а также из меди и её сплавов, ПМЦ — 54, Л — 63 и ЛОК — 62 — 06 — 04.

Серебряные припои, применяются только в тех случаях, когда шов должен обладать большой механической прочностью, повышенной стойкостью против коррозии и когда место пайки не должно снижать электропроводимости детали. Они дороже, представляют собой сплав серебра с медью и цинком (серебра от 10 до 70%), прочность пайки от 150 — 450 МПа. Наиболее распространенные при пайке деталей из меди, латуни и бронзы: ПСР— 70, ПСР — 65, ПСР — 45 и ПСР — 20. Припои для пайки алюминия и его сплавов подразделяются на две группы:

высокотемпературные на основе алюминия;

низкотемпературные на основе олова, цинка и кадмия, имеют высокую температуру плавления, обладают высокой стойкостью против коррозии и прочностью соединения (прочность пайки на отрыв у припоя 34А 150−180 МПа.

Марка припоя.

Химический состав, % (по массе).

Температура, С.

Кремний.

Медь.

Цинк.

Алюминий.

Начала плавления.

Полного расплавления.

Силумин.

10−13.

0,8.

0,3.

остальное.

34 А.

6±_0,5.

28±_1.

;

П-575А.

;

;

Высокотемпературные Низкотемпературные припои для пайки алюминия и его сплавов на основе олова, цинка и кадмия применяются при невысоких требованиях к прочности соединений, применяют сравнительно небольшую температуру плавления.

Флюсы, с помощью их освобождаются спаиваемые поверхности деталей от окислов и предохраняют их от окисления в процессе пайки.

К флюсам предъявляются требования, исходя из которых они должны:

вступать в химическо…

уменьшать силы поверхностного натяжения расплавленного припоя и улучшать его растекаемость;

хорошо смачивать в расплавленном состоянии металлические поверхности;

не оказывать коррозийного воздействия на соединяемые детали и припои;

легко удаляться с поверхности деталей после пайки.

Состав флюса зависит от состава припоя и металла, из которого сделаны спаиваемые детали.

При пайке деталей: — оловянно — свинцовыми припоями — водные растворы хлорных цинка и аммония (нашатыря), деталей эл. оборудованиябескислотные флюсы — канифоли;

медно — цинковыми — применяют буру или её смесь с борной кислотой в соотношении 1:1;

серебряными — смеси фтористого калия, фторобората калия и борного ангидрида;

при пайке алюминия — специальные флюсы, состоящие из смеси хлористых солей калия, лития, натрия и цинка, они активно растворяют тугоплавкие окислы алюминия и способствуют получению прочного соединения.

2. Процесс пайки низкотемпературными оловянно — свинцовыми припоями состоит из трёх операций:

подготовки детали к пайке;

пайки;

обработки детали после пайки.

Подготовка включает:

зачистку кромок детали от загрязнений и окислов;

прогрев деталей до температуры пайки;

флюсование и лужение соединяемых поверхностей;

сборка изделия с обеспечением зазора между соединяемыми поверхностями в пределах 0,05 — 0,20 мм.

Пайка деталей производится паяльником или погружением деталей в расплавленный припой. Кромки спаиваемых деталей нагревают выше температуры полного расплавления припоя на 40−50о С. Рабочая часть паяльника изготовляется из красной меди. При пайке погружением припой расплавляют в электрическом тигле. размеры которого определяются размером соединяемых деталей. Обработка деталей после пайки включает:

медленное охлаждение до температуры полного затвердевания припоя;

паяный шов промывают горячей водой от остатков флюса;

зачищают от наплывов припоя.

Алюминий и его сплавы паяют обычно абразивными и ультразвуковыми паяльниками (низкотемпературными припоями).

Абразивный паяльник состоит:

Восстановление деталей. Восстановление деталей.

втулка;

абразивный стержень;

спираль электроподогрева;

теплоизоляция;

кожух паяльника;

ручка;

зажимная гайка.

При пайке абразивным паяльником соединяемые детали подогревают до температуры плавления припоя и затем облуживают, натирая абразивным стержнем паяльника, состоящем из смеси порошков припоя (90% по массе) и асбеста (10%). При соприкосновении с нагретой деталью припой абразивного стержня будет плавиться и, следовательно, очистка поверхности спаиваемых деталей от окислов будет происходить под слоем расплавленного припоя, который будет прочно соединяться с основным металлом.

Также пайку алюминия и его сплавов производят применением ультразвукового паяльника, который состоит из:

Восстановление деталей. Восстановление деталей.

магнитострикционного излучателя ультразвуковых колебаний;

медного стержня;

электроподогревателя.

Обмотка магнитострикционного излучателя питается от генератора ультразвуковых колебаний, (мощность 40 Вт; частота 18 — 22) — паяльник УП- 21. При пайке в расплавленном припое возникают ультразвуковые колебания, которые разрушают окисную плёнку на деталях. Очищенные от окислов поверхности деталей хорошо соединяются с припоем и обеспечивают прочное паяное соединение.

Качество пайки обычно контролируют методом опресовки деталей сжатым воздухом или водой.

3) Пайку высокотемпературными припоями применяют при устранении трещин, пробоин др. повреждений в корпусных деталях (блоках цилиндров, головках блоков, картерах коробок передач и пр.), при восстановлении трубопроводов, при пайке контактов электрооборудования и др.

Подготовка к пайке заключается в подгонке частей поломанных деталей, изготовление накладок для заделки пробоин, разделку кромок трещин и т. д.

При пайке деталей из алюминиевых сплавов соединяемые поверхности обезжиривают раствором кальцинированной соды и промывают водой. Кромки спаиваемых деталей зачищают от окислов и затем покрывают флюсом, который наносят в виде порошка или пасты. После флюсования в шов укладывают припой (проволока, пластинки, кольца из проволоки и т. п.).

После наложения припоя приступают к пайке. Деталь в месте пайки нагревают до температуры, несколько превышающей температуру полного расплавления припоя и, выдерживают при этой температуре в течение некоторого времени, которое определяется экспериментальным путём.

В зависимости от принятого метода нагрева деталей различают следующие способы высокотемпературной пайки:

газопламенная;

электросопротивлением; в основном применяются в АТП индукционная;

в печах;

в соляных ваннах;

плазменная;

лазерная;

электронно — лучевая.

При газопламенной пайке нагрев деталей и расплавление припоя чаще всего производят сварочной горелкой (основной в АТП). Припой в место пайки у вводят в виде прутка, как это делается при газовой сварке. Флюс на место пайки наносят заблаговременно, затем пламенем горелки подогревают кромки детали и после расплавления флюса вводят припой. Пайка электросопротивлением обеспечивает высокое качество соединения деталей. Нагрев осуществляется за счёт тепла, выделяющегося при прохождении электрического тока через соединения припоя и спаиваемых деталей. Пайку можно производить на точечных, стыковых и роликовых электроконтактных сварочных машинах. Пайка производится без флюса т.к. флюсы являются изоляторами, но качество пайки получается высоким потому, что нагрев происходит очень быстро, а припой защищён от окисления плотным соединением со спаиваемыми деталями.

Пайка с нагревом деталей ТВЧ, даёт хорошие результаты. Детали подготовленные к пайке, с нанесённым флюсом и припоем помещают в индуктор, питаемый от генератора ТВЧ. Этот способ пайки обладает высокой производительностью, но требует применения сложного оборудования.

Восстановление деталей. Восстановление деталей.
  • 1. медные электроды;
  • 2. напаиваемый контакт;
  • 3. припой;
  • 4. деталь.

Качество пайки полых деталей контролируют испытанием на герметичность. Другие детали контролируют путём применения таких методов контроля, как люминесцентный, ультразвуковой и др.

Оценивая пайку как способ восстановления деталей, можно отметить след, её преимущества:

небольшой нагрев деталей, что позволяет сохранить неизменной структуру и свойства металла соединяемых деталей;

возможность соединения деталей, изготовленных из разнородных материалов достаточно высокая прочность соединения деталей;

простота технологического процесса и применяемого оборудования.

К недостаткам следует отнести некоторое снижение прочности соединения деталей по сравнению со сваркой.

Восстановления деталей напылением Уч. вопросы:

  • 1. Сущность процесса и способы напыления.
  • 2. Напыляемые материалы и свойства покрытий.
  • 3. Процесс нанесения покрытий на детали.
  • 4. Плазменное напыление с последующим оплавлением покрытия.
  • 5. Организация рабочего места и охрана труда при напылении деталей. (Отрабатывать самостоятельно с записями в конспект, (1), с. 129−130).
  • 1. Напыление является одним из способов нанесения металлических покрытий на изношенные поверхности восстанавливаемых деталей.

Сущность процесса состоит в напылении предварительно расплавленного металла на специально подготовленную поверхность детали струёй сжатого газа (воздуха). Мелкие частицы расплавленного металла достигают поверхности металла в пластическом состоянии, имея большую скорость полёта. При ударе о поверхность детали они деформируются и внедряясь в её поры и неровности, образуют покрытие. Соединение металлических частичек с поверхностью детали и между собой носит в основном механический характер и только в отдельных точках имеет место их сваривания.

Достоинства:

небольшой нагрев деталей (120 — 180о С);

высокая производительность процесса;

высокая износостойкость покрытия;

простота технологического процесса и применяемого оборудования;

возможность нанесения покрытий толщиной 0,1−10 мм и более из любых металлов и сплавов.

Недостатки:

пониженная механическая прочность покрытия;

сравнительно невысокая прочность сцепления покрытия с поверхностью детали.

В зависимости от вида тепловой энергии, используемой в аппаратах для напыления, различают следующие способы напыления:

газопламенное;

электродуговое;

высокочастотное;

детонационное;

ионно-плазменное;

плазменное.

