Помощь в написании студенческих работ
Антистрессовый сервис

Кристаллические пьезоэлектрические природные и искусственные материалы

РефератПомощь в написанииУзнать стоимостьмоей работы

Братья Кюри в 1880 г. открыли, что при растяжении и сжатии в определенных направлениях некоторых кристаллов, на их поверхностях возникают электрические заряды. Это явление было названо прямым пьезоэлектрическим эффектом. Первые опыты показали, что возникающий при деформации кристалла заряд пропорционален силе сжатия или растяжения кристалла. Знак заряда зависит от вида деформации и меняется при… Читать ещё >

Кристаллические пьезоэлектрические природные и искусственные материалы (реферат, курсовая, диплом, контрольная)

Братья Кюри в 1880 г. открыли, что при растяжении и сжатии в определенных направлениях некоторых кристаллов, на их поверхностях возникают электрические заряды. Это явление было названо прямым пьезоэлектрическим эффектом. Первые опыты показали, что возникающий при деформации кристалла заряд пропорционален силе сжатия или растяжения кристалла. Знак заряда зависит от вида деформации и меняется при переходе от сжатия к растяжению. Пьезоэлектрический эффект был обнаружен у кристаллов турмалина, кварца, цинковой обманки, хлората натрия, винной кислоты, кремнекислого гальмея, тростникового сахара и сегнетовой соли. Как показало время пьезоэлектрический эффект присущ и многим другим кристаллам самых разнообразных классов. Общим признаком, объединяющим все известные до сих пор пьезокристаллы, является наличие у них одной или нескольких полярных осей (направлений) или отсутствие центра симметрии. Другими словами, при повороте кристалла на 180о вокруг любой оси, нормальной к полярной, его очертание не совпадет с очертанием до поворота.

В 1881 г. Г. Липман предсказал, что электрическое напряжение, приложенное к пьезоэлектрическому кристаллу должно вызывать в нем механические напряжения и упругие деформации, что экспериментально подтвердили П. и Ж. Кюри. Это явление называют обратным пьезоэлектрическим эффектом.

Практическое применение пьезоэлектрического эффекта началось с 1917 г. когда французский математик и физик Поль Ланжевен предложил использовать ультразвуковой эхолокатор для обнаружения подводных объектов. В качестве излучателя и приемника он использовал кварцевые пластинки, вклеенные между стальными пластинками для понижения резонансной частоты преобразователя. Вскоре после изобретения преобразователя Ланжевена появились первые разработки пьезоэлектрических микрофонов, телефонов, звукоснимателей, приборов звукозаписи, датчиков вибраций, сил, ускорений и т. д. Затем пьезокварцевые пластины и стержни стали использовать в качестве элементов, стабилизирующих частоту электронных генераторов. Это применение основано на открытии в 1922 г. У. Кэди сильной зависимости электрического импеданса пьезоэлемента от частоты вблизи его механического резонанса. В 1925 г. Г. Пирс впервые применил пьезопластину в акустическом интерферометре для измерения скорости звука в газах. Важным этапом применения пьезоэлектричества для практических целей было открытие в 1928 г. С. Я. Соколовым возможности применения ультразвуковых волн для обнаружения внутренних дефектов в твердых телах.

Пьезоэлектрическими свойствами обладают кристаллы 20 классов из 32 классов симметрии кристаллов, существующих в природе. Теория пьезоэлектричества сегодня достаточно хорошо изучена и описана в специальной литературе. Структура и параметры природных кристаллов детально описана в работах У. Кэди [1] и У. Мэзона [2]. Для изготовления пьезоэлектрических преобразователей до недавнего времени применялись только природные кристаллы, такие как кварц, сегнетова соль, дигидрофосфат аммония (АДП), сульфат лития (LH), тартрат калия (DKT) и дигидрофосфат калия (KDP). С недавнего времени стали применяться и искусственные, полученные еще в СССР пьезокристаллы: лантангаллиевый танталат (лангатат — ЛГТ) и лантангаллиевый силикат (лангасит — ЛГС).

