Аналитические модели высокотемпературных топливных элементов с полимерной протон-проводящей мембраной
Диссертация
Разработана усовершенствованная модель, учитывающая эффекты переноса кислорода и протонов в катодном каталитическом слое. Показано, что она хорошо описывает поведение ТЭ для всех плотностей тока. Модель предсказывает, что в области предельного тока вблизи входа катодного канала каталитический слой работает в протон-лимитирующем режиме, тогда как вблизи выхода из катодного канала каталитический… Читать ещё >
Список литературы
- W. Vielstich, A. Lamm, H. A. Gasteiger (Eds.), Handbook of Fuel Cells: Fundamentals, Technology, Applications, Vol. 1, John Wiley к Sons Ltd, 2003.
- J. Larminie, A. Dicks, Fuel Cells Systems Explained, 2nd Edition, John Wiley к Sons Ltd, England, 2003.
- P. Rama, R. Chen, R. Thring, Polymer electrolyte fuel cell transport mechanisms: a universal modelling framework from fundamental theory, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 220 (2006) 535−550.
- C.-P. Wang, H.-S. Chu, Transient analysis of multicomponent transport with carbon monoxide poisoning effect of a РЕМ fuel cell, Journal of Power Sources 159 (2006) 1025−1033.
- C.-P. Wang, H.-S. Chu, Y.-Y. Yan, K.-L. Hsueh, Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells, Journal of Power Sources 170 (2) (2007) 235−241.
- A. Weber, J. Newman, Modeling transport in polymer-electrolyte fuel cells, Chemical Reviews 104 (10) (2004) 4679−4726.
- D. Cheddie, N. Munroe, Review and comparison of approaches to proton exchange membrane fuel cell modeling, Journal of Power Sources 147 (2005) 72−84.
- M. Eikerling, A. A. Kornyshev, Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells, Journal of Electroanalytical Chemistry 453 (1−2) (1998) 89−106.
- A. Kulikovsky, Optimal shape of catalyst loading across the active layer of a fuel cell, Electrochemistry Communications 11 (10) (2009) 1951−1955.
- J. Newman, Optimization of potential and hydrogen utilization in an acid fuel cell, Electrochimica Acta 24 (2) (1979) 223−229.
- A. A. Kulikovsky, The voltage-current curve of a polymer electrolyte fuel cell: «exact» and fitting equations, Electrochemistry Communications 4 (2002) 845−852.
- T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model, Journal of The Electrochemical Society 138 (8) (1991) 23 342 342.
- C. Y. Wang, W. B. Gu, B. Y. Liaw, Micro-macroscopic coupled modeling of batteries and fuel cells. I. Model development, Journal of The Electrochemical Society 145 (10) (1998) 3407−3417.
- C.-Y. Wang, Fundamental models for fuel cell engineering, Chemical Reviews 104 (10) (2004) 4727−4766.
- D. M. Bernardi, M. W. Verbrugge, Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte, American Institute of Chemical Engineers Journal 37 (8) (1991) 1151−1163.
- D. M. Bernardi, M. W. Verbrugge, A mathematical model of the solid-polymer-electrolyte fuel cell, Journal of The Electrochemical Society 139 (9) (1992) 2477−2491.
- M. Ceraolo, C. Miulli, A. Pozio, Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of elector-chemical description, Journal of Power Sources 113 (2003) 131−144.
- Q. Li, R. He, J. Jensen, N. Bjerrum, PBI-based polymer membranes for high temperature fuel cells — preparation, characterization and fuel cell demonstration, Fuel Cells 4 (3) (2004) 147−159.
- J. S. Wainright, J.-T. Wang, D. Weng, R. F. Savinell, M. Litt, Acid-doped polybenzimidazoles: A new polymer electrolyte, Journal of The Electrochemical Society 142 (7) (1995) L121-L123.
- R. F. Savinell, M. H. Litt, Proton conducting polymers, Patent W09613872 (1996).
- L. Xiao, H. Zhang, E. Scanlon, L. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, B. Benicewicz, High-temperature polybenzimidazole fuel cell membranes via a sol-gel process, Chemistry of Materials 17 (21) (2005) 5328−5333.