Газопламенное осуществляется при помощи спец. аппаратов, в которых [/ плавление напыляемого металла производится ацетилено — кислородным пламенем, а его распыление — струёй сжатого воздуха. Напыляемый материал в виде проволоки подаётся через центральное отверстие горелки и, попадая в зону пламени с наиболее высокой температурой расплавляется. Проволока подаётся с постоянной скоростью роликами, приводимыми в движение встроенной в аппарат воздушной турбинкой через червячный редуктор. В качестве напыляемого материала применяют так же металлические порошки, которые поступают в горелку из бункера с помощью транспортного газа (воздуха), (производительность процесса 2 -4 кг/ч).

Восстановление деталей. Восстановление деталей.

Распылительная головка газопламенного проволочного аппарата для напыления:

смесительная камера;

канал подвода кислорода;

проволока;

направляющая втулка;

канал подвода ацетилена;

воздушный канал; ацетиленокислородное пламя;

ацетиленнокислородное пламя;

газометаллическая струя;

напыляемая поверхность детали.

Восстановление деталей. Восстановление деталей.

Распылительная головка газопламенного порошкового аппарата для напыления:

сопло;

факел газового пламени;

напылённое покрытие;

напыляемая поверхность;

канал подвода кислорода и горючего газа;

транспортирующий газ;

напыляемый порошок.

Электродуговое производится аппаратами, в которых распыление металла осуществляется электрической дугой, горящей между двумя проволоками, а распыление — струёй сжатого воздуха. Привод для подачи проволоки в зону горения электрической дуги в ручных аппаратах осуществляется от воздушной турбинки, в станочных — от электродвигателя (производительность 3- 14 кг/ч напыляемого материала).

Восстановление деталей. Восстановление деталей.

Схема электородугового напыления:

напыляемая поверхность;

направляющие наконечники;

воздушное сопло;

подающие ролики;

проволока;

сжатый газ.

Высокочастотное основано на использовании принципа индукционного нагрева при плавлении исходного материала покрытия (проволоки). Распыление расплавленного металла производится струёй сжатого воздуха. Головка высокочастотного аппарата для напыления имеет индуктор, питаемый от генератора ТВЧ и концентратор тока, который обеспечивает плавление проволоки на небольшом участке её длины.

Восстановление деталей. Восстановление деталей.

Распылительная головка высокочастотного аппарата для напыления:

напыляемая поверхность;

газометаллическая струя;

концентратор тока;

индуктор, охлаждаемый водой;

воздушный канал;

проволока;

подающие ролики;

направляющая втулка.

Детонационное напыление, расплавление металла, его распыление и перенос на поверхность детали достигается за счёт энергии взрыва смеси газов ацетилена и кислорода. При напылении металла, камеру охлаждаемого водой ствола аппарата для напыления попадаются в определённом соотношении ацетилен и кислород. Затем в камеру вводится с помощью струи азота напыляемый порошок. Газовую смесь поджигают электрической искрой. Взрывная волна сообщает частичкам порошка высокую скорость полёта, которая на расстоянии 75 мм от среза ствола достигает 800м/с.

Восстановление деталей. Восстановление деталей.

Схема детонационного напыления:

электрическая свеча;

подача кислорода;

сжатый азот;

металлический порошок;

ствол;

напыленный металл;

камера взрыва;

подача ацетилена.

При ударе о деталь кинетическая энергия порошка переходит в тепловую, при этом частички порошка разогреваются до 4000 С. После нанесения каждой дозы порошка ствол аппарата продувается азотом для удаления продуктов сгорания.

Этот процесс повторяется автоматически с частотой 3−4 раза в секунду. За один цикл на поверхность детали наносится слой металла толщиной до 6 мкм.

Ионно — плазменное напыление, детали помещают в вакуумную камеру, в камере напыляемый металл за счёт тепла эл. дуги приводится в плазменное состояние.

Положительно заряженные ионы металлической плазмы перемещаются на поверхность деталей, которые являются катодом. В вакуумную камеру вводится реактивный газ (азот), за счёт взаимодействия которого с частицами металлической плазмы происходит улучшение свойств покрытия.

Плазменное напыление — это такой способ нанесения металлических покрытий, при котором для расплавления и переноса металла на поверхность детали используется тепловые и динамические свойства плазменной дуги. В качестве плазмообразующего газа применяют азот. Исходный материал покрытия вводится в сопло плазмотрона в виде проволоки или порошка (размер 50−150 мкм.).

Порошок попадает в сопло из дозатора при помощи транспортирующего газа (азота) (3−12 кг/ч).

Попадая в плазменную струю, металлический порошок расплавляется и, увлекаемый струёй, наносится на поверхность детали, образуя покрытие.

2. В качестве напыляемых материалов при восстановлении автомобильных деталей применяют проволоку или порошковые сплавы.

При газопламенном, электродуговом и высококачественном напылении обычно используется проволока:

среднеуглеродистая — при восстановлении посадочных поверхностей на стальных и чугунных деталях;

с повышенном содержанием углерода — для деталей, работающих в условиях трения.

При плазменном и детонационном напылении рекомендуется применять износостойкие порошковые сплавы на основе никеля или более дешёвые сплавы на основе железа с высоким содержанием углерода.

Напыленные покрытия по своим свойствам значительно отличаются от литых металлов. Их особенностью является пористость, при жидкостном и граничном трении играет положительную роль, т.к. поры хорошо удерживают смазку, что способствует повышению износостойкости деталей. Однако пористое покрытие имеет пониженную механическую прочность.

Твёрдость покрытия является обобщающей характеристикой, определяющей в известной мере его износостойкость, зависит прежде всего от напыляемого материала и режима нанесения покрытия. Прочность сцепления покрытия с поверхностью детали является одним из основных параметров, позволяющих определить возможность применения напыления при восстановлении деталей. Наибольшее влияние на прочность сцепления оказывает метод подготовки поверхности детали к напылению. Чем больше шероховатость поверхности, тем выше будет прочность сцепления её с покрытием и определяется, в основном температурой нагрева и скоростью полёта металлических частиц в момент удара их о подложку.

Прочность сцепления покрытия с поверхностью детали может быть повышена путём напыления на деталь подслоя из тугоплавких металлов (молибден, t с плавления =2620о С), а также при напылении в среде защитных газов или в вакууме.

Усталостная прочность деталей при их напылении почти не снижается, если при подготовке деталей к напылению применять методы создания шероховатости, не оказывающие влияние на неё. К таким методам относятся дробеструйная обработка и накатка поверхности деталей зубчатым роликом, эти методы подготовки обеспечивают высокую прочность сцепления покрытия с поверхностью детали и в то же время не снижают усталостной прочности деталей.

3. Процесс нанесения покрытий включает:

подготовке деталей к напылению;

нанесения покрытия;

обработку детали после напыления.

Подготовка детали к напылению служит для обеспечения прочного сцепления покрытия с поверхностью детали. Она включает в себя:

обезжиривание и очистку детали от загрязнений;

механическую обработку;

создание шероховатости на поверхности детали.

При механической обработке с поверхности детали снимают такой слой металла, чтобы после окончательной обработки напыленной детали на её поверхности осталось покрытие толщенной не менее 0,5 — 0,8 мм. Для получения на поверхности детали необходимой шероховатости её подвергают дробеструйной обработке или накатывают зубчатым роликом. Дробеструйную обработку производят в специальных камерах чугунной колотой дробью ДЧК — 1,5 при режиме:

расстояние до детали от сопла дробеструйного аппарата 25 -50 мм;

давление сжатого воздуха 0,5 — 0,6 МПа;

угол наклона струи к поверхности детали 45 °;

время обработки 2−5 мин.

Накатку для создания шероховатости, применяют при восстановлении деталей с твёрдостью не более НВ 350…400, её производят на токарном станке однорядным зубчатым роликом.

Промежуток времени между подготовкой и нанесением покрытия на деталь д. б. минимальным и не превышать 1,5…2 часа. Нанесение покрытия на поверхность детали производится на переоборудованных токарных станках или в специальных камерах. Пост напыления оборудуют вытяжной вентиляции. При использовании специальных камер они должны иметь соответствующие механизмы для взаимного перемещения детали и металлизатора. Режим напыления зависит от применяемого способа.

После нанесения покрытия деталь медленно охлаждают до температуры окружающей среды и обрабатывают покрытия до требуемого размера. В зависимости от твёрдости покрытия, требуемой прочности и шероховатости деталей применяют обработку резанием или шлифованием. Все свойства плазменных покрытий м. б. значительно улучшены путём введения в них процесса восстановления деталей сравнительно простой операции — оплавления покрытия.

4. При оплавлении покрытия плавится лишь наиболее легкоплавкая составляющая сплава. Металл детали при этом лишь подогревается, но остаётся в твёрдом состоянии. Жидкая фаза способствует более интенсивному протеканию дифорузных процессов. В результате оплавление значительно повышается прочность сцепления покрытия с деталью, увеличивается механическая прочность, исчезает пористость, повышается износостойкость покрытия и сопряженных с ним деталей. Оплавление покрытия может быть произведено:

ацитилено — кислородным пламенем;

плазменной струёй;

токами высокой частоты;

в нагревательных печах.

Хорошие результаты даёт оплавление ТВЧ, т.к. при этом обеспечивается локальный нагрев, не нарушающий термообработки всей детали.

Если допустим общий нагрев детали, оплавление покрытия производят в песчаной форме в электронагревательной печи. При этом способе оплавления деталь почти не деформируется, а покрытие получается более равномерным по толщине.

К сплавам, подвергающимся оплавлению, предъявляют следующие требования:

t°C плавления легкоплавкой составляющей сплава должна быть 1000…1100() С;

в оплавленном состоянии они должны хорошо смачивать подогретую поверхность детали;

обладать свойствами самофлюсования, т. е. содержать флюсующие элементы.

Практически всем этим требованиям в полной мере удовлетворяют порошковые сплавы на основе никеля, имеющие t° С плавлении 980… 1050° С и содержащие флюсующие элементы (бор и кремний), а также 50% - ная смесь порошков ПГ — СРЗ и ПГ — С1 с t°C плавления 1080…1100°С.

