Помощь в написании студенческих работ
Антистрессовый сервис

Работа мозга как объемного процессора

РефератПомощь в написанииУзнать стоимостьмоей работы

Итак, тогда мы уже имеем огромное количество маленьких биологических транзисторов. Теперь еще известный факт, для капилляров мозга и центральной нервной системы свойственно наличие гематоэнцефалического барьера образованного эндоплазматическими отростками астроцитов. Причем сложное чешуеобразное покрытие капилляра эндоплазматическими отростками (биологическими транзисторами) окружает протекающую… Читать ещё >

Работа мозга как объемного процессора (реферат, курсовая, диплом, контрольная)

Сравнение мозга и ЦНС с компьютером (биокомпьютером) давно известно: есть в наличии все периферические устройства, определены принципы их взаимодействия с мозгом, исследованы типы и виды сигналов, само мозговое вещество разделено на «зоны ответственности», определены тактовая частота «самого процессора» и т. д. Но что известно о том, как производятся логические действия, каковы они и каков их механизм? Попробуем переложить представляемую гипотезу, на факты известные из анатомии и физиологии мозга.

Работа транзистора как управляющего элемента любого процессора основана на изменении тока проходящего через транзистор, при использовании малого управляющего напряжения, прилагаемого к одному из трех его выводов для управления током и напряжением на двух других выводах. Именно так усиливается полезный аналоговый сигнал или, проще говоря, формируется сильный сигнал в соответствии с первоначальной формой управляющего напряжения. Для цифровых устройств, которым является обычный компьютер для обеспечения всех видов логических операций, характерна работа транзисторов в режиме включено-выключено (0 или 1).

По результатам исследований британские нейробиологи утверждают, что Синапс — место контакта между двумя нейронами или между нейроном и обычной клеткой, не просто служит проводником для импульсов, но регулирует амплитуду и частоту передаваемого сигнала. Это «устройство» можно назвать маленьким биологическим транзистором [28]. Ранее это свойство нейрона описал русский ученый самоучка Ю. В. Лебедев [40].

Итак, тогда мы уже имеем огромное количество маленьких биологических транзисторов. Теперь еще известный факт, для капилляров мозга и центральной нервной системы свойственно наличие гематоэнцефалического барьера образованного эндоплазматическими отростками астроцитов. Причем сложное чешуеобразное покрытие капилляра эндоплазматическими отростками (биологическими транзисторами) окружает протекающую по капилляру кровь, содержащую множество электрически заряженных частиц. Причем каждый из астроцитов, как правило, имеет контакты с несколькими капиллярами. Представим, что каждая чешуйка имеет свой отличный от других электрический потенциал. Каждая из движущихся по капилляру частиц крови и имеющая свой электрический заряд будет взаимодействовать с зарядами чешуек. Но в отличие от обычного капилляра на каждую чешуйку можно через астроцит подавать необходимый электрический заряд. Зачем? Но тогда «внешнее» управление зарядами эндоплазматических отростков с различными электрическими потенциалами может регулировать скорость и направление кровотока и даже создавать любые перемещения электрически заряженных частиц крови внутри капилляра, например, вращательное или даже навстречу кровотоку. Или понуждать поток частиц передавать свой электрический заряд определенным эндоплазматическим отросткам капилляра. Зачем? Для передачи электрического заряда в другой капилляр или группу капилляров через систему астроцитов. И это есть часть работы «процессора». Т.к. в данном случае мы также имеем дело с малым биологическим транзистором, синаптический аналог (более мощный) был представлен выше. Сколько таких транзисторов в мозге? Попробуйте представить сами. Для подсказки необходимо количество чешуйчатых покрытий капилляров мозга разделить на три. А теперь эту цифру можно смело увеличить, прибавив к ней сзади несколько нулей. Потому что каждый из транзисторов (как минимум три чешуйки) через некоторое время может уже работать в другом составе с другими чешуйками или группами чешуек. Самонастраивающийся процессор?! Да о такой организации работы даже не могут мечтать современные компьютеры. Хотя это конечно еще и не квантовый процессор (в современном понимании этого термина), но уже и привычный цифровой. Это совсем другой принцип производства логических операций созданных самой природой и проверенных тысячелетиями безотказной работы. Такому процессору не нужны низкие температуры и у него нет проблемы когерентности. Может быть, сказанное более внимательно перечитать разработчикам микросхем? Впрочем, эта тема требует отдельного пояснения и изучения.

Кроме того, возможна регулировка давления кровотока на одну из частей внутренней поверхности капилляра, транскапиллярный обмен через различные его участки и величина кровотока через любой из капилляров. На этом принципе основано регулирование (усиление и ослабление) при возникновении необходимости кровоснабжения участков мозга. Для полноты картины мозга как процессора необходимы такие элементы, как конденсаторы, сопротивления, линии задержки и т. д. Но известно, что в нейронах со всеми этими функциями справляются немиелизированные и миелиновые участки аксонов, а также размеры и количество их содержащих Швановских клеток и нейрофибрильных перетяжек. В капиллярах этими функциями обладают: количество электрических зарядов кровотока, скорость и направление кровотока и даже незначительное изменение геометрических размеров капилляра. Кроме того, есть данные [13], что известные ионные каналы (натриевые, калиевые, кальциевые) используют не двоичное состояние уровней закрыто или открыто (двоичный код передачи данных), а несколько уровней, состояние которых было названо «вероятностным» [13].