- T. J. Schmidt, J. Baurmeister, Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode, Journal of Power Sources 176 (2) (2008) 428−434.
- J. Asensio, S. Borros, P. Gomez-Romero, Polymer electrolyte fuel cells based on phosphoric acid-impregnated poly (2,5-bezimidazole) membranes, Journal of The Electrochemical Society 151 (2) (2004) A304-A310.
- P. Krishnan, J.-S. Park, C.-S. Kim, Performance of a poly (2,5-benzimidazole) membrane based high temperature pem fuel cell in the presence of carbon monoxide, Journal of Power Sources 159 (2) (2006) 817−823.
- C. Wannek, B. Kohnen, H.-F. Oetjen, H. Lippert, J. Mergel, Durability of ABPBI-based MEAs for high temperature PEMFCs at different operating conditions, Fuel Cells 8 (2) (2008) 87−95.
- M. Litt, R. Ameri, Y. Wang, R. Savinell, J. Wainright, Polybenzimidazoles/phosphoric acid solid polymer electrolytes: mechanical and electrical properties, in: Material Research Society Symposium Proceedings, Vol. 548, 1999, pp. 313−323.
- I. Ponomarev, Y. Rybkin, Y. Volkova, D. Razorenov, Method for producing polybenzimidazoles based on 4,4'-diphenylphthalide-dicarboxylic acid, Patent WO/2008/103 066 (2008).
- К. Scott, S. Pilditch, М. Mamlouk, Modelling and experimental validation of a high temperature polymer electrolyte fuel cell, Journal of Applied Electrochemistry 37 (11) (2007) 1245−1259.
- A. Weber, J. Newman, Transport in polymer-electrolyte membranes I. Physical model, Journal of the Electrochemical Society 150 (7) (2003) A1008-A1015.
- A. Weber, J. Newman, Transport in polymer-electrolyte membranes II. Mathematical model, Journal of the Electrochemical Society 151 (2) (2004) A311-A325.
- A. Weber, J. Newman, Transport in polymer-electrolyte membranes III. Model validation in a simple fuel-cell model, Journal of the Electrochemical Society 151 (2) (2004) A326-A339.
- T. F. Fuller, J. Newman, Water and thermal management in solid-polymer-elecrolyte fuel cells, Journal of The Electrochemical Society 140 (5) (1993) 1218−25.
- Т. V. Nguyen, R. E. White, A water and heat management model for proton-exchange-membrane fuel cells, Journal of The Electrochemical Society 140 (8) (1993) 2178−2186.
- T.-J. Wang, R. Savinell, J. Wainright, M. Litt, H. Yu, A H2/02 fuel cell using acid doped polybezimidazole as polymer electrolyte, Electrochimica Acta 41 (2) (1996) 193−197.
- J. Wu, X. Z. Yuan, H. Wang, M. Blanco, J. J. Martin, J. Zhang, Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques, International Journal of Hydrogen Energy 33 (2008) 1735−1746.
- J. Wu, X. Z. Yuan, H. Wang, M. Blanco, J. J. Martin, J. Zhang, Diagnostic tools in PEM fuel cell research: Part II Physical/chemical methods, International Journal of Hydrogen Energy 33 (2008) 1747−1757.
- D. Cheddie, N. Munroe, Mathematical model of a PEMFC using a PBI membrane, Energy Conversion and Management 47 (11−12) (2006) 14 901 504.
- F. Zenith, F. Seland, O. Kongstein, B. Borresen, R. Tunold, S. Skogestad, Control-oriented modelling and experimental study of the transient response of a high-temperature polymer fuel cell, Journal of Power Sources 162 (1) (2006) 215−227.
- D. Cheddie, N. Munroe, Parametric model of an intermediate temperature PEMFC, Journal of Power Sources 156 (2006) 414−423.
- D. F. Cheddie, N. D. Munroe, Two dimensional phenomena in intermediate temperature PEMFCs, International Journal of Transport Phenomena 322 006) 832−841.
- D. F. Cheddie, N. D. Munroe, Three dimensional modeling of high temperature PEM fuel cells, Journal of Power Sources 160 (2006) 215— 223.