Технологический процесс восстановления деталей с оплавлением покрытия включает в себя операции:

шлифование детали для обеспечения правильной геометрической формы восстанавливаемой поверхности;

дробеструйную обработку чугунной дробью ДЧК 1,5 при давлении воздуха 0,4. .0,6 МПа, расстояния от поверхности 20. .25 мм в течение 3−5 мин;

нанесения покрытия при режиме, рекомендованном для плазменного напыления;

оплавление покрытия на установке ТВЧ при режиме: частота тока 75… 100 кГц, зазор между деталью и индуктором 5…6 мм. Частота вращения детали 15. .20 об/мин сила тока высокой ступени генератора ТВЧ 5…8 А;

шлифование поверхности детали до требуемого размера. Оплавление покрытия, как показали исследования, имеют следующие свойства:

при оплавлении покрытий из сплавов на основе никеля их структура становится равномерной, состоящей из твёрдого раствора с t° С сплав980… 1050 °C и твёрдых кристаллов с t°C сплав 1600… 1700 °C;

макротвёрдость оплавленных покрытий, напыленных сплавом на основе никеля, в зависимости от содержания в них бора, составляет HRC 35…60;

износостойкость значительно повышается, превышает в 2.3 раза износостойкость стали 45;

прочность сцепления покрытия с поверхностью стальных деталей после оплавления повышается в 8… 10 раз и составляет 400−500 МПа;

усталостная прочность деталей после оплавления покрытия повышается на 20−25%, что объясняется упрочняющим влиянием покрытия.

Таким образом, плазменное напыление с последующим оплавлением покрытия, позволяет возвратить деталям не только свойства новых деталей, но и значительно их улучшить.

Плазменным напылением с последующим оплавлением покрытие можно восстанавливать поверхности деталей, работающих в условиях значительных знакопеременных и контактных нагрузок — кулачки распределительных валов шейки коленчатых валов и др.

Восстановление деталей гальваническими покрытиями Учебные вопросы:

  • 1. Сущность процесса нанесения гальванических покрытий.
  • 2. Технологический процесс нанесения гальванических покрытий.
  • 3. Хромирование деталей.
  • 4. Железнение деталей.
  • 5. Электролитическое и химическое никелирование.
  • 6. Электролитическое натирание.
  • 7. Защитнодекоративные покрытия.
  • 8. Организация рабочих мест и техника безопасности.
  • 1. Сущность процесса нанесения гальванических покрытий.

В авторемонтном производстве при восстановлении деталей нашли широкое применение гальванические и химические процессы. Они применяются для компенсации износа рабочих поверхностей деталей, а также при нанесении на детали противокоррозионных и защитно-декоративных покрытий.

Из гальванических процессов наиболее широко применяются хромирование и железнение, а также никелирование, цинкование и меднение. Применяются также химические процессы; химическое никелирование, оксидирование и фосфатирование.

Гальванические покрытия получают из электролитов, в качестве которых применяют водные растворы солей тех металлов, которыми необходимо покрыть детали.

Катодом при гальваническом; осаждении металлов из электролитов является восстанавливаемая деталь анодом — металлическая пластина.

Применяют два вида анодов: растворимые и нерастворимые. Растворимые аноды изготавливают из металла, который осаждается на детали, а нерастворимые — из свинца.

При прохождении постоянного тока через электролит на катоде разряжаются положительно заряженные ионы и, следовательно, выделяются металл и водород. На аноде при этом происходят разряд отрицательно заряженных ионов и выделение кислорода. Металл анода растворяется и переходит в раствор в виде ионов металла взамен выделившихся на катоде.

Толщина гальванических покрытий на поверхности детали обычно получается неравномерной. Причиной этого является неудовлетворительная рассеивающая способность электролитов.3т3.

Под рассеивающей способностью электролита понимают его свойство обеспечивать получение равномерных по толщине покрытий на деталях. Чем выше рассеивающая способность электролита, тем более равномерными по толщине получаются покрытия на деталях.

Рассеивающая способность электролита может быть повышена за счет изменения состава электролита. Электролиты с малой концентрацией основной соли имеют более высокую рассеивающую способность. Более равномерное по толщине покрытие может быть также получено при применении фигурных анодов, копирующих форму детали; за счет рационального размещения анодов относительно катода; постановкой дополнительных катодов и токонепроводящих экранов.

Металлические покрытия, полученные в гальванических ваннах, имеют кристаллическое строение. Однако их кристаллическая решетка в значительной степени искажена. Причинами этого являются большие внутренние напряжения и внедрение водорода, выделяющегося на катоде.

На величину внутренних напряжений и другие свойства покрытий большое влияние оказывают режим их нанесения и состав электролита. Изменяя режим электролиза и состав электролита, можно управлять качеством гальванических покрытий.

2. Технологический процесс нанесения гальванических покрытий.

Процесс нанесения покрытий на детали включает в себя три группы операций — подготовку деталей к нанесению покрытия, нанесение покрытия и обработку деталей после покрытия.

Подготовка деталей к нанесению покрытия включает следующие операции: механическую обработку поверхностей, подлежащих наращиванию; очистку деталей от окислов и предварительное обезжиривание; монтаж деталей на подвесное приспособление; изоляцию поверхностей, не подлежащих покрытию; обезжиривание деталей с последующей промывкой в воде; анодную обработку (активацию).

Предварительная механическая обработка деталей имеет цель придать восстанавливаемым поверхностям правильную геометрическую форму. Производится эта обработка в соответствии с рекомендациями по механической обработке соответствующего материала.

Очистку деталей от окислов с целью «оживления» поверхности производят путем обработки шлифовальной шкуркой или мягкими кругами с полировальной пастой. Предварительное обезжиривание деталей производят путем промывки в растворителях (уайт-спирите, дихлорэтане, бензине и др.).

При монтаже деталей на подвесное приспособление необходимо обеспечить их надежный электрический контакт с токопроводящей штангой, благоприятные условия для равномерного распределения покрытия по поверхности детали и для удаления пузырьков водорода, выделяющихся при электролизе. Для защиты поверхностей, не подлежащих наращиванию, применяют: цапонлак в смеси с нитроэмалью в соотношении 1:2 (его наносят в несколько слоев при послойной сушке на воздухе); чехлы из полихлорвинилового пластиката толщиной 0,3 … 0,5 мм; различные футляры, втулки, экраны, изготовленные из неэлектропроводных кислотостойких материалов (эбонит, текстолит, винипласт и т. п.).

Окончательное обезжиривание подлежащих наращиванию поверхностей деталей производят путем электрохимической обработки в щелочных растворах следующего состава: едкий натр -10 кг/м3, сода кальцинированная — 25 кг/м3, тринатрийфосфат — 25 кг/м3, эмульгатор ОП-7 3…5 кг/м3. Режим обезжиривания: температура раствора 70…80°С; плотность тока 5… 10 А/дм; длительность процесса 1 … 2 мин.

После обезжиривания детали промывают в горячей, а затем в холодной воде. Сплошная без разрывов пленка воды на обезжиренной поверхности свидетельствует о хорошем качестве удаления жиров. Активацию (анодную обработку) производят для удаления тончайших окисных пленок с поверхности детали и обеспечения наиболее прочного сцеплений гальванического покрытия с деталью.

Подвесное приспособление для хромирования шеек под подшипники на ведущей шестерне заднего моста автомобиля I A 5−53А:

  • 1. токоподводящая штанга;
  • 2. крючок;
  • 3. гайка;
  • 4. изоляционная втулка;
  • 5. хромируемые поверхности;
  • 6. защитный чехол.
Восстановление деталей. Восстановление деталей.

Эта операция непосредственно предшествует нанесению покрытия.

При хромировании анодную обработку производят в основном электролите. Детали завешивают в ванну для хромирования и для прогрева выдерживают 1 …2 мин без тока, а затем подвергают обработке на аноде в течение 30… 45 с при анодной плотности тока 25 … 35 А/дм. После этого, не вынимая детали из электролита, переключают их на котод и наносят покрытие.

При железнении активацию также производят путем анодной обработки деталей в специальной ванне с 30%-ным водным раствором серной кислоты в течение 2…3 мин, при температуре 18…25°С и анодной плотности тока: для стальных деталей 60…70 А/дм2, для чугунных 10… 16 А/дм2 и для деталей из алюминиевых сплавов 1 00… 120 А/дм2.

По завершении активации детали, подлежащие железнению, промывают сначала в холодной, а зачтем в горячей воде при температуре 50 …60°С, где их одновременно подогревают до температуры, близкой к температуре электролита для железнения. Подогретые детали загружают в ванну для железнения и после выдержки в течение 10… 20 с включают ток. Наращивание покрытия в начале в течение 2…5 мин ведут при катодной плотности тока 1…5 А/дм2, а затем постепенно (в течение 2… 10 мин) повышают плотность тока до величины, установленной режимом.

Обработка деталей после нанесения покрытия включает следующие, операции: нейтрализацию детали от остатков электролита; промывку деталей в холодной и горячей воде; демонтаж деталей с подвесного приспособления и удаление изоляции; сушку деталей; термическую обработку (при необходимости); механическую обработку деталей до требуемого размера.

Этот порядок выполнения заключительных операций сохраняется при нанесении покрытий из любых электролитов, однако конкретные процессы имеют некоторые особенности.

Так, если детали подвергаются хромированию, то их сначала промывают в ванне с дистиллированной водой (для улавливания электролита), а затем — - в проточной воде, после чего погружают на 0,5!!! минв3…5%-ный раствор кальцинированной соды (для нейтрализации остатков электролита) и окончательно промывают в теплой воде. Затем детали снимают с подвесных приспособлений, удаляют с них изоляцию и сушат в сушильном шкафу при температуре 120…130°С. В некоторых случаях для снятия внутренних напряжений в хромовых покрытиях детали проходят термообработку с нагревом до 180…200°С в масляной ванне и выдержкой при этой температуре в течение 1 … 2ч.