Монокристаллические минеральные образования сегодня являются одним из видов стратегически важного минерального сырья. Во второй половине ХХ века кристаллы различных соединений окончательно утвердились в качестве одного из основных конструкционных материалов изделий высоких технологий. Практически нет ни одной из сфер деятельности человека от космоса до быта, где бы ни применялись изделия, содержащие кристаллические элементы. Минералы в виде монокристаллов в природе явление достаточно редкое. Среди них наиболее известны кристаллы горного хрусталя (кварц), слюд (мусковит, флогопит, биотит), сюда же можно отнести алмазы, кристаллы драгоценных камней (бериллы, корунды, шпинель, топаз, турмалин, сподумен, гранаты и пр.). Кристаллы с совершенной структурой вообще уникальны. Немаловажно и то, что природа исчерпаема, а запасы кристаллического сырья, по сравнению с другими полезными ископаемыми, ничтожны. Для массового производства компонентов электронной техники весьма важным является повторяемость свойств исходных кристаллических материалов, а все природные кристаллы сугубо индивидуальны. Можно утверждать, что двух абсолютно одинаковых природных кристаллов просто не существует. Но, с другой стороны, созданные за миллионы лет природой кристаллические вещества настолько разнообразны по своим свойствам за счет комбинаций примесей и дефектов структуры, что повторить их в эксперименте просто невозможно. Созданная природой физическая реальность в виде кристаллов таит в себе неимоверное материаловедческое богатство. Потребности современной техники в кристаллах огромны как по объемам, так и по номенклатуре кристаллов и удовлетворить их добычей природного сырья невозможно.

Естественно, что эти потребности привели к интенсивному развитию науки о росте кристаллов и к разработке промышленных технологий их выращивания. Синтез кристаллов различных соединений зародился в середине прошлого века в связи с изучением природного минералообразования. Теперь это самостоятельная промышленная отрасль, хорошо развитая во многих странах мира (США, Великобритания, Япония, Россия, Китай, Франция, Голландия, ФРГ, Ю. Корея, Тайвань, Чехия, Болгария, Румыния, Польша, Швейцария, Швеция, Финляндия и др.). Объем производства кристаллов, выращиваемых в мире, измеряется тысячами тонн, а кристаллических веществ, выпускаемых мировой промышленностью, огромна. По отношению к природным кристаллам все выращиваемые кристаллы можно разделить на две группы:

  • · полные аналоги природных кристаллов (кварц, алмаз, рубин, изумруд, турмалин, слюды и т. д.);
  • · структурные аналоги природных кристаллов, но имеющие иной химический состав (например, редкоземельно-алюминиевые и галлий-гадолиниевые гранаты).

Новые отечественные синтетические пьезокристаллы лангасит и лангатат по типу кристаллов относятся к той же группе, что и кварц. Кристаллы семейства лангасита (La3Ga5SiO14 — LGS и La3Ga5.5Ta0.5O14 — LGT) сегодня применяются для изготовления температурно-стабильных широкополосных монолитных фильтров, используемых в мобильных системах связи, датчиках давления и детонации, резонаторов в перестраиваемых генераторах, подложек термостабильных срезов для акустоэлектронных фильтров на поверхностных и объемных акустических волнах. Преимущества этих кристаллов по сравнению с кристаллами кварца заключаются в меньших геометрических размерах фильтров на одинаковую среднюю частоту, что отвечает требованиям современной электроники и экономит материал, а также в отсутствии фазовых переходов, что позволяет им оставаться пьезоактивными вплоть до их температуры плавления. Кристаллы лантангаллиевого танталата (лангатата), в свою очередь, характеризуются самыми большими значениями плотности, диэлектрической проницаемости и коэффициентов электромеханической связи среди кристаллов этого семейства. Они имеют ряд преимуществ по сравнению с традиционными материалами (пьезокерамикой и кварцем), применяемыми в датчиках физических величин:

  • · отсутствие у кристаллов ЛГТ фазовых переходов вплоть до температур плавления 1450 °C;
  • · отсутствие у кристаллов ЛГТ пироэлектрического эффекта;
  • · отсутствие у кристаллов ЛГТ гистерезиса физических свойств;
  • · высокий Кэмс у кристаллов ЛГТ, более чем в два раза превышающий Кэмс кварца; кристалл пьезоэлектрический свойство применение
  • · пьезомодуль d11 постоянный в диапазоне температур до 600 °C (изменение d11 до температуры 450 °C не более 5%);
  • · высокое удельное сопротивление (не менее 108 Ом· м при температуре 540 °C).

