Масс-спектрометрия — инструментальный метод в аналитической химии, используемый для анализа вещества путем определения массы (чаще, отношения массы к заряду m/z) и относительных количеств ионов, получаемых при ионизации и/или фрагментации молекул исследуемого вещества. Масс-спектрометрия используется для определения элементного состава и химической структуры молекул и смесей [1].
При масс-спектрометрическом анализе осуществляется ионизация вещества с целью получения заряженных молекул или их фрагментов и последующее определение их масс по характеру движения полученных ионов в электрическом и/или магнитном полях [2,3].
Характерный эксперимент в масс-спектрометрии включает [4,5]: 1. ввод анализируемого образца в прибор;
2. ионизацию компонентов образца одним из доступных методов для получения заряженных молекул;
3. движение ионов в электрических и магнитных полях анализатора масс;
4. взаимодействие ионов с системой детектирования;
5. анализ полученных сигналов.
Рассмотрим детально каждый шаг.
Способ загрузки анализируемой смеси в прибор определяется выбранным для нее методом ионизации. Измерение масс в масс-спектрометрии основано на определении характера движения ионов в электрических и магнитных полях, поэтому для масс-спектрометрического анализа исследуемое вещество должно быть переведено в газообразную фазу и ионизировано [4]. В настоящее время при исследованиях биологических молекул наиболее распространены следующие методы «мягкой» ионизации: ионизация с помощью электроспрея (elektrospray ionization ESI) [6] и матрично-активированная лазерная десорбция/ионизация: (МЛДИ) (matrix-assisted laser desorption/ionization. MALDI) [7,8,9]. Первый из методов предназначен для ионизации веществ, находящихся в жидкой форме, поэтому его удобно использовать совместно с жидкостными методами разделения компонентов вещества, например, совместно с жидкостной хроматографией. Второй основан на возгонке и ионизации образца из сухой кристаллической матрицы лазерными Импульсами [1,4,9,10,11]. Оба метода не разрушают межатомные связи белковых макромолекул, что принципиально для возможности использования их при ионизации и измерении масс белков или пептидов [10,11,12]. Появление указанных методов ионизации привело к существенному распространению масс-спектрометрических методов в биомедицинских науках [1], что было отмечено присуждением: Нобелевской премии по химии за 2002 год Дж. Фенну и К. Танака. [4, 13].
При определении структуры молекул (например аминокислотной последовательности) часто используется измерение не только массы молекул, но и измерение масс фрагментов молекул, полученных в результате фрагментации [5,12,14]. Фрагментация молекул может происходить как на этапе ионизации, так и после нее. Для того, чтобы осуществить фрагментацию белков и пептидов были разработаны различные методы. Основные из них: диссоциация, вызнанная столкновением ионов с нейтральными частицами (collision-induced dissociation. CID) — фрагментация, вызванная захватом низкоэнергетических электронов (electron capture dissociation. ECD) — фотодиссоциация инфракрасным или ультрафиолетовым лазером. [5,12,14,16,17,18]
После ионизации ионы по системе транспорта перемещаются в масс-анализатор, где в том или ином виде происходит определение их масс. Если говорить более точно, масс-анализатор позволяет измерять отношение m/z массы m иона к его заряду z, при этом масса молекул в данном случае может быть определена при интерпретации масс-спектра целиком, поэтому термин «масса» часто употребляется синонимично с m/z [2,19].
Разделение ионов по величине m/z может быть основано на различных принципах, однако в нашей работе мы будем рассматривать только масс-анализаторы с преобразованием Фурье, в которых не происходит пространственного или временного разделения ионов с разным m/z, а сигнал для ионов разного m/z записывается одновременно.
Исторически первым масс-анализатором, в котором было применено одновременное детектирование сигнала от ионов разных m/z с Фурье преобразованием сигнала, стал анализатор ионного циклотронного резонанса (ИЦР-ПФ, FT-ICR). В основу конструкции масс-анализатора ионно-циклотронного резонанса с Фурье преобразованием сигнала положена ловушка Пенинга. Ловушка Пенинга — это устройство для удержания заряженных частиц с помощью однородного магнитного и постоянного пространственно неоднородного электрического поля [15,20].