После железнения детали промывают в горячей воде, затем подвергают нейтрализации от остатков электролита в 10%-ном растворе каустической соды при температуре 70 … 80 °C в течение 5 … 10 мин, после чего снова промывают в горячей воде и демонтируют с подвесных приспособлений.

3. Хромирование деталей.

Из всех гальванических процессов, применяемых в авторемонтном производстве, наиболее широкое применение получило хромирование, которое применяется для компенсации износа деталей, а также в качестве антикоррозионного и декоративного покрытия. Широкое применение хромирования объясняется высокой твердостью (Нц = 4… 12ГПа) электролитического хрома и его большой износостойкостью, которая в 2… 3 раза превышает износостойкость закаленной стали 45. Электролитический хром имеет высокую кислотостойкость и теплостойкость, а также прочно сцепляется почти с любыми металлами.

Наряду с достоинствами процесс хромирования имеет и недостатки, к числу которых следует отнести: сравнительно низкую производительность процесса (не более 0,03мм/ч) из-за малых значений электрохимического эквивалента (0,324 г/А-ч) и выхода металла по току (12 … 15%); невозможность восстановления деталей с большим износом, так как хромовые покрытия толщиной более 0,3 … 0,4 мм имеют пониженные механические свойства; относительно высокую стоимость процесса хромирования. В качестве электролита при хромировании применяется водный раствор хромового ангидрида (СгОз) и серной кислоты. Концентрация хромового ангидрида может изменяться в электролите в пределах 150. .400 кг/м3. Концентрация серной кислоты должна соответствовать отношению №SO4: СЮз=1:100 [1:(80…125)].

В процессе хромирования на катоде происходят восстановление шестивалентного хрома (СгОз) до трехвалентного (СпОз), отложение металлического хрома и выделение водорода. На аноде при этом протекают окислительные процессы: окисление трехвалентного хрома до шестивалентного и выделение кислорода.

Состав электролита при эксплуатации ванны хромирования непрерывно изменяется за счет расхода хромового ангидрида на отложение металлического хрома, поэтому его необходимо периодически контролировать и корректировать.

Хромовые покрытия снижают усталостную прочность деталей на 20…30%.

4. Железнение деталей.

Железнением называется процесс получения твердых износостойких железных покрытий из горячих хлористых электролитов.

В качестве электролита при железнении применяют водный раствор хлористого железа (РеС12-4Н2О), содержащий небольшое количество соляной кислоты (НС1), и некоторые другие компоненты, которые вводятся для повышения прочности сцепления покрытия с деталью (хлористый марганец МпС12-4Н2О) или для улучшения износостойкости (хлористый никель NiCl-4H2O).

Концентрация хлористого железа в электролите может изменяться в пределах 200.. 700 кг/м3. Электролиты с низкой концентрацией хлористого железа (200… 220 кг/м) обеспечивают получение покрытий небольшой толщины (до 0,3…0,4 мм), но с высокой твердостью. Из электролитов высокой концентрации (650…700 кг/м3РеС12-4Н2О) могут быть получены покрытия толщиной 0,8!!! мм и более, однако с меньшей твердостью.

Содержание соляной кислоты в электролите должно быть в пределах 1,2…3 кг/м3. При более низком ее содержании снижается выход металла по току, и в электролите образуется гидроокись железа, которая, попадая в покрытие, ухудшает его качество. Повышение кислотности электролита не ухудшает качества покрытия, но снижает выход металла по току.

Наиболее рациональным является электролит средней концентрации, содержащий (400+200) кг/м3 РеС12-4Н2О, (2+0,2) кг/м3 НС1 и (10+2) кг/м3 МпСЬ*4Н2О. Этот электролит стабилен в работе и почти не требует корректирования состава по содержанию основной соли, обеспечивает получение равномерных покрытий с необходимой твердостью и толщиной, имеет высокий выход металла по току и способствует повышению прочности соединения покрытий с поверхностью детали, так как содержит хлористый марганец.

Процесс нанесения покрытия при железнении производится в стальных ваннах, внутренняя поверхность которых футерована кислотостойким материалом.

Учитывая повышенную агрессивность хлористых электролитов, в качестве футеровки для ванн применяют графитовые плитки, пропитанные смолой, хорошая теплопроводность материала которых позволяет производить нагрев электролита в таких ваннах через водяную рубашку.

Ванны для железнения изготавливают также из фаолита. Этот материал обладает высокой кислотостойкостью, но имеет плохую теплопроводность, поэтому нагрев электролита до требуемой температуры в этом случае производят нагревателями, помещенными в электролит.

Восстановление деталей. Восстановление деталей.

Электролизная ячейка для железнения отверстий в нижней головке шатунов:

верхняя плита;

уплотнительные прокладки;

анод;

нижняя плита;

шатуны.

5. Электролитическое и химическое никелирование.

Процесс никелирования как способ компенсации износа деталей в ряде случаев может успешно заменить хромирование, особенно при восстановлении деталей, работающих в коррозионной среде. Применяют два способа никелирования: электролитический и химический.

Электролитическое износостойкое никелирование — - это процесс получения никель-фосфорных покрытий, содержащих 2 … 3% фосфора.

В качестве электролита при этом используют водный раствор, в состав которого входят 175 кг/м3 сернокислого никеля, 50 кг/м3 хлористого никеля и 50 кг/м3 фосфорной кислоты.

Процесс проводится при растворимых никелевых анодах. Режим электролиза: плотность тока 5…40 А/дм2, температура электролита 75…95°С. В зависимости от режима твердость покрытия составляет Нц = 3,5 … 7,2 ГПа.

Процесс износостойкого электролитического никелирования* имеет перед хромированием следующие преимущества: высокий выход металла по току до 90…95%; меньший расход электроэнергии; более высокую скорость нанесения покрытия (0,24 мм/ч). Износостойкость покрытия достаточно высокая, но она все же уступает износостойкости электролитического хрома.

Никель-фосфорные покрытия после нагрева до 400 °C и выдержки при этой температуре в течение одного часа приобретают более высокую твердость и износостойкость и могут применяться при восстановлении деталей вместо хромирования.

Химическое никелирование. Так называется процесс получения никель-фосфорных покрытий с содержанием фосфора 3… 10% из растворов солей контактным способом без затраты электроэнергии. В состав раствора для химического никелирования входят следующие составляющие: сернокислый никель — 20 кг/м3; гипофосфит натрия — 24 кг/м3; уксуснокислый натрий -10кг/м3. Покрытие наносят в эмалированной стальной ванне при температуре раствора 90…96°С. Скорость отложения покрытия О, О22…0,024 мм/ч. Раствор используется раз и после нанесения покрытия на детали заменяется новым. Из одного раствора можно получить покрытие толщиной 25. .ЗОмкм. При необходимости получить покрытие большей толщины детали погружают в свежий раствор.

Твердость покрытия составляет hjj,—3,5…4,0 ГПа. Она может быть повышена термической обработкой (нагрев до 350…400°С с выдержкой 1… 1,5 ч) до Нц= 8,0…8,5 ГПа. Покрытие имеет высокую плотность и равномерно по толщине. Химическое никелирование применяют при восстановлении деталей с небольшим износом.

6. Электролитическое натирание.

Электролитическое натирание применяют при восстановлении цилиндрических поверхностей деталей, имеющих небольшой износ. Восстанавливаемую деталь, являющуюся катодом, устанавливают в патроне токарного станка или другого устройства, обеспечивающего ее вращение со скоростью 10…20м/мин. Анодом служит графитовый стержень, покрытый адсорбирующим материалом (сукно, стеклянное волокно, хлопчатобумажная ткань и др.). На анод непрерывно подается электролит, который пропитывает адсорбирующий материал. Процесс осуществляется при относительном перемещении анода и катода. В зависимости от применяемого электролита можно наносить покрытия из хрома, цинка, меди, железа и других металлов.

Электролитическое натирание цинком применяют при восстановлении посадочных поверхностей отверстий в корпусных чугунных деталях. При этом используется электролит следующего состава: сернокислый цинк — - 700 кг/м3; борная кислота — 30 кг/м3. Процесс натирания начинают при плотности тока 30. .50 А/дм2, постепенно повышая ее до 200 А/дм2. Скорость нанесения покрытия при этом составляет 8… 10 мкм/мин. Прочность сцепления покрытия с чугунной деталью невысокая и не превышает 20 МПа. Электролитическое натирание железом производится с применением хлористого электролита высокой концентрации (до 600 кг/м1 хлористого железа) при плотности тока ;

200 А/дм. Покрытие получается с твердостью Нц —5,8 … 6,0 ГПа.

Восстановление деталей. Восстановление деталей.

Схема установки для нанесения покрытий электролитическим натиранием:

  • 1. бак с электролитом;
  • 2 .анод;
  • 3. деталь;
  • 4. защитнодекоративные покрытия.

Гальванические покрытия широко применяются в авторемонтном производстве для защиты деталей от коррозии и придания им красивого внешнего вида. По роду защитного действия гальванические покрытия подразделяются на анодные и катодные.

В автомобилестроении наибольшее применение нашли многослойные катодные защитно-декоративные покрытия. Наибольшей стойкостью обладают четырехслойные покрытия, которые получают путём последовательного нанесения слоев никеля, меди, никеля и хрома.

Технологический процесс нанесения защитно-декоративных покрытий не отличается от процесса нанесения износостойких покрытий. Однако в процесс подготовки детали к покрытию и обработки ее после покрытия необходимо включить операцию полирования, которая производится войлочными кругами с пастой ГОИ.

Меднение. Электролитическое меднение применяют в качестве подслоя при защитно-декоративном никелировании и хромировании, а также для защиты поверхностей детали от цементации.

Наиболее часто при меднении применяют простой и недорогой сернокислый электролит, состоящий из водного раствора медного купороса (200…250 кг/м3) и серной кислоты (5 0… 75 кг/м3). Нанесение покрытия производится при использовании растворимых медных анодов при режиме: плотность тока 1… 3 А/дм; температура электролита 18… 2 0 ° С.