- D. F. Cheddie, N. D. Munroe, A two-phase model of an intermediate temperature PEM fuel cell, International Journal of Hydrogen Energy 322 007) 832−841.
- D. Cheddie, N. Munroe, Analytical correlations for intermediate temperature PEM fuel cells, Journal of Power Sources 160 (2006) 299 304.
- J. Peng, S.J. Lee, Numerical simulation of proton exchange membrane fuel cells at high operating temperature, Journal of Power Sources 162 (2006) 1182−1191.
- J. Peng, J. Shin, T. Song, Transient response of high temperature РЕМ fuel cell, Journal of Power Sources 179 (2008) 220−231.
- Д. С. Ньюман, Электрохимические системы, Мир, 1977.
- Б. Дамаскин, О. Петрий, Г. Цирлина, Электрохимия, М.: Химия, КолосС, 2006.
- P. Berg, К. Promislow, J. St-Pierre, J. Stumper, В. Wetton, Water management in РЕМ fuel cells, Journal of The Electrochemical Society 151 (3) (2004) A341-A353.
- B. L. Garcia, V. A. Sethuraman, J. W. Weidner, R. E. White, R. Dougal, Mathematical model of a direct methanol fuel cell, International Journal of Fuel Cell Science and Technology 1 (1) (2004) 43−48.
- P. Iora, P. Aguiar, C. S. Adjiman, N. P. Brandon, Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties. Steady-state and dynamic analysis, Chemical Engineering Science 60 (11) (2005) 2963−2795.
- A. A. Kulikovsky, Semi-analytical 1D+1D model of a polymer electrolyte fuel cell, Electrochemistry communications 6 (10) (2004) 969−977.
- A. A. Kulikovsky, 1D+1D model of a DMFC: Localized solutions and mixedpotential, Electrochemistry communications 6 (12) (2004) 12 591 265.
- A. Kulikovsky, The regimes of catalyst layer operation in a fuel cell, Electrochimica Acta 55 (2010) 6391−6401.
- Т. E. Springer, S. Gottesfeld, Pseudohomogeneous catalyst layer model for polymer electrolyte fuel cell, in: Proceedings of the Symposium on Modeling of Batteries and Fuel Cells, Vol. 91−10, The Electrochemical Society, 1991, pp. 197−208.
- M. L. Perry, J. Newman, E. J. Cairns, Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel-cell cathodes, Journal of The Electrochemical Society 145 (1) (1998) 5−15.
- A. A. Kulikovsky, Performance of catalyst layers of polymer electrolyte fuel cells: Exact solutions, Electrochemistry communications 4 (4) (2002) 318−323.
- E. Ubong, Z. Shi, X. Wang, Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell, Journal of The Electrochemical Society 156 (10) (2009) B1276-B1282.
- C. Siegel, G. Bandlamudi, A. Heinzel, Systematic characterization of a PBI/H3P04 sol-gel membrane-modeling and simulation, Journal of Power Sources 196 (5) (2011) 2735−2749.
- J. Baschuk, X. Li, Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding, Journal of Power Sources 86 (2000) 181−196.
- N. Siegel, M. Ellis, D. Nelson, M. von Spakovsky, Single domain PEMFC model based on agglomerate catalyst geometry, Journal of Power Sources 115 (2003) 81−89.
- T. Sousa, M. Mamlouk, K. Scott, An isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes, Chemical Engineering Science 65 (8) (2010) 2513−2530.
- O. Shamardina, A. Chertovich, A. Kulikovsky, A. Khokhlov, A simple model of a high temperature PEM fuel cell, International Journal of Hydrogen Energy 35 (18) (2010) 9954−9962.
- O. Shamardina, A. Chertovich, A. Kulikovsky, A. Khokhlov, A model for high-temperature PEM fuel cell: The role of transport in the cathode catalyst layer, Fuel Cells 12 (4) (2012) 577−582.
- S. Shimpalee, W.-K. Lee, J. V. Zee, H. Naseri-Neshat, Predicting the transient response of a serpentine flow-field PEMFC. I. Excess to normal fuel and air, Journal of Power Sources 156 (2006) 355−368.
- N. Wagner, W. Schnurnberger, B. Miiller, M. Lang, Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells, Electrochimica Acta 43 (24) (1998) 3785−3793.