Таким образом, можно представить общий электрический принцип работы «мозгового» процессора. Управляющие сигналы нейронов (малые управляющие сигналы транзисторов) оказывают значительное влияние на формирование кровотока по капиллярам мозга, а электрические заряды крови вещества мозга и ЦНС получают дополнительную функцию, а именно «рабочего тела» процессора. Задачи «рабочего тела» — основное электропитание, перенос и усиление полезного сигнала. Причем даже современных знаний электроники недостаточно чтобы просто оценить разрядность и производительность такого процессора. К тому же этот процессор использует несколько тактовых частот более известных как биоритмы мозга (дельта-, тета-, альфа-, бетаи гамма-ритм). Имеются, хотя и нерегулярно, и другие ритмы с большей частотой. Но, тем не менее, главной тактовой частотой является ритм пульсовой волны, которая определяет общую мобилизацию организма и необходимость участия в ней мозга. В сравнении с тактовыми частотами современных процессоров частота от 0,5 до 55 Гц мала, но видимо это не весь перечень тактовых частот, а их роль в «мозговом» процессоре нуждается в дальнейшем осмыслении. Сравните механизм, приведенный выше и результаты работы по разработке «квантового процессора» описанные, к примеру, здесь [29] - очень много общего.

Известны мнения о «вреде» или о необычных проявлениях (в основном психотропного характера) звуковых колебаний частот ниже 20 Гц (инфразвук) на человека. Инфразвуковые колебания в «чистом» виде не столь вредны для человека и мозг имеет достаточную защиту. А для получения информации об истинном вреде инфразвука и других звуковых и электромагнитных колебаний на организм необходимо учитывать положения, высказанные в настоящей гипотезе, а также совокупность дополнительных воздействий, например, замкнутое помещение, эффект толпы и т. д. Знание этого механизма, возможно, поможет защитить человека от современных видов психотропного оружия, в том числе объяснить механизм действия транскраниальной магнитной стимуляции (ТМС).

Структура организации сознания человека до сих пор вызывает споры в ученом мире. Одно из предположений мозг — нейронная сеть и определенные его участки отвечают за тот или иной процесс. Вполне вероятно. Но если мозг самонастраивающийся процессор, то неработающий участок могут заменить другие участки? Иногда так и происходит. Тогда и разделение мозгового вещества на определенные участки достаточно условно? Ведь об увеличении активности каждого из них мы судим по косвенным результатам (томограмма, энцефалограмма). Оба способа достаточно приблизительны, так как не позволяют зафиксировать отдельные электрические импульсы и возможно дают картину активности только «исполнительных механизмов» мозга. Для сравнения можно привести пример с обычным компьютером. Так пользователь не знакомый близко с архитектурой и назначением отдельных частей компьютера, смотря на внутреннее устройство компьютера, может подумать, что основным «интеллектуальным» устройством является внезапно заработавший привод CD диска (при выполнении компьютером команды записать что-либо на диск). Потребление участком мозга кислорода тоже косвенный показатель, так свидетельствует только об увеличении энергопотребления, что не всегда принцип происходящего мышления. Хотя это тема для отдельного разговора. Точнее всех могла бы быть энцефалограмма, но ничтожно малое количество электродов и их физическая удаленность от мозгового вещества позволяют только приблизительно оценивать происходящие процессы.

Теория эволюции интеллектуальных способностей живых существ связывает развитие сознания и способности мышления с объемом мозга, количеством и качеством компонентов нейронной сети. Это конечно важно и очень необходимо. Но гипотеза предлагает использовать еще один критерий, а именно доступность внешних аэроионов и «умение» компонентов нейронной сети ими пользоваться. Что означает определенное устройство капилляров, синапсов, немиелизированных и миелиновых участков аксонов, Швановских клеток, нейрофибрильных перетяжек и т. д. Как предположение можно рассмотреть следующее: резкое развитие интеллектуальных способностей в животном мире наблюдается преимущественно у позвоночных особей перешедших в ходе эволюции к водно-наземному или наземному образу жизни. Именно такой шаг позволил им обеспечить быстрое удаление положительных и дополнительное получение отрицательных ионов атмосферы. У морской, а тем более у пресной воды таких возможностей меньше. Поэтому и среди рыб наибольшими интеллектуальными способностями отличаются те, кто имеет возможность общаться с атмосферным воздухом, например, дельфины или киты. И если это так, тогда применение противогазов, масок и прочих дыхательных устройств с принудительной подачей деионизированного воздуха может снижать отдельные параметры мыслительного процесса. И соответственно люди подолгу службы вынужденные длительно дышать деионизированным воздухом находятся в определенной группе риска.