Никелирование. Электролитическое никелирование применяют в качестве подслоя при декоративном — хромировании. Электролитом при никелировании служит водный раствор сернокислого никеля в который вводят различные добавки: сернокислый натрий для увеличения электропроводности, сернокислый магний для получения более светлых покрытий и хлористый натрий или калий для повышения растворимости никелевых анодов. Процесс осуществляется при комнатной температуре электролита и плотности тока 0,5!!! А/дм .

Цинкование в авторемонтном производстве применяется главным образом для защиты от коррозии мелких крепежных деталей. Наибольшее применение при цинковании нашли сернокислые электролиты, в состав которых входят: сернокислый цинк (200…250 кг/м3), сернокислый аммоний (20. .30 кг/м3)' сернокислый натрий (50… 100 кг/м3) и декстрин (8 … 12 кг/м3). Нанесение покрытий производится в специальных вращающихся барабанах или колоколах при комнатной температуре электролита и плотности тока 3…5 А/дм2

Оксидирование стальных деталей производится путем их обработки в горячих щелочных растворах, содержащих окислители. При этом на поверхности деталей образуется оксидная пленка толщиной 0,6…1,5 мкм, которая имеет высокую прочность и надежно защищает металл от коррозии. Оксидированию подвергают нормали и некоторые детали арматуры кузова.

Оксидирование производят в растворе, содержащем 700…800 кг/м3 едкого натра с добавкой в качестве окислителей 200…250 кг/м3 азотнокислого натрия и 50…70 кг/м азотистокислого натрия при температуре раствора 140… 145 °C с выдержкой 40. .50 мин. После такой обработки детали промывают в воде и для того, чтобы закрыть поры в покрытии, пропитывают в машинном масле при температуре 110… 115 °C.

Фосфатирование — это химический процесс создания на поверхности деталей защитных пленок, состоящих из сложных солей фосфора, марганца и железа. Защитная пленка имеет толщину от 8 до 40 мкм, обладает пористостью, имеет небольшую твердость и хорошо прирабатывается.

Фосфатирование производят в 30 … 35%-ном водном растворе препарата «Мажеф» при температуре 95… 98 °C в течение 30…50 мин. Его применяют в качестве грунта при окраске деталей кузова и для улучшения прирабатываемости деталей.

8. Организация рабочих мест и техника безопасности.

Основное оборудование участка гальванических покрытий состоит из ванн для нанесения покрытий и вспомогательных ванн для обезжиривания, травления и промывки деталей. Ванны необходимо устанавливать в строгом соответствии с технологическим процессом. Учитывая, что в авторемонтном производстве применяют несколько различных процессов нанесения покрытий, в целях экономии площади рекомендуется основные ванны устанавливать у стен участка, а вспомогательные — посредине.

Если в качестве источников питания применяют выпрямители, то их следует устанавливать вблизи от ванн — потребителей тока.

Для загрузки и выгрузки деталей, а также для транспортировки от одной ванны к другой обычно применяют электротельферы.

Наиболее вредными для здоровья работающих на гальванических участках, являются электролиты. Большинство кислотных и щелочных электролитов очень токсично и отрицательно действует на дыхательные пути и кожные покровы работающих. Гальванические процессы протекают, как правило, с выделением кислорода и водорода. Выделяющиеся газы увлекают с собой мельчайшие частички электролита и таким образом насыщают воздух в помещении вредными парами.

Учитывая это, при оборудовании гальванических участков особое внимание уделяют вентиляции помещений.

На гальванических участках рекомендуется иметь общую приточно-вытяжную вентиляцию с 8… 10-кратным обменом воздуха в час. Кроме общей вентиляции, каждая ванна с вредными выделениями должна иметь двусторонний бортовой отсос воздуха. Мощность бортовых отсосов определяют исходя из объема воздуха, забираемого с 1 м2 поверхности ванны в час. Для ванн хромирования этот показатель должен быть 6000 м3/ч, для железнения 4800, для никелирования 2500, для меднения 2000, для электролитического обезжиривания 3000 мэ/ч.

При работе на гальванических участках необходимо применять резиновую обувь, перчатки и фартуки. В помещении должны устанавливаться фонтанчики с водой для обмывки кожных покровов, на которые может случайно попасть электролит. Полы и стены гальванического участка должны быть покрыты керамической плиткой и ежедневно промываться.

В целях охраны окружающей среды сточные воды после промывки деталей необходимо прежде, чем спускать в канализацию, пропускать через очистные сооружения.

ТЕМА: «Восстановления деталей с применением синтетических материалов» .3т3.

Учебные вопросы:

  • 1. Синтетические материалы, применяемые при восстановлении деталей.
  • 2. Применение эпоксидных составов при восстановлении деталей.
  • 3. Восстановление размеров деталей нанесением полимеров.
  • 4. Применение синтетических клеев.
  • 5. Организация рабочего места и техника безопасности (самостоятельно).
  • 1. В автотранспортном (ремонтном) производстве всё большее применение при восстановлении деталей находят различные виды синтетических материалов (пластмасс). Их используют при устранении механических повреждений на деталях (трещин, пробоин, отколов и т. п.), при компенсации износа рабочих поверхностей деталей, а так же при соединении деталей склеиванием. Это объясняется простотой технологического процесса и применяемого оборудования, невысокой трудоёмкостью процесса, достаточно высокими физико — механическими свойствами пластмасс, низкой их стоимостью.

Главной составляющей частью пластмасс являются полимеры. Многие пластмассы представляют собой чистые полимеры (полистирол, полиэтилен, полипропилен и др.), но есть пластмассы, в состав которых, кроме полимеров, входят и другие компоненты — наполнители, пластификаторы, красители, отвердители и др. добавки, сообщающие пластмассам требуемые свойства. Все полимеры подразделяются на две большие группы:

реактопласты (термореактивные);

термопласты (термопластические).

Реактопласты при нормальной температуре могут быть в жидком или твёрдом состоянии. Но при нагреве до определённой температуры переходит в вязко — текучее состояние, а при дальнейшем нагреве затвердевают и остаются в таком состоянии независимо от температуры. Этот процесс необратимый, т.к. перевести реактопласты в пластичное состояние невозможно.

Термопласты при нормальной температуре находятся в твёрдом состоянии, а при нагреве размягчаются. В этом состоянии можно придавать любую форму. После охлаждения они снова затвердевают. При повторном нагреве сохраняют пластические свойства т. е. пригодны для дальнейшего использования.

Из реактопластов наиболее широкое применение при восстановлении деталей нашли эпоксидные смолы ЭД — 16 и ЭД — 20 — вязкая жидкость светло — коричневого цвета. При восстановлении деталей применяют эпоксидные композиции — эпоксидная смола, отвердители, пластификаторы и наполнители.

Отвердители (холодные и горячие), соответственно процесс идёт при температурах 60. .70 С и 120… 160 С.

Пластификаторы — дибутилфталат (ДБФ) — низко молекулярная алифатическая смола ДЭГ — 1 и тиокол НВБ — 2.

Наполнители — стальной или чугунный порошок, аэросил, алюминевая пудра, порошки слюды, талька, асбеста и графита. Так же для приготовления эпоксидных составов могут быть использованы поставляемые промышленностью готовые композиции К — 115 и К — 153, которые не содержат наполнителей и отвердителей.

Из термопластов наибольшее применение нашли полиэтилены, полипропелены, полистеролы, винипласты, полиамиды и фторопласты. Эти материалы обладают хорошей адгезией с металлами, достаточно высокой механической прочностью и износостойкостью. Выпускаются промышленностью в виде гранул и применяются при восстановлении поверхностей деталей, работающих в условиях трения скольжения. Для повышения твёрдости, износостойкости др. свойств в полиамидные смолы вводят наполнители: графит, тальк, сульфид молибдена и металлические порошки. Эти материалы используются так же для изготовления небольших деталей, арматуры кузова и т. п.

2. Эпоксидные составы применяют для заделки трещин, раковин, пробоин и др. механических повреждений в корпусных деталях, а так же для восстановления в них посадочных поверхностей под подшипники.

Перед выполнением этих работ приготавливают эпоксидный состав (пасту). Для этого эпоксидную смолу подогревают до температуры 50…60 С, вводят в неё пластификатор и тщательно перемешивают, затем в пасту при непрерывном перемешивании вводят в требуемом количестве наполнители. Полученный состав охлаждают до комнатной температуры и за 30. .40 мин. до применения в эпоксидный состав вводят отвердитель.

При заделке трещин в корпусных деталях их подготавливают к нанесению эпоксидного состава: как и перед заваркой производят разделку трещин под углом 120, засверливают их концы, зачищают кромки от окислов и обезжиривают растворителями (ацетон, бензин). Далее в засверленные отверстия вставляют асбестовые пробки и при помощи шпателя наносят эпоксидную пасту в два слоя. Вначале наносят тонкий слой для того, чтобы только покрыть разделанный шов, а затем вторым слоем заполняют полностью шов с перекрытием кромок на 5… 10 мм. Отвердевание пасты производят в сушильном шкафу. При применении холодного отвердителя деталь нагревают до 60. .70 С и выдерживают при этой температуре 4. .5 часов.

При устранении пробоин края повреждения зачищают до металлического блеска. Из стеклоткани вырезают накладку, перекрывающую края пробоины на 15…20 мм. После этого очищенные и обезжиренные края пробоины наносят тонкий слой эпоксидного состава и на него накладывают стеклоткань и прикатывают её роликами.

Далее на поверхность накладки наносят слой эпоксидной пасты и его снова покрывают стеклотканью и т. д. В зависимости от размеров пробоины может быть 3…5 слоев. После нанесения последнего слоя производят отверждение пасты в сушильном шкафу.

3. При восстановлении цилиндрических поверхностей деталей применяют термопласты. Нанесение этих полимеров на детали производится путём погружения в расплав пластмассы, литьём под давлением и различными способами напыления порошков. Наиболее широкое применение нашли следующие способы напыления: вихревой, вибрационный, газопламенный и напыление порошка на нагретую поверхность детали. Перед напылением гранулы полимеров превращают механическим или химическим путём в порошкообразное состояние с размером частиц 0,1. .0,15 мм. При вихревом напылении деталь, предварительно обезжиренную и подогретую до 280. .300 С, помещают в специальную камеру с взвихренным (псевдосжиженным) порошком пластмассы. Камера вихревого напыления разделена пористой перегородкой на две части. В нижнюю часть камеры поступает сжатый воздух или азот. Сверху на пористую перегородку загружают порошок пластмассы. Сжатый воздух, проходя через пористую перегородку, взвихривает порошок. Соприкасаясь с нагретой поверхностью детали частицы порошка оплавляются и образуют на поверхности детали покрытие. Время выдержки детали в камере зависит от необходимой толщины покрытия. После напыления покрытие подвергают термообработке для снятия внутренних напряжений путём нагрева в масле до температуры 160 С в течение 15…60 мин.

При вибрационном напылении порошок пластмассы приводят в псевдосжиженное состояние в специальной виброкамере с помощью электромагнитного вибратора. Этот способ не требует подогрева детали до высокой температуры, т.к. она не охлаждается потоком сжатого газа. Однако окончательное оплавление порошка в этом случае производят в специальном нагревательном шкафу. Наиболее эффективная частота вибрации 50… 100 Гц, при которой ускорение напыляемых частиц достигает 30 м/с, при этом толщена покрытия — до 1,5 мм.

Описанными способами напыления (вихревым, вибрационным и напылением порошка на нагретую поверхность детали) полимеров можно восстанавливать втулки из антифрикционных материалов, а так же посадочные поверхности на других деталях.

При газопламенном напылении пластмассовый порошок расплавляется в пламени специальной горелки и распыляется струёй сжатого воздуха. Применяется способ для устранения неровностей после правки на поверхности кузовов. Используется специальный порошок ПФН — 12 или ТПФ — 37. Перед нанесением покрытия поверхность кузова очищают от ржавчины и старой краски. А затем придают ей шероховатость при помощи шлифовальной машины крупнозернистыми кругом или дробеструйной обработкой, затем нагревают пламенем газовой горелки до температуры 200С и только после этого включают подачу порошка и производят напыление. Напыленную поверхность перед окраской шлифуют шкуркой.

Напыление пластмассовых порошков можно производить так же путём их напыления на подогретую поверхность детали. При этом деталь нагревают до температуры плавления пластмассы. Частицы порошка, попадая на нагретую поверхность детали, расплавляются и образуют покрытие.

4. Синтетические клеи применяют при ремонте автомобилей для приклеивания накладок на пробоины в баках, бачках радиаторов и др. деталях, а так же при восстановлении кузовов и для наклейки фрикционных накладок на тормозные колодки. В авторемонтном производстве нашли применение следующие синтетические клеи: ВС — 350, БФ — 2, ВС — Ют, МПФ — 1, ВК — 200, эпоксидные клеи и др.

Перед склеиванием поверхности деталей тщательно очищают от загрязнений, обезжиривают растворителями и придают им некоторую шероховатость. После этого на соединяемые поверхности наносят 2…3 слоя клея толщиной около 0,1 мм. Учитывая, что большинство клеев (кроме эпоксидных) содержат летучие растворители, после нанесения первого и последующих слоев клея их нужно подсушить.

После подсушки клея соединяют склеиваемые поверхности. При этом очень важно строго выдерживать режим отвержения клея: усилия прижатия поверхностей, температуру и длительность выдержки при отверждении. Отверждение может производиться при температуре 180 С путём общего нагрева детали в течение 45 минут или путём местного нагрева склеиваемых поверхностей электронагревателем, паяльной лампой и др. источниками тепла. Охлаждение деталей необходимо производить медленно (правила применения клеев).

ТЕМА: «Применение лакокрасочных покрытии в авторемонтном производстве» .

Учебные вопросы:

  • 1. Назначение лакокрасочных покрытий.
  • 2. Лакокрасочные материалы и их характеристика, оборудование и инструмент.
  • 3. Технологический процесс нанесения лакокрасочных покрытий
  • 4. Производственная санитария и техника безопасности.
  • 1. Назначение лакокрасочных покрытий

Для защиты деталей автомобиля от разрушения из-за атмосферных воздействий и придания им декоративного вида применяют различные системы покрытий. Система покрытий — это сочетание последовательных нанесенных слоев лакокрасочных материалов различного назначения. Необходимость применения системы покрытий вызвана невозможностью в одном материале сочетать многообразие свойств, какими должно обладать покрытие. Лакокрасочные материалы — это жидкие составы, которые после нанесения их на поверхность детали тонким слоем и высыхания образуют пленки, которые должны иметь прочное сцепление с поверхностью. Образование пленок происходит в результате двух основных процессов:

испарения растворителей — в начальной стадии, когда растворителей содержится много, испарение идет быстро, при этом увеличивается концентрация пленкообразующих, возрастает вязкость лакокрасочных материалов. Остатки растворителей испаряются медленно из-за образовавшейся на поверхности детали пленки, которая затрудняет их улетучивание, и из-за прочного удержания их пленкообразующими;

химических превращений окисления, полимеризации и поликонденсации. Эти процессы переводят пленкообразующие жидкого состава в твердое.

Для образования прочного сцепления пленки с поверхностью детали необходимо обеспечить смачиваемость и адгезию. Эти условия приводят к тому, что капля краски, нанесенная на окрашиваемую поверхность, будет растекаться, образуя пленку, и прилипать к поверхности. Качество прилипания зависит от следующих показателей:

материала поверхности (лакокрасочная пленка лучше сцепляется с поверхностью черных и хуже с поверхностью цветных металлов, так как их поверхность является более гладкой, чем у черных металлов);

шероховатости поверхности (при большой шероховатости поверхности имеющиеся выступы не смачиваются краской, и отрыв ее происходит по выступающим местам поверхности);

степени очистки поверхности от загрязнений и влаги (остатки жиров, масел и пыли на окрашиваемой поверхности также ухудшают адгезию и способствуют отслаиванию покрытия. Наличие влаги на поверхности приводит к снижению адгезии).

Эксплуатационная надежность лакокрасочных покрытий зависит от растрескивания пленки из-за различных коэффициентов теплового расширения материалов покрытия и защищаемого изделия и адсорбции на покрытии влаги, пыли и различных газообразных примесей, содержащихся в атмосфере. Эти процессы приводят к механическому разрушению и старению покрытия.

В результате старения лакокрасочные покрытия (начало старения — это потеря блеска покрытия) теряют эластичность, растрескиваются, шелушатся и разрушаются.

Если покрытие обладает недостаточной водостойкостью пленки, то через ее поры проникает вода, которая соприкасаясь с металлом вызывает его коррозию под пленкой. Продукты коррозии вспучивают лакокрасочную пленку, и она отрывается от поверхности металла.

2. Лакокрасочные материалы и их характеристика, оборудование и инструмент.

Основные компоненты лакокрасочных материалов — это пленкообразующие, пигменты, растворители. Лакокрасочные материалы состоят из многих компонентов, важнейшими из которых являются пленкообразующие, пигменты, растворители.

В качестве пленкообразующих используют преимущественно синтетические (искусственные) смолы, растительные масла, битумы, эфиры и др. Они служат для образования пленки с достаточной адгезией и необходимыми служебными свойствами, важнейшим из которых является сопротивляемость воздействию климатических факторов (температура, влажность и др.).

Пигменты — - это цветные порошкообразные вещества, не растворяющиеся в растворителях и образовывающие с пленкообразующими защитные или декоративно-защитные покрытия. Служат для придания покрытию необходимого цвета. В качестве пигментов используют оксиды или соли металла (охру, железный сурик, ультрамарин, цинковые и титановые белила), металлические порошки (цинковую пыль, алюминиевую пудру), графит, сажу, а также некоторые органические вещества.

Растворителилетучие жидкости, способные растворять плен-кообразующие. Служат для придания лакокрасочным покрытиям необходимой вязкости, растекаемости, улучшения адгезии.

Для улучшения служебных и технологических свойств лакокрасочных покрытий могут вводить компоненты — наполнители, сиккативы, инициаторы, пластификаторы, отвердители, катализаторы, ускорители полимеризации, добавки для улучшения смачиваемости и растекаемости и т. д.

В ремонтном производстве, как и в машиностроении, применяют как основные виды лакокрасочных материалов: грунтовки, шпатлевки, краски и эмали, так и вспомогательные — растворители, разбавители, смывки и др.

Грунтовки — это пигментированные растворы пленкообразующих веществ в органических растворителях. Грунтовки применяют в качестве первого слоя, обеспечивающего прочное сцепление их с поверхностью окрашиваемого металла и с последующими слоями лакокрасочных покрытий. Грунтовки обладают повышенной сцеплямостью (адгезией). Их наносят распылением, кистью, окунанием, электрораспылением и электроосаждением.

Шпатлевки — это густые пасты, состоящие из пленкообразующего вещества, наполнителей и пигментов. Шпатлевки предназначены для устранения неровностей и исправления на поверхности изделии разных дефектов, шпатлевки нельзя наносить толстыми слоями. Адгезия шпатлевок к металлу хуже, чем у грунтовок их наносят на предварительно загрунтованные поверхности.

Эмали — это пигментированные лаки, наносимые в основном по грунтовке или шпатлевке. Эмали применяют для защиты изделий от коррозии, придания им декоративного вида. При окраске кузовов автомобилей применяют синтетические, меламиноалкидные и нитроцеллюлозные эмали.

Краски представляют собой пасты, состоящие из пигментов или замешанных на олифе или специально подготовленных растительных маслах. Краски бывают жидкотертые (готовые употреблению) и густотертые. Густотертые краски разводят олифой, глифталевыми или пентафталевыми лаками до нужной вязкости. Покрытия на основе красок менее стойки к воздействию атмосферных условий, чем покрытия на основе многих синтетических эмалей, поэтому краски в ремонтном производстве применяют ограниченно.