Масс-спектр ометрия ИЦР-ПФ возникла и стала развиваться после пионерских работ американских исследователей А. Маршалла и М. Комисарова [21,22,23]. Масс-анализатор представляет собой ловушку, в которой ионы удерживаются электрическим и магнитным полями. Цикл измерения масс-спектра с помощью масс-анализатора ИЦР-ПФ включает в себя процесс синхронного увеличения радиуса орбиты циклотронного движения ионов после их инжекции в ловушку масс-анализатора за счет возбуждения циклотронного движения радиочастотным полем на частоте циклотронного резонанса и процесс детектирования токов, наводимых движением ионов. К полученному в ходе детектирования сигналу применяется преобразование Фурье, что позволяет получить частотный спектр, по которому после калибровки по ионам известной массы можно определить m/z.
Значение исследований в области разработки методов удержания заряженных частиц в ионных ловушках Пауля и Пеннинга отмечено вручением Нобелевской премии в 1989 г В. Паулю и работавшему параллельно с ним X. Г. Дельмету [15,24].
Однако, обладая рекордным разрешением и точностью измерения масс, метод ИЦР-ФП не лишен некоторых недостатков, среди которых самым главным является необходимость использования для создания магнитного поля криомагнитов с относительно высокими (3 Тесла и выше) магнитными полями, что приводит к высоким эксплуатационным расходам при обслуживании магнитов. Поэтому большой интерес также представляет другой тип Фурье масс-спектрометров — орбитальная ионная ловушка (огЬкгар, орбитрэп), изобретенная относительно недавно [25,26,27,28]. Орбитальная ионная ловушка приближается по своим характеристикам к ИЦР-ФП приборам, использующим ячейки без динамической гармонизации[29]. Приборы использующие ионные ловушки типа «орбитрэп», получили широкое распространение благодаря работам Макарова который реализовал орбитальный подход к удержанию ионов, предложенный ранее Кингдоном [30].
Орбитрэп состоит из внешнего бочкообразного электрода и коаксиального с ним внутреннего, имеющего форму веретена. В орбитрэпе используется только статическое электрическое полек центральному электроду приложен постоянный отрицательный потенциал, и между внешним и внутренним электродами образуется симметричное статическое электрическое поле. Ионы вводятся в орбитрэп перпендикулярно центральному электроду и начинают совершать вокруг него вращение по сложной траектории. Движение в плоскости полярных координат {р, Ф) и вдоль оси прибора ъ можно считать независимыми. Частота колебаний иона вдоль оси инструмента обратно пропорциональна квадратному корню от величины т/г и таким образом, не зависит от его положения и энергии, а значит, может быть использована для определения массы [25]. Детектирование в орбитальной ионной ловушке осуществляется следующим образом. В простейшем случае внешний электрод сегментируется на две части плоскостью, перпендикулярной оси г. Регистрируемый сигнал определяется переменной плотностью индуцированных на сегментированном электроде поверхностных зарядов, вызванных аксиальными колебаниями ионов.
Обозначения и термины.
Масс-спектр — это двумерное графическое представление интенсивности сигнала от различных масс [3]. Исходный детектируемый сигнал может иметь различный вид, но в конечном счете его преобразуют в масс-спектр. Во времяпролетных масс-спектрометрах исходным сигналом является гистограмма регистрации различных ионов, достигнувших детектора в различные моменты времени. В масс-спектрометрах с преобразованием Фурье (ИЦР-ПФ, орбитальная ионная ловушка) исходный сигнал — это зависимость величины заряда, наведенного на детектирующих пластинах, от времени. В этом случае для получения масс-спектра сначала необходимо выполнить преобразование Фурье, чтобы получить Фурье спектр сигнала, а затем перейти от шкалы частот к шкале масс [31], однако иногда вместо преобразования Фурье используют другие преобразования сигнала (метод фильтрации-диагонализации ФДМ[32,33], линейная аппроксимация с разложением Холецкого [34]). Частотный спектр является дискретным и часто возникает проблема определения массы по пикам, для чего разрабатываются специальные методы интерпретации спектров[35]. Высоту самого интенсивного пика обычно принимают за единицу и соответствующим образом нормируют весь спектр. В некоторых случаях интенсивность пиков на масс-спектре можно сопоставить с относительным содержанием ионов каждой массы [19].
В масс-спектрометрии массы принято выражать в атомных единицах массы (а.е.м.). За одну атомную единицу массы принимают 1 массы изотопа углерода С. Однако гораздо чаще вместо слов атомная единица массы", используют термин «дальтон» (Да, Da). Массы больших молекул измеряют в кило (1кДа=103 Да) и мегадальтонах (1МДа=106 Да). Итак, 1 а.е.м.= 1 Да=1.6 605 402 • 10 ~27 кг [3,15,19]. Заряд z (или q) в масс-спектрометрии обычно выражают в единицах элементарного заряда: q=e, где е= 1.60 217 733 • 10″ 19 Кл это заряд электрона. Для безразмерной величины m/z некоторые авторы используют внесистемную единицу «Томсон» (Thomson) lTh= 1 Da/e [1,3,19,36]. (В данной работе в случае, когда для m/z не указанна единица измерения — используется Томсон, например m/z=500 означает m/z=500 а.е.м./е).
В зависимости от метода ионизации ион может быть, например, положительным радикалом (М+ •), например протонированным ([М + Н]4) или депротонированным ионом ([М — Н]"). Поэтому массу электрона или протона необходимо учитывать при нахождении массы молекулы по значениям m/z из масс-спектра [2,3].
Точность измерения массы (mass accuracy) отражает отличие между измеренным и действительным или теоретическим значениями. Как правило, точность рассматривается в применении к ионам, имеющим единичный заряд [М + Н]+. Точность может быть определена как абсолютная погрешность измеренной массы: если теоретическая масса иона [М + Н]+ составляет т, и в эксперименте получена величина ш±Дт, то точность равна Am. Однако, говоря о точности, чаще подразумевают относительную погрешность, которая определяется как абсолютной погрешности Am к значению т, которое принимается т за истинное. Относительная погрешность является величиной безразмерной, и обычно выражается в миллионных долях (parts-permillion, ppm). Например, если теоретическая масса иона [М + Н]+ равна 1000 Да, а измеренная масса оказалась равной 1000.2 Да, то абсолютная погрешность равна 0.2 и точность измерения массы составила 0.21 000=200 10″ 6, или 200ррт. В сверхточных измерениях относительную погрешность выражают также в миллиардных долях (ppb). [37]
Разрешение выражает способность масс-спектрометра различать ионы с близкими массами [3]. Разные авторы определяют разрешение различными способами [19], но в масс-спектрометрии чаще пользуются определениями, предложенными А. Маршаллом [15]. Разрешение (resolution) — это ширина спектрального пика на половине его высоты: Асо 50% в частной области и Am 50о/о на шкале масс. Разрешающая способность (resolving power) — это отношение измеренной величины к ширине ее спектрального пика: со/ Асо 5о% для частот и m/Am 50% для масс [15]. Однако такое определение имеет недостаток, который проявляется в тех случаях, когда при малой ширине суммарного пика два пика являются неразрешенными [38]. Среди прочего, стоит отметить, что высокое разрешение бывает необходимо при определении зарядового состояния ионов вещества по его изотопному кластеру для ионов с большим количеством зарядов. Например, изотопные пики иона [М + Н]+ с зарядом +1 отстоят друг от друга на 1,0: для иона [М + 2Н]+2 с зарядом +2 эта величина составляет 0.5: для [М + ЗН]+3 с зарядом +3 1/3: и т. д. [1].
Эффекты, влияющие на аналитические характеристики масс-анализаторов.
Для анализа сложных химических смесей, таких как нефть, гуминовые вещества, физиологические жидкости человека в последнее время широко используется масс-спектрометрия[1,39,40,41]. Исследование таких смесей с помощью масс-спектрометрии предъявляет высокие требования к аналитическим характеристикам используемых масс-спектрометров: разрешению, динамическому диапазону и точности измерения масс[40].
Самое высокое разрешение и точность достигаются, в масс-анализаторах с преобразованием Фурье (ионный циклотронный резонанс, орбитрэп). Масс-анализаторы с преобразованием Фурье требуют для высокого разрешения как можно более продолжительных сигналов токов, наводимых движением ионов в детектирующей электрической цепи. Длительность таких сигналов составляет от десятков миллисекунд до нескольких минут.
В таких ловушках ионы совершают миллионы циклов колебаний в ограниченном пространстве ионной ловушки-детектора, а пробег внутри таких масс-анализаторов составляет десятки километров. При этом происходит многократное пересечение траекторий ионных облаков разного m/z, поэтому кулоновское взаимодействие существенно влияет на их поведение, и, как следствие на аналитические характеристики. Исследование поведения ионных ансамблей с помощью численного моделирования, учитывающего кулоновское взаимодействие, дает возможность наблюдать многие из эффектов, определяющих разрешение, динамический диапазон и точность измерения масс, которые необходимо учитывать при конструировании новых приборов.
Делались неоднократные попытки теоретического исследования указанных эффектов. Оно представляет немалые трудности, так как для единственного иона аналитическое' решение представляется затруднительным по причине нелинейности полей ловушек, а для условий реального эксперимента кроме того требуется решать задачу многих тел. Например Я. Наито и М. Иноуэ теоретически исследовали явление слияния спектральных пиков двух близких масс. В предложенной модели с целью упрощения рассмотрения не учитывались аксиальные колебания ионов и магнетронное движение. В предположении малости размеров-ионных облаков по сравнению с их циклотронными радиусами ионные облака рассматривались как частицы, масса и заряд которых представляют собой сумму масс и зарядов составляющих их ионов [38].
В модели, предложенной М. Горшковым, А. Маршаллом и Е. Николаевым [42], ионные пакеты представлялись как бесконечно протяженные заряженные нити, учитывалось их взаимодействие друг с другом и зарядами-изображениями. В рамках этой модели были получены оценки для смещения частот в ловушках с цилиндрической и кубической геометрий. Более того, были теоретически установлены и экспериментально подтверждены условия, при которых эффекты взаимного кулоновского влияния и взаимодействия с индуцированными зарядами компенсируют друг друга [42].
В работе [43] рассматривается важный вопрос сохранения стабильности возбужденного ионного облака на протяжении сотен тысяч циклотронных периодов вращения. Авторы показывают, что причина стабильности состоит во вращении облака вокруг его центра вследствие действия его собственного электрического поля. Это вращение не зависит от циклотронного и магнетронного движений и наиболее важно в случае облаков высокой плотности либо состоящих из ионов большой массы.
Д. Митчел и Р. Смит исследовали связь между значениями параметров экспериментов, при которых происходит слияние ионных облаков с двумя близкими массами. Теоретическую трактовку явления они дали, рассматривая два точечных заряда и бесконечные заряженные нити [44].
Еще одним способом исследования влияния на характеристики масс-анализаторов факторов, которые трудно учитывать с помощью теории, является компьютерное моделирование. Использование компьютеров позволяет численно решить проблему определения траекторий ионов с высокой точностью. Однако до недавнего времени подобные численные эксперименты выполнялись преимущественно для единичных ионов и без учета кулоновского взаимодействия.
Для моделирования масс-анализаторов был разработан ряд программ. В работе [45] приведен обзор первых работ по моделированию в масс-спектрометрии, здесь же мы остановимся на последних достижениях.
В настоящее время наиболее распространенной в лабораториях масс-спектрометрического сообщества является программа БИуИСЖ, над которой работает Д. Дахл из Национальной лаборатории штата Айдахо (США) [45]. Первоначальная версия программы была разработана в 1973 году Д. МакГилвери. Код позволяет отслеживать траектории нескольких десятков ионов в закладываемой пользователем геометрии ловушки, исследовать влияние столкновений с частицами нейтрального газа на движение ионов, рассматривать вопросы оптимизации электрического поля ячейки масс спектрометра [46]. Поле ловушки в 81М1(Ж рассчитывается на регулярной кубической сетке путем численного решения уравнения Лапласа с помощью итерационного метода. По найденным в узлах сетки значениям потенциала путем интерполяции определяется значения поля, действующего на ион в процессе его движения [45]. 81М1(Ж используется при проектировании устройств нового типа [47,48] и исследовании функционирования уже установленных в лабораториях приборов [49]. Несмотря на то, что в нем нет возможности учета высокой пространственной плотности заряда, моделирование траекторий заряженных частиц в сложных геометриях находит достаточно широкое применение. Например, в работе [47] с помощью указанного кода моделируется накопительная ловушка с новой геометрией электродов. Для каждого набора параметров авторы отслеживали в радиочастотном поле динамику 1000 ионов белка Цитохром, имеющих заряд от +1 до +15. Несмотря на то, что результаты моделирования оказались довольно близки к результатам реального эксперимента, отмечается что пренебрежение в моделировании кулоновскими силами является вероятной причиной полученного рассогласования чувствительности. В частности отмечается, что, во первых, эффективность воздействия внешнего поля снижается за счет его экранирования кулоновским полем, и, во вторых, кулоновские силы приводят к увеличению радиуса ионного облака, и, следовательно, меньшее количество ионов может проходить через выходные линзы накопительной ловушки в ловушку масс-спектрометра ИЦР-ПФ. Авторы целого ряда работ отмечают, что для согласования экспериментальных данных и результатов моделирования в БГМКЖ, кроме доступной в пакете возможности моделирования траекторий единичных ионов, необходимо также иметь возможность исследовать эффекты, связанные с кулоновским взаимодействием [47,49,50].
Среди лабораторных разработок выделяется программа 1Т81М [51]. Ее важным преимуществом является возможность моделирования траекторий заряженных частиц в ионных ловушках с произвольной конфигурацией электродов. В 1Т81М моделирование разбито на два шага: сначала с помощью внешней программы определяется поле, потом методом Рунге Кутты интегрируется уравнение движения ионов в этом поле. Кроме того, поле может рассчитываться по явным аналитическим формулам. В коде реализована возможность моделирования столкновений с нейтральными частицами и нахождение масс-спектра [46,51]. Густота сетки определяется объемом доступной оперативной памяти настольного компьютера, на котором выполняются вычисления [52]. Несмотря на то, что авторы отмечают необходимость рассмотрения в моделировании влияния кулоновского взаимодействия, которое может привести к нежелательным эффектам, таким, как снижение разрешающей способности, в вычислительных экспериментах кулоновские силы не учитываются, а в сопутствующих реальных экспериментах в ловушку подается ограниченное число ионов [51,53]. Поскольку полностью избавиться в приборе от взаимодействия зарядов невозможно, то предполагается, что одна из причин расхождения результатов измерений и численного моделирования в 1Т81М состоит именно в пренебрежении кулоновскими силами [52].
Программа 1Т81М в основном применяется группой Р.Кукса. С помощью этого пакета за последние годы ими было проведено моделирование широкого класса ионных ловушек и явлений в них [51,54]. В работе [54] пакет 1Т81М применяют для проникновения в суть процессов, происходящих в новом методе проведения диссоциации при столкновении ионов с нейтральными частицами в масс-спектрометре типа квадрупольной ионной ловушки. В результате моделирования с использованием 20 ионов с тепловыми скоростями и моделью столкновений твердых сфер было найдено время достижения порога достаточной для фрагментации ионов энергии и получено хорошее соответствие с данными реального эксперимента. ГГБГМ позволяет моделировать полный цикл эксперимента, начиная с движения частиц от источника ионов через систему ионного транспорта в масс-анализатор и детектор [55].
Пакет 1Т81М также использовался для оптимизации геометрии цилиндрической ионной ловушки [53]. Оптимизация ловушки состоит в подборе такой формы электродов, которая позволила бы компенсировать компоненты поля высокого порядка, чтобы приблизиться к идеальному квадрупольному потенциалу. Критерием качества ловушки являлись масс-спектры. Результаты, полученные в реальном эксперименте, оказались хорошо согласованными с результатами моделирования. Также программа была использована при исследовании влияния столкновительного охлаждения на разрешение масс в линейной ионной ловушке [51]. Недавно был предложен новый режим работы ловушки типа орбитрэп, и программа ITSIM была использована для его моделирования [52]. В предложенном методе ионы подвергаются аксиальному биполярному возбуждению. Метод представляется перспективным для проведения в орбитрэпе тандемной масс-спектометрии. Моделирование и реальные эксперименты показали, что аксиальное радиочастотное поле может быть использовано как для выброса ионов из ловушки, так и для уменьшения амплитуды их колебаний и помещения в центр ловушки.
Программа ISIS по функциональности похожа на SIMION и ITSIM. В ISIS уравнения движения интегрируется для единственной заряженной частицы в одной из нескольких предопределенных геометрий ионной ловушки. Отмечается, что ISIS позволяет получить детальную информацию об эффектах, связанных со столкновениями ионов с молекулами нейтрального газа [46].
Указанные программы ориентированы в первую очередь на исследование траекторий одиночных ионов в различных конфигурациях внешнего электрического поля. Эти коды имеют длительную историю, оказавшую влияние на их архитектуру, и сложившееся сообщество пользователей, во многом удовлетворяя их потребности.
Также стоит выделить работы, в которых исследовалось функционирование масс-анализаторов с учетом действия кулоновских сил. Н. Милючихин, К. Миура и М. Иноуэ разработали код моделирования ИЦР-ПФ масс-анализатора для компьютера Fujtsu АР 1000, состоящего из 1024 процессоров SPARC (25 МГц) с 16 МБ оперативной памяти на процессор. В численных экспериментах они использовали до 1024 ионов, взаимодействии между которыми рассчитывалось по методу частица-частица. Электрическое поле ловушки вычислялось по сетке, и на каждом шаге выполнялась интерполяция на частицы. Для интегрирования уравнений движения применялась схема Рунге-Кутты-Гилла четвертого порядка точности. Процедура распараллеливания состояла в том, что на каждый процессор помещалось некоторое число частиц и после каждого шага интегрирования процессоры обменивались информацией об их положениях. Авторы отмечают, что из соображений простоты для вычисления ИЦР-сигнала использовалась упрощенная формула, предполагающая детектирующие пластины бесконечными, и не было учтено влияние зарядов, индуцированных на стенках ловушки [56].
Принципиально иной подход применили Д. Митчелл и Р. Смит. Они предложили использовать для моделирования масс-спектрометра метод частиц в ячейке (particle in cell, PIC), широко распространенный в физике плазмы, начиная с 50−60-х годов [57,58]. Метод частиц в ячейке позволяет учесть, как взаимодействие ионов друг с другом, так и с зарядами, индуцированными на стенках ловушки. Ими был разработан двухмерный код, позволяющий провести исследование кулоновских эффектов в ловушках с квадратными и цилиндрическими сечениями. Одна версия кода была предназначена для моделирования осесимметричных ионных облаков, которые удерживаются в цилиндрической ловушке с постоянным магнитным полем, направленным по оси z. В другой версии их кода игнорируется переменная z, то есть частицы в нем, по сути, являются бесконечно длинными заряженными нитями, параллельными оси z. В отличие от предыдущих работ, в которых наведенный заряд рассчитывался исходя из принципа взаимности, в данной работе было предложено исходить из знания величин электрического поля на электродах [59].
Позже Д. Митчелл, используя ту же модель, выполнил первое реальное моделирование масс-анализатора ИЦР-ПФ с помощью трехмерного кода PIC 3D. Его численные эксперименты проводились на рабочей станции на базе процессора Dec Alpha (500 МГц). Расчеты включали до 350 000 частиц, выполнялось 100 000 итераций. Время моделирования составляло от одного до четырех дней [60].
В диссертации используется подход, который был предложен в работах Д. Митчелла [60] и Е. Николаева [61] для моделирования движения ионов в ИЦР-ПФ масс анализаторе. Для расчета поля ловушки реальной геометрии, кулоновского поля ионов и зарядов, индуцированных на стенках ловушки, в области вводится регулярная сетка, на которой с помощью метода, основанного на серии независимых двумерных быстрых преобразований Фурье, решаются уравнения поля. При интегрировании уравнений движения разделяются силы, со стороны электрического и магнитного поля и используется разностная схема с коррекцией частоты, что позволяет точно воспроизводить циклотронное вращение.
На основе имеющегося в лаборатории задела [61] автором был разработан параллельный код, использующий метод частиц в ячейке для моделирования движения заряженных частиц в масс-анализаторе ИЦР-ПФ с возможностью работы с неоднородным магнитным полем, произвольными электростатическими полями, задаваемыми как аналитически, так и в виде массивов, полученных с помощью программы SIMION[45]. Также автором был разработан код для моделирования движения ионов в орбитальной ионной ловушке.
В диссертации рассматриваются ионные ловушки со следующими электростатическими полями: ИЦР-ПФ ловушка с полем заданным выражением p (r, z) =%4z2 -—)+4г (2z3 — 3zr2) + —j-(8z4 -24zV +3r4) — ИЦР-ПФ
L 2 L L ловушка с электростатическим полем заданным потенциалом, вычисленным в программе SIMIONорбитальная ионная ловушка с электростатическим полем, заданным выражением r, z) =4(*2 -3zr2) + ^(8z4 -24zV +3r4) .
Z L 2. Km L, L
Также рассматривалась ИЦР-ПФ ловушка с квадратным сечением электродов.
Численное решение основано на использовании метода частиц в ячейке. Алгоритм состоит в том, что уравнения движения решаются в области ионной ловушки, а парные взаимодействия частиц заменяются расчетом поля на сетке, при этом электростатическое поле является суммой поля ловушки и поля полученного в результате решения уравнения Пуассона в кубической области для частиц интерполированных на сетку при нулевых граничных условиях.
С момента своего возникновения метод частиц бурно эволюционирует и в настоящее время [62].
Стоит отметить также пример моделирования масс-анализатора с помощью специализированной компьютерной системы на основе вычислительных узлов MD3 PCIX. Чипы MDGRAPE 3 предназначены для ускорения решения задачи N тел. В них на аппаратном уровне к реализован расