Введение
Регрессионный анализ занимается задачей установления математической формы корреляционной связи. Зависимая переменная у при этом рассматривается как случайная величина, а независимые переменные можно прямо или косвенно контролировать.
В отличие от функциональной связи в регрессионном анализе речь идет об установлении функции регрессии где символ M (/) обозначает математическое ожидание случайной величины у при заданных значениях независимых переменных.
Здесь важно заметить следующее.
В то время как независимые переменные контролируемы, управляемы, а у является случайной величиной, то по данным эксперимента, в котором приняли вполне конкретные значения, можно судить лишь об оценке параметра, связанного с распределением у, оценок же, как мы уже знаем, можно построить много.
Построение линейных моделей всегда было актуальным вопросом. Оценка точности построенной модели, а следовательно и качества этой модели является одной из важнейших задач регрессионного анализа.
Целью данной работы являются общие принципы построения линейных моделей, изучение и построение доверительных интервалов к коэффициентам регрессии.
Задачи данной работы являются:
1) Изучение принципа построения линейных моделей;
2) Расчет необходимых параметров полученной модели;
3) Построение доверительных интервалов для коэффициентов регрессии.
1. МНК — основной метод построения линейной модели
Предположим, что нам необходимо описать в виде некоторой функции взаимосвязь двух переменных X и Y (X — фактор, независимая переменная; Y — отклик, зависимая переменная): По результатам наблюдений мы можем оценить эту зависимость приближенно (в силу воздействия неучтенных факторов, случайных причин, ошибок измерения): где — случайная переменная, называемая возмущением. Предполагается, что среднее значение возмущения равно нулю: При этом для каждого значения мы имеем случайную переменную Y со средним значением (математическим ожиданием) Функция называется функцией регрессии случайной переменной Y на X, а график этой функции — линией регрессии. Уравнение регрессии позволяет определить, каким в среднем будет значение отклика Y при том или ином значении фактора X.
Форма регрессионной зависимости (вид функции) определяется по диаграмме рассеяния, которую получают, нанося экспериментальные точки на координатную плоскость (рисунок 1).
Рисунок 1 — Диаграмма рассеяния при линейной (а) и квадратичной (б) зависимости переменных X и Y.
По диаграмме рассеяния подбирают некоторую гладкую кривую таким образом, чтобы она располагалась как можно «ближе» к экспериментальным точкам. Часто в качестве такой кривой выбирают прямую линию (рис. 1, а) или многочлен (рис. 1, б) [1, с 105]