Растворители и разбавители применяют для придания лакокрасочным материалам необходимой рабочей вязкости. Это однокомпонентные органические летучие и бесцветные жидкости или их смеси в различном сочетании компонентов. При смешивании с лакокрасочными материалами растворители не должны вызывать коагуляции (свертывания) пленкообразователя, расслаивания и помутнения раствора. Состав растворителей подбирают таким, чтобы обеспечить оптимальные условия для высыхания лакокрасочного материала и плотность нанесенной пленки.

Смывки (СД, АФТ-1, СП-6 и др.) используют для снятия лакокрасочного покрытия. Они представляют собой смеси различных растворителей. При их воздействии покрытие разбухает, вспучивается и отстает от металла. Иногда смывки могут быть заменены обычными растворителями.

Инструменты для окраски и шпатлевания — кистиинструменты с помощью которых получают защитнодекоративные лакокрасочные покрытия. Окраска кистями зависит от правильного выбора размера и типа кисти. Лучшими кистями для окрасочных работ являются кисти, изготовленные из свиной щетины.

Из выпускаемых промышленностью кистей в ремонтном производстве получили распространение кисти-ручники и филеночные кисти (плоские или круглые).

Шпатели предназначены для нанесения и выравнивания шпатлевок при устранении на поверхности изделия небольших вмятин и глубоких царапин. Они представляют собой тонкие упругие пластинки из стали, пластмассы и различных пород дерева, а на криволинейные поверхности — куском листовой резины. Рабочая кромка шпателя должна быть чистой, ровной и гладкой, без щербин и царапин.

Оборудование для нанесения покрытий пневматическим распылением.

Лакокрасочные материалы наносят различными методами однако основным промышленным методом является пневматическое (воздушное)распыление. Этим методом наносят примерно 70% производимых лакокрасочных материалов, он позволяет наносить на поверхность равномерные слои грунтовки и эмали.

Этим способом можно получить высококачественные покрытия на больших поверхностях.

Недостаток метода — образование красочного тумана, что ухудшает санитарно-гигиенические условия необходимость интенсивного отсасывания загрязненного воздуха; большие потери лакокрасочного материала (от 30 до 60%) в зависимости от размеров и конфигурации деталей; повышенный расход растворителей для доведения лакокрасочных материалов до рабочей вязкости. Воздушное распыление лакокрасочных материалов осуществляют краскораспылительными устройствами. Сжатый воздух с давлением 0,4…0,7 МПа подводится к ним от общей заводской сети или компрессора.

Установки для безвоздушного распыления. Распыление осуществляется под действием высокого давления (до 250−105) на краску, которая, вытекая из сопла с большой скоростью, дробится на мелкие капли в результате резкого увеличения испарения растворителей, сопровождающегося значительным увеличением объема. Факел краски четко очерчен и защищен от окружающей среды оболочкой паров растворителей и тем самым предотвращает рассеивание ее частиц.

Преимущества способа перед окрашиванием краскораспылителями обычного типа: сокращается расход лакокрасочного материала на 20% из-за уменьшения расхода на туманообразование; экономятся растворители на разбавление материалов за счет применения более вязких лакокрасочных материалов; улучшаются условия труда (меньшее туманообразование).

Безвоздушное распыление наиболее эффективно при окрашивании средних и особенно крупных изделий, имеющих сплошную плоскую или объемную обтекаемую форм*/ с плавной кривизной. Этим способом можно наносить лакокрасочные материалы на основе различных пленкообразующих и получать покрытия толщиной до 25… 30 мкм за одну технологическую операцию.

Электростатические распылители («Ореол-5М») имеют насос для подачи лакокрасочного материала, источник высокого напряжения и устройство для регулирования подачи краски. При перемещении краскораспылителя относительно заземленного изделия создается электрическое поле. Под действием сил электрического поля лакокрасочный материал на коронирующей кромке получает заряд, дробится на мельчайшие частицы и осаждается на поверхности изделия. Время окраски 1 м поверхности изделия этим распылителем составляет 1… 1,5 мин.

Электромеханические распылители чашечного типа (ЭР-1М) имеют наибольшее применение при электроокрашивании. В этих установках распыление лакокрасочного материала осуществляется под действием электростатических и механических (центробежных) сил. Распыляющим устройством являются коронирующие насадки различной формы (чаши, грибки или диски) диаметром 50… 150 мм, которые приводятся во вращение с частотой 1200… 1400 оборотов в минуту от электромеханического привода. Лакокрасочный материал подается по специальному каналу внутрь чаши или по специальному трубопроводу сбоку от нее и под действием центробежной силы тонким слоем растекается по ее краям. Высокое напряжение (80… 120 кВ) подводится к головке распылителя и передается на коронирующую кромку чаши по насадке. Под действием электрического поля коронного заряда краска распыляется и ее мелкие частицы устремляются к окрашиваемой поверхности изделия. Производительность электромеханического распылителя зависит от диаметра чаши и составляет, например, для распылителя ЭР-1М — 25… 100 г/мин (по массе) или 50…200 м2/ч (по поверхности окраски).

Пневмоэлектростатические (электровоздушные) устройства создают более направленное перемещение красочной пыли лакокрасочного материала, чем электромеханические, и тем самым позволяют лучше прокрашивать углубления в изделиях. Распыление красок в них осуществляется с помощью струи сжатого воздуха под давлением 0,4…0,5 МПа. Подача таких распылителей составляет 30…250 г/мин.

При пневматическом распылении в электрическом поле (УЭРЦ-5) возможны некоторые потери краски, поскольку краскораспылитель расположен на некотором расстоянии от коронирующей зоны и не вся распыляемая краска доходит до нее. Часть краски, не получившая электрический заряд от краскораспылителя к поверхности изделия, теряется. Конструкция распылителей и процесс предварительной зарядки частиц исключают искрообразование даже при соприкосновении металлического изделия с распылительной головкой устройства.

Восстановление деталей. Восстановление деталей.

Краскораспылитель КРУ-1:

1 — воздушная головка; 2 — распределители воздуха: 3, 18 — - штуцера;

ВИНТ.

4 — бачок для краски; 5 ~ корпус; 6 — седло клапана; 7 — пружина; 8 для регулирования расхода лакокрасочного материала; 9 — - шарик; 10 — - штуцер для подачи воздуха; 11, 16 — уплотнения; 12 — шток; 13 — курок пусковой; 14 — шток; 15 — игла запорная; 17 — заглушка; 19 — краскопровод; 20 — гайка накидная; 21 — сопло.

Распределение толщины лакокрасочного покрытия по ширине струи: а — 20 мм; Ь — 10 мм; с — 35 мм; с—70мм.

Восстановление деталей. Восстановление деталей.

Установка «Виза-1» :

1- поршневой насос; 2 — пневмопривод; 3- трехходовый кран; 4 -двигатель; 5 — ротационный двигатель; 6 — клапан; 7 — шланг; 8 — сосуд для материала.

Восстановление деталей. Восстановление деталей.

3. Технологический процесс нанесения лакокрасочных покрытий.

В зависимости от масштаба и вида производства окрасочные работы сосредоточены в одном или нескольких местах. Это вызвано необходимостью предохранить готовые детали от появления на них коррозионных разрушений при их перемещении и хранении. При такой организации производства окрасочные работы выполняют на участках (или в окрасочных отделениях).

Принятую технологию окрашивания отражают в маршрутных картах технологических процессов, которые разрабатываются для отдельных видов изделий. В картах указываются все стадии процесса окрашивания, применяемые материалы, нормы расхода этих материалов, режим сушки и некоторые другие показателей.

Выбор способа окрашивания зависит от ряда условий, например от требований, предъявляемых к покрытию (класс покрытия), от вида применяемых лакокрасочных материалов, конфигурации и размеров изделий, масштаба и вида производства. При окрашивании изделий могут применять несколько способов. В каждом конкретном случае вопрос выбора способа окрашивания решается возможностью производства и экономической целесообразностью.

Технологический процесс окрашивания складывается из следующих основных операций, подготовка поверхности, грунтования, шпатлевания, нанесения покрывных материалов (краски, эмали, лака) и сушки покрытий.

Подготовка поверхности детали к окраске производится с целью удаления различного рода загрязнений, влаги, коррозионных повреждений, старой краски и др. Примерно 90% трудозатрат приходится на подготовительные работы и только 10% - на окрашивание и сушку.

Подготовка поверхностей к окраске включает очистку деталей, обезжиривание, мойку и сушку. Очистка деталей от загрязнений производится механической обработкой (механическим инструментом, сухим абразивом, гидроабразивной очисткой и др.) или химическим способом (обезжириванием, одновременным обезжириванием и травлением, фосфатированием и др.). Загрязнения нежирового происхождения удаляются водой или щетками. Влажные поверхности протирают сухой ветошью.

В ремонтной практике применяют три способа удаления старой краски — это огневой, механический и химический.

При огневом способе старая краска выжигается с поверхности детали пламенем газовой горелки или паяльной лампы (для удаления старой краски с деталей кузова и оперения этот способ применять не рекомендуется), а при механическом— с помощью щеток с механическим приводом, дробью и т. д. Химический способ удаление старой краски— это наиболее эффективный как по качеству, так и по производительности способ. Старую краску чаще всего удаляют органическими смывками (СД, АФТ-1. АФТ-8, СП-6, СП-7, СПС-1) и щелочными растворами (растворы едкого натра (каустика) с концентрацией 8… 10 г/л, смеси каустика с кальцинированной содой и т. д.).

После удаления старой краски и продуктов коррозии проводят операции обезжиривания, травления, фосфатирования и пассивирования.

Детали из черных металлов, никеля, меди обезжиривают в щелочных растворах. Изделия из олова, свинца, алюминия, цинка, и их сплавов обезжиривают в растворах солей с меньшей свободной щелочностью (углекислый или фосфорный натрий, углекислый калий, жидкое стекло.

