Помощь в написании студенческих работ
Антистрессовый сервис

Введение в акустику

РефератПомощь в написанииУзнать стоимостьмоей работы

Звуковыми колебаниями называют колебательные движения частиц среды под воздействием возмущения. Пространство, в котором происходит распространение этих волн, называют звуковым полем. Если источник возмущения известен, то пространство, в котором могут быть обнаружены звуковые колебания, создаваемые этим источником, называют звуковым полем данного источника звука. Звуковые колебания — частный… Читать ещё >

Введение в акустику (реферат, курсовая, диплом, контрольная)

Физические характеристики звуковых сигналов

Звук представляет собой колебания, которые окружают нас всюду; вибрирующий воздух доносит звуки до наших ушей.

Звук распространен в виде переменного возмущения упругой среды, то есть в виде звуковых волн. В волнах никакого переноса вещества не происходит, а происходит перенос энергии — благодаря изменениям, происходящим в упругой среде. Распространение волн в любой среде рождает одинаковый колебательный процесс. Наиболее яркой иллюстрацией волнового движения служит распространение волнового движения по глади воды.

Волновое движение на воде.

Рис. 1.1— Волновое движение на воде

Звуковыми колебаниями называют колебательные движения частиц среды под воздействием возмущения. Пространство, в котором происходит распространение этих волн, называют звуковым полем. Если источник возмущения известен, то пространство, в котором могут быть обнаружены звуковые колебания, создаваемые этим источником, называют звуковым полем данного источника звука. Звуковые колебания — частный случай механических колебаний. Волновое движение является общим передающим движением во всех средах. При колебаниях воздуха его давление периодически повышается и понижается. Поверхность воды может подниматься и опускаться. Колебания земли могут происходить как вверх и вниз, так и вперед и назад вдоль ее поверхности для распространения света никакой физической среды не требуется; осциллирующие электрические и магнитные поля создают и поддерживают друг друга при движении волнового импульса. Характерная черта волнового движения состоит в том, что при благоприятных обстоятельствах оно может переносить энергию на громадные расстояния [1].

Звуковые колебания в жидкой и газообразной средах являются продольными колебаниями, то есть частицы среды колеблются вдоль линии распространения волны. В твердых телах могут распространяться также поперечные волны.

Звуковые волны распространяются с определенной скоростью, называемой скоростью звука. В разных средах и телах скорость звука различна. Для воздуха комнатной температуры 15−20 оС при давлении 760 мм рт. ст. скорость звука составляет 340−343 м/с. Таким образом, если от момента вспышки молнии до раската грома прошло 7 с, то гроза находится на расстоянии более 2 км. Если же промежуток между вспышкой молнии и раскатом грома практически отсутствует, то можно сказать, что гроза рядом.

В твердых телах, отличающихся высокой плотностью и упругостью, звуковые волны могут распространяться с огромными скоростями. Так, скорость распространения звуковых волн в стали составляет 5050, в железобетоне — 4100, в древесине — 1500 метров в секунду.

Таблица 1.1 — Скорость звука для некоторых газов и жидкостей.

Среда.

Температура, 0С.

Плотность р, кг /м3.

Скорость звука, с, м/с.

Водяной пар

0,58.

Воздух.

1,29.

Гелий.

1,20.

Вода пресная.

Вода соленая 3,5%-ная.

Звуковым давлением в газах и жидкостях называют разность между мгновенным значением давления ра.м в точке среды при прохождении через нее звуковой волны и статическим давлением в той же точке, то есть р=ра.м — ра.с. (1.1).

Звуковое давление — величина знакопеременная: в моменты сгущения (уплотнения) частиц среды она положительная, в моменты разрежения (расширения) среды — отрицательная. Эту величину оценивают по амплитуде или по эффективному значению. Для синусоидальных колебаний эффективное значение составляет ½½=0,701 амплитудного.

Звуковое давление представляет собой силу, действующую на единицу поверхности: р = F/S. В системе СИ его измеряют в ньютонах на квадратный метр (Н/м2). Эта единица называется Паскалем и обозначается Па. В абсолютной системе СGS единиц звуковое давление измеряют в динах на квадратный сантиметр: 1 Па= 1 Н/м2= 10 дин/cм2= 1 кг/(мЧс2). Ранее эту единицу называли баром. Но так как единица атмосферного давления, равная 106 дин/см2, также называлась баром, то при стандартизации названии «бар» осталось за единицей атмосферного давления. В системах связи, вещания и подобных системах имеют дело со звуковыми давлениями, не превышающими 100 Па, то есть в 1000 раз меньшими атмосферного давления.

Интенсивностью звука, или силой звука, называют количество энергии, проходящее в секунду через единицу площади, перпендикулярной к направлению распространения волны. Обозначают её I. Единицей интенсивности звука является ватт на квадратный метр (Вт/м2) в системе СИ.

Плотностью энергии е называют количество звуковой энергии, находящейся в единице объема. Единицей плотности является джоуль на кубический метр в системе СИ. Плотность энергии е связана с интенсивностью звука I (в режиме бегущей волны) соотношение е = I/с, где с — скорость звука.

В акустике за уровень параметра принимается величина, пропорциональная логарифму относительного значения данного параметра. Уровнем звукового давления Lр называется величина, рассчитываемая по формуле (1.2).

Lр = 20 lg (p/p0) = 10 lg (p/p0)2, (1.2).

где р — звуковое давление, р0 = 2Ч10-5 Па — уровень, условно принимаемый за нулевой. В этом случае уровень звукового давления измеряется в децибелах (дБ). При изменении звукового давления в два раза уровень его изменяется на 6 дБ, в четыре раза — на 12 дБ, в десять раз — на 20 дБ и т. д.

Измерение уровня звукового давления в децибелах необходимо потому, что звуки, с которыми мы имеем дело в реальном мире и которые способно воспринять человеческое ухо, на очень много порядков различаются по интенсивности, что делает линейные единицы неудобными в применении. Кроме того, логарифмическая мера хорошо согласуется с характерным для человеческого восприятия упомянутым выше законом Вебера — Фехнера, согласно которому слуховое ощущение пропорционально логарифму интенсивности вызывающего его раздражителя [1].

Показать весь текст
Заполнить форму текущей работой