- M. S. Kondratenko, M. 0. Gallyamov, A. R. Khokhlov, Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy, International Journal of Hydrogen Energy 37 (2012) 2596−2602.
- T. E. Springer, T. A. Zawodzinski, M. S. Wilson, S. Golfesfeld, Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy, Journal of The Electrochemical Society 143 (2) (1996) 587 599.
- M. Eikerling, A. Kornyshev, Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells, Journal of Electroanalytical Chemistry 475 (1999) 107−123.
- R. Makharia, M. F. Mathias, D. R. Baker, Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy, Journal of The Electrochemical Society 152 (5) (2005) A970-A977.
- M. Boaventura, J. Sousa, A. Mendes, A dynamic model for high temperature polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy 36 (2011) 9842−9854.
- A. A. Kulikovsky, The effect of stoichiometric ratio A on the performance of a polymer electrolyte fuel cell, Electrochimica Acta 49 (4) (2004) 617−625.
- C. Berger (Ed.), Handbook of Fuel Cell Technology, Prentice-Hall, Englewood Cliffs, NJ, 1968.
- R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd Edition, John Wiley & Sons Inc, 2002.
- R. He, Q. Li, A. Bach, J. O. Jensen, N. J. Bjerrum, Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells, Journal of Membrane Science 277 (2006) 38−45.
- X. Cheng, J. Zhang, Y. Tang, C. Song, J. Shen, D. Song, J. Zhang, Hydrogen crossover in high-temperature PEM fuel cells, Journal of Power Sources 167 (2007) 25−31.
- Z. Liu, J. Wainright, R. Savinell, High-temperature polymer electrolytes for PEM fuel cells: Study of the oxygen reduction reaction (ORR) at a Pt-polymer electrolyte interface, Chemical Engineering Science 59 (22−23) (2004) 4833−4838.
- R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, John Wiley k Sons Inc, 1960.
- R. Reid, J. Prausnitz, B. Poling, The properties of gases and liquids, 4th Edition, McGraw-Hill, New York, 1987.
- R. H. Perry, D. W. Green, J. O. Maloney (Eds.), Perry’s chemical engineers' handbook, 7th Edition, McGraw-Hill, New York, 1997.
- M. Ye, X. Wang, Y. Xu, Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization, International Journal of Hydrogen Energy 34 (2) (2009) 981−989.
- T. J. Schmidt, Durability and degradation in high-temperature polymer electrolyte fuel cells, ECS Transactions 1 (8) (2006) 19−31.
- Z. Liu, J. Wainright, M. Litt, R. Savinell, Study of the oxygen reduction reaction (ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at elevated temperature and low relative humidity, Electrochimica Acta 51 (19) (2006) 3914−3923.
- R. He, Q. Li, G. Xiao, N. J. Bjerrum, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, Journal of Membrane Science 226 (1−2) (2003) 169−184.
- H.-J. Kim, S. Y. Cho, S. J. An, Y. C. Eun, J.-Y. Kim, H.-K. Yoon, H.-J. Kweon, K. H. Yew, Synthesis of poly (2,5-benzimidazole) for use as a fuel-cell membrane, Macromolecular Rapid Communications 25 (8) (2004) 894−897.
- С. H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, John Wiley & Sons, 1998.
- H. Калиткин, Численные методы, M.: Наука, 1978.
- А. Самарский, Введение в теорию разностных схем, М.: Наука, 1971.
- I. A. Schneider, S. A. Freunberger, D. Kramer, A. Wokaun, G. G. Scherer, Oscillations in gas channels. Part I. The forgotten player in impedance spectroscopy in PEFCs, Journal of The Electrochemical Society 154 (4) (2007) B383-B388.
- I. A. Schneider, D. Kramer, A. Wokaun, G. G. Scherer, Oscillations in gas channels. Part II. Unraveling the characteristics of the low frequency loop in air-fed PEFC impedance spectra, Journal of The Electrochemical Society 154 (8) (2007) B770-B782.
- A. A. Kulikovsky, A model for local impedance of the cathode side of РЕМ fuel cell with segmented electrodes, Journal of The Electrochemical Society 159 (7) (2012) F294-F300.