Травление — очистка металлических деталей от коррозии в растворах кислот, солей или щелочей. На практике операции травления и обезжиривания совмещают.

Фосфатирование — процесс химической обработки стальных деталей для получения на их поверхности слоя фосфорнокислых соединений не растворимого в воде. Этот слой увеличивает срок службы лакокрасочного покрытия, улучшает сцепление их с металлом и замедляет развитие коррозии в местах нарушения лакокрасочной плёнки. Детали кузова и кабины подлежат фосфатированию в обязательном порядке.

Пассивирование необходимо для повышения коррозионной стойкости лакокрасочного покрытия, нанесенного на фосфатную пленку. Ее проводят в ваннах, струйных камерах или нанесением раствора двухромовокислого калия или двухромовокислого натрия (3…5 г/л) волосяными щетками при температуре 70… 80″ С продолжительностью обработки 1…3 мин.

Перед нанесением лакокрасочного покрытия поверхность изделий должна быть сухой. Наличие влаги под пленкой краски исключает хорошую ее сцепляемость и вызывает коррозию металла Сушка обычно производится воздухом, нагретым до температуры 115. Л25°С, в течение 1… З. мин до удаления видимых следов влаги. Процесс окрашивания должен быть организован так, чтобы после подготовки поверхности она сразу же была загрунтована, так как при больших перерывах между окончанием подготовки и грунтованием, особенно черных металлов, поверхность окисляется и загрязняется.

Грунтование. Применение той или иной грунтовки определяется, основном видом защищаемого материала, условиями эксплуатации, а также маркой наносимых покрывных эмалей, красок и возможностью применения горячей сушки. Сцепление (адгезия) грунтовочного слоя с поверхностью определяется качеством ее подготовки.

Грунтовку нельзя наносить толстым слоем. Ее наносят равномерным слоем толщиной 12…20 мкм, а фосфатирующие грунтовки — толщиной 5…8 мкм. Нанесение грунтовок производят всеми описанными ранее способами.

Шпатлевание. На поверхностях деталей могут быть вмятины, небольшие углубления, раковины, несплошность в местах стыков, царапины и другие дефекты, которые заделывают нанесением на поверхность шпатлевки. Шпатлевка способствует значительному улучшению внешнего вида покрытий, но так как содержит большое количество наполнителей и пигментов, то ухудшает механические свойства, эластичность и вибростойкость покрытий.

Шпатлевание применяют в тех случаях, когда другими методами (подготовкой, грунтованием и др.) невозможно удалить дефекты поверхностей.

Выравнивание поверхностей производят несколькими тонкими слоями. Нанесение каждого последующего слоя выполняют только после полного высыхания предыдущего. Общая толщина быстросохнущих шпатлевок не должна быть более 0,5…0,6 мм. Эпоксидные шпатлевки, не содержащие растворителей, допускается наносить толщиной до 3 мм. При нанесении шпатлевки толстыми слоями высыхание ее протекает неравномерно, что приводит к растрескиванию шпатлевки и отслаиванию окрасочного слоя.

Шпатлевку наносят на предварительно загрунтованную и хорошо просушенную поверхность. Для улучшения сцепления с грунтовкой проводят обработку загрунтованной поверхности шлифовальной шкуркой с последующим удалением продуктов зачистки. Сначала проводят шпатлевание наиболее значительных углублений и неровностей, затем шпатлевку сушат и обрабатывают шкуркой, после чего производят шпатлевание всей поверхности.

Шпатлевку наносят на поверхность методом пневматического распыления механическим или ручным шпателем. Зашпатлеванную поверхность после высыхания шпатлевки тщательно шлифуют.

Шлифование. Для удаления с зашпатлеванной поверхности шероховатостей неровностей, а также соринок, частиц пыли и других дефектов производят шлифование. Для шлифования применяют различные абразивные материалы в порошкообразном виде или в виде абразивных шкурок и лент на бумажной и тканевой основе. Шлифовать можно только полностью высохшие слои покрытия. Используют шлифование «сухое» и «мокрое» .

Нанесение внешних слоев покрытий. После нанесения грунтовки и шпатлевки (если она необходима) наносят внешние слои покрытия. Число слоев и выбор лакокрасочного материала определяются требованиями к внешнему виду условиями, в которых изделие будет эксплуатироваться.

Первый слой эмали по шпатлевке является «выявительным», его наносят более тонко, чем последующие. Выявительный слой служит для обнаружения дефектов на зашпатлеванной поверхности. Выявленные дефекты устраняют быстросохнущими шпатлевками. Высушенные зашпатлеванные участки обрабатывают шкуркой и удаляют продукты зачистки. После устранения дефектов наносят несколько тонких слоев эмали. Нанесение эмалей производят распылителем.

Для получения покрытий хорошего качества с красивым внешним видом в участке (отделении) должно быть чисто, просторно, много света; температура помещения должна поддерживаться в пределах 15…25°С при влажности не выше 75… 80% Вытяжная вентиляция должна обеспечивать отсос паров растворителей, препятствовать оседанию красочной пыли, которая сильно загрязняет поверхность и ухудшает внешний вид покрытия.

Каждый последующий слой эмали наносят на хорошо просушенный предыдущий слой и после устранения дефектов.

Последний слой покрытия полируют полировочной пастой для придания более красивого внешнего вида.

Полирование. Для придания всей окрашенной поверхности равномерного зеркального блеска производят полирование. Для этого используют специальные полировочные пасты (№ 291 и др.). Полирование проводят небольшими участками. Эту операцию можно осуществлять вручную (фланелевым тампоном) или с помощью механических приспособлений.

Сушка. После нанесения каждого слоя лакокрасочных материалов проводится сушка. Она может быть естественной и искусственной. Процессы естественной сушки ускоряют интенсивная солнечная радиация и достаточная скорость ветра. Чаще всего естественная сушка применяется для быстросохнущих лакокрасочных материалов. Основные способы искусственной сушки конвекционная, терморадиационная, комбинированная.

Конвекционная сушка. Она выполняется в сушильных камерах потоком горячего воздуха. Тепло идет от верхнего слоя лакокрасочного покрытия к металлу изделия, образуя верхнюю корку, которая препятствует удалению летучих компонентов, и тем самым замедляется процесс сушки. Температура сушки в зависимости от вида лакокрасочного покрытия колеблется в пределах 70… 140 °C. Продолжительность сушки от 0,3…8 ч.

Терморадиационная сушка. Окрашенная деталь облучается инфракрасными лучами.

Комбинированная сушка (терморадиационно-конвекционная). Суть его состоит в том, что кроме облучения изделий инфракрасными лучами производится дополнительный нагрев горячим воздухом.

Контроль качества окраски изделий. Контроль осуществляют внешним осмотром, измерениями толщины нанесенного слоя пленки и адгезионных свойств подготовленной поверхности.

Толщина лакокрасочной пленки без нарушения её целостности определяется магнитным толщиномером ИТП-1, имеющим диапазон измерений 10…500мкм. Действие прибора основано на измерении силы притяжения магнита к ферромагнитной подложке в зависимости от толщины немагнитной пленки.

4. Производственная санитария и техника безопасности.

Организация процесса окраски должна обеспечивать рациональное распределение рабочих с учетом квалификации рабочих и оборудования на рабочих местах. Оборудование на участке располагают так, чтобы обеспечивались минимальные перемещения изделия с одного рабочего места на другое.

При с использовании подъемных механизмов вокруг рабочего места должно оставаться свободное, ничем не загроможденное пространство шириной не менее 1 м Внутренние размеры камер с нижним отсосом воздуха определяются габаритными размерами изделия в плане и проходом вокруг него шириной не менее 1,2 м.

Инструменты (краскораспылители, кисти, шпатели и др.) хранят в шкафах, также оборудованных вытяжной вентиляцией.

Рядом с малярным отделением обычно располагают краскозаготовительное помещение, в котором готовят лакокрасочные материалы для нанесения, доводят их до рабочей консистенции и хранят их в объеме, необходимом для проведения лакокрасочных работ в течение суток. Краскозаготовительное отделение должно находиться в изолированном помещении у наружной стены с оконными проемами. Кроме основных выходов, должен быть самостоятельный эвакуационный выход.

Для обеспечения в окрасочных отделениях нормальных санитарно-гигиенических условий и пожарной безопасности необходимо соблюдать технологический режим, правила и нормы пожарной безопасности и промышленной санитарии.

Помещения окрасочных участков должны быть светлыми, чистыми, беспыльными. Конструктивные элементы и ограждения окрасочных помещений (стены, потолки, полы и др.) должны быть выполнены огнестойкими. Внутренние поверхности стен должны быть выложены метлахской плиткой на высоту 2,4 м, а полы должны быть сделаны из прочных, несгораемых и нескользких материалов, позволяющих легко очищать их от загрязнений. Температура помещения должна быть не ниже 15… 16 °C, а относительная влажность воздуха не более 60%. Отопление в малярном отделении должно быть воздушное или водяное низкого давления. Температура поверхности отопительных приборов при водяном отоплении не должна превышать 90 °C.

В малярном отделении допускается естественное и искусственное освещение. При общем освещении обычными электрическими лампами освещенность участка окраски должна быть не менее 75 лк. В помещениях, где ведут окрасочные работы, нельзя пользоваться приборами с неисправной или не приспособленной для данных условий электроарматурой, открытыми источниками огня, а также выполнять сварочные работы.

Смешивание лакокрасочных материалов производят только в краскоприготовительном отделении, а хранят их в специальных помещениях в плотно закрытой таре. Алюминиевую пудру необходимо держать в сухом помещении, так как при повышенной влажности она может самовоспламениться. В приготовленных для окраски помещениях, окрасочных отделениях и складах лакокрасочных материалов должны находиться в обязательном порядке средства пожаротушения (пенные огнетушители, ящики с песком, асбестовые одеяла, щит с инвентарем и др.).

Показать весь текст
Заполнить форму текущей работой