Основные физические свойства кристаллов лангатата в сравнении с кварцем для чувствительных элементов пьезодатчиков представлены в табл.1.

Таблица 1. Основные физические свойства кристаллов.

Свойства.

Ед. изм.

Символ NAVY.

Лангатат.

Кварц.

Относительная диэлектрическая постоянная.

K=еT33/е0.

80,3.

4,6.

Температура Кюри.

°C.

Tc.

;

Пьезомодули.

10−12 C/N или m/Vz.

— d11.

6,5.

2,3.

d14.

4,7.

0,9.

Пьезокоэффициенты по напряжению.

10−3 Vm/N или m2/C.

— g11.

g14.

27,7.

Модули Юнга.

1010 N/m2.

YE11.

7,8.

YE33.

10,4.

Частотные постоянные:

L = продольная мода.

T = поперечная мода.

Hz-m или m/s.

NL.

;

NT.

Упругая податливость.

10−12 m2/N.

SE11.

9,0.

12,8.

SE33.

5,2.

9,6.

Плотность.

g/cm3.

с.

6,13.

2,65.

Механическая добротность.

Qm.

Величина и характер пьезоэлектрического эффекта в сильной степени зависит от ориентации приложенной механической силы или электрического поля по отношению к кристаллографическим осям материала. Эти оси образуют координатную систему, которая установлена кристаллографами с целью упрощения изучения структуры кристаллов. На рис. 1 приведены типичные формы кристаллов и указаны их кристаллографические оси. Пьезоэлектрические элементы представляют собой срезы кристалла и обозначаются соответственно осями, ортогональными к поверхности среза.

Типы различных пьезоэлектрических кристаллов и их кристаллографические оси.

Рис. 1. Типы различных пьезоэлектрических кристаллов и их кристаллографические оси: а — кварц; б — сегнетова соль; в — сульфат лития; г — дигидрофосфат аммония

Если пластина вырезана так, что ее главные плоскости перпендикулярны кристаллографической оси X, то она называется «X-срез». Пластинки, вырезанные из нее, обозначают по угловым ориентациям по отношению к двум другим осям. Пластинка, вырезанная из X-среза, имеющая ребра, параллельные осям Y и Z, называется пластиной 0о X-среза, если же ребра составляют 45о по отношению к осям Y и Z, пластинка называется 45о X-среза. В зависимости от базиса кристалла и ориентации среза отдельные пластинки могут обладать различными деформациями: сдвигом и растяжением по толщине, сдвигом по поверхности и поперечным растяжением. Обычно каждая пластинка обладает комбинацией двух и более видов деформаций, хотя и редко одинаковых по величине. Основные, наиболее распространенные типы деформаций пластинок, которые возникают в результате действия приложенного электрического поля, изображены на рис. 2.

Основные виды деформаций пьезокристаллических пластин под действием электрического поля.

Рис. 2. Основные виды деформаций пьезокристаллических пластин под действием электрического поля: а — сдвиг по толщине; б — сдвиг по ширине; в — растяжение по толщине; г — поперечное растяжение; д — двойное поперечное растяжение

Растяжение по толщине является деформацией в плоскости, параллельной приложенному полю; сдвиги по толщине и поверхности, а также поперечное растяжение представляют собой деформацию в плоскости, перпендикулярной к приложенному полю. Все основные виды деформаций приводят в результате к изменению объема элементарной ячейки кристалла, но для большинства материалов эти изменения компенсируются сжатием. Однако в полях нескольких десятков нанометров. Максимальными деформациями обладают кристаллы сегнетовой соли, однако они имеют очень ограниченный температурный диапазон и в настоящее время практически не применяются.

Показать весь текст
Заполнить форму текущей работой