Как уже упоминалось выше, основная энергетика по организации кровообращения в капиллярах перекладывается на электрическую энергию, получаемую за счет внутренней энергетики клеток составляющих стенку сосуда. Для тканей мозга характерно огромное количество капилляров. И соответственно, клеточные энергозатраты мозга на кровообращение должны быть сопоставимы с общими энергозатратами мозга. До недавних пор считалось, что практически вся потребляемая мозгом энергия используется для передачи нервных импульсов, то есть, другими словами, на мыслительную деятельность. Но как выяснила группа исследователей из медицинской школы университета Миннесоты [30], что только две трети потребляемой мозгом энергии расходуется на распространение импульсов, а оставшаяся часть идёт на поддержание жизнедеятельности клеток самого мозга. Наверняка большая часть этой энергии необходима как раз для мозгового кровообращения и предлагаемого механизма мыслительного процесса.

Заглавие раздела сравнивает работу мозга с объемным процессором. Что же под этим подразумевается? Для локальных вычислительных сетей характерна конфигурация физического подключения узлов сети (из них базовые: шина, кольцо и звезда) называемая топологией. Все эти фигуры находятся в плоскости. А что представляют собой аналогичные соединения нейронов мозга? Да все перечисленное и во множестве комбинаций, да еще и имеющих многочисленные соединения в различных плоскостях. Далее. В электронике кроме обычных транзисторов иногда используются транзисторы, имеющие несколько однотипных выводов, например, эмиттеров, эти усложнения необходимы для использования в определенных схемах. А существующие процессоры в наших компьютерах используют, как правило, только обычные трехвыводные транзисторы, и которые работают с одним током или, иначе говоря, работают в одной плоскости. Но зато каждый эндоплазматический отросток, может передавать управляющий сигнал и регулировать одновременно заряд, скорость и направление движения нескольких заряженных частиц крови кровотока и при этом еще может изменять направление и скорость кровотока в самом капилляре (выше это свойство было обозначено термином «самонастраивающийся процессор»). Это и есть работа транзисторов процессора с несколькими независимыми токами и/или работа в нескольких плоскостях, т. е. работа в объеме. Выделение выражения «может передавать» означает, что по тем или иным причинам часть «мозгового процессора» может не работать, что наблюдается, например, после определенных заболеваний, травм, при резком повышении давления, после принятия наркотических препаратов или просто быть в резерве. К тому же, это резерв который может использоваться в крайних случаях, например, при решении сложных задач, в условиях необходимой мобилизации или при необходимости передачи части функций от одного участка мозга другому. Информацией к размышлению могут служить известные факты, когда решаемые мозгом задачи вызывают изменения кровотока в различных участках мозга. Например, при решении человеком виртуальной задачи по ориентированию магнитно-резонансный томограф фиксирует изменения кровотока через определенные участки гиппокампа. Или когда наоборот ток крови влияет на активность нейронов [31].

Вернемся к компьютеру. Каждый компьютер имеет несколько видов памяти.

Рассмотрим одну из них, которая называется оперативной и хранит данные только при включенном питании компьютера. Т. е. элементы электрической схемы или часть процессора за счет внешнего электропитания поддерживают каждый определенный уровень электрического сигнала, который в совокупности с другими уровнями составляет хранимую информацию. Возможно, что аналогично построено и хранение «оперативной» памяти и в мозге. С оперативной памятью, как и в компьютере, связана в основном текущая деятельность мозга, а также организация и контроль над работой систем организма (процедурная память). Постоянная (долговременная) память организма также как и оперативная, имеет в своей основе электрические принципы, но в отличие от оперативной (кратковременной) достаточно сложна.

Вероятно, что предложенный выше механизм организации памяти имеет и решающее значение в хранении семантической и эпизодической памяти. Не исключена также ведущая и организующая роль предложенного механизма, совместно с нейромедиаторами и гормонами (дофамин и норадреналин), при фильтрации и переводе полученных данных на длительное хранение. Но куда? Этот вопрос требует дополнительного исследования.

Факты частичной и полной амнезии известны и случаются именно при нарушениях кровообращения мозга. Так при резком повышении давления резко нарушается кровоток, изменяются диаметры сосудов, что сказывается на качестве налаженной схемы передачи сигналов и приводит к временному сбою. Такой же механизм возникает при стрессе. Простое волнение иногда не позволяет человеку сосредоточиться и вспомнить даже элементарные вещи.

От механических повреждений мозг защищен известными науке способами, в том числе и костями черепной коробки. Кроме того, кости черепа защищают мозг также и от внешних колебаний электромагнитных полей. Защитой является не только толщина кости, но пористое строение стенок костей окружающих мозг (лобной, затылочной и теменных). Так пористость костей позволяет рассеивать и более эффективно ослаблять внешнее электромагнитное излучение. Кроме того, не исключена роль пазух в возможном накоплении и перераспределении поступающего в организм отрицательного «электричества».

Показать весь текст
Заполнить форму текущей работой