Помощь в написании студенческих работ
Антистрессовый сервис

Закрученные электроны: развитие и перспективы

РефератПомощь в написанииУзнать стоимостьмоей работы

Разумеется, получение закрученных электронов было только первым шагом в этой новой области исследования. В дальнейшем развитие пошло сразу по нескольким направлениям. Во-первых, это совершенствование технологии, то есть демонстрация новых способов получения и управления закрученными электронами, во-вторых, это их использование для экспериментальной проверки новых физических эффектов из области… Читать ещё >

Закрученные электроны: развитие и перспективы (реферат, курсовая, диплом, контрольная)

Разумеется, получение закрученных электронов было только первым шагом в этой новой области исследования. В дальнейшем развитие пошло сразу по нескольким направлениям. Во-первых, это совершенствование технологии, то есть демонстрация новых способов получения и управления закрученными электронами, во-вторых, это их использование для экспериментальной проверки новых физических эффектов из области электродинамики и квантовой физики, и в-третьих, использование закрученных электронов как нового инструмента для сугубо прикладных задач. Перечислим только некоторые работы последних лет.

Фокусировка. Например, та же бельгийская группа в 2011 году продемонстрировала, что закрученные электроны отлично фокусируются. Их удалось сфокусировать в пятнышко размером чуть больше одного ангстрема, то есть до атомарных размеров! Это сразу открывает возможности для разнообразных практических применений, например для исследования намагниченности ферромагнитных пленок с атомарной точностью. Впрочем, здесь пока есть определенная трудность: надо понять, чем именно закрученность тут может помочь, как именно закрученные электроны позволят прощупать локальное магнитное поле, которое чувствует каждый атом.

«Монопольное» закручивание. Другое, совсем недавнее достижение той же группы (май 2013 года) — это реализация еще одного метода производства закрученных электронов, с помощью искусственных магнитных монополей. Настоящие магнитные монополи, конечно, пока в природе не обнаружены и неизвестно даже, разрешены ли они вообще законами физики. Но всегда можно сделать такое микроскопическое устройство, которое будет создавать магнитное поле, очень похожее на поле от магнитного монополя. Этот вариант, кстати, тоже предлагался в теоретической статье 2007 года.

Самый простой пример — это «магнитная иголка», длинный и тончайший ферромагнитный стержень, держащий сильное магнитное поле. Именно такую иглу и использовала бельгийская группа; схема эксперимента и электронная микрофотография иглы показаны на (рис. 7). Вблизи одного из его кончиков, на расстояниях много больше толщины, но много меньше длины иглы, магнитное поле будет очень напоминать монопольное. Если иглу выставить поперек оси движения электронов и пропустить сквозь этот кончик электрон, то он превратится в закрученное состояние, причем степень закрутки будет пропорциональна величине магнитного поля.

Элементарные частицы. У этого способа закручивания заряженных частиц есть важное преимущество: с его помощью можно закручивать не только электроны, но и любые другие заряженные частицы, причем любых энергий. Это было бы очень удобно, например, для получения ультрарелятивистских закрученных протонов или электронов, когда никакие дифракционные решетки уже не помогут — они слишком прозрачны для частиц высокой энергии. А если такие частицы удастся создать, то, значит, их можно будет сталкивать друг с другом, и тем самым откроется новый раздел в… экспериментальной физике элементарных частиц! Ведь если у нас появляется совершенно новая характеристика начальных частиц, которой мы можем управлять, то она позволит нам изучать те особенности строения и взаимодействия элементарных частиц, которые обычным способом увидеть трудно или невозможно.

Поведение в магнитном поле. У обычного, плосковолнового электрона есть магнитный момент, возникающий из-за его спина и приблизительно равный двум магнетонам Бора. Это приводит к ряду эффектов, связанных со взаимодействием электронов с магнитным полем. Оказывается, закрученность — которая эквивалентна наличию у электрона орбитального магнитного момента — тоже влияет на его магнитный момент, она может его либо почти полностью скомпенсировать, либо усилить. Это было теоретически изучено в статье 2007 года и в последующей статье 2011 года, а затем проверено экспериментально поларморовскому вращению (и невращению!) закрученных электронов в продольном магнитном поле.

Показать весь текст
Заполнить форму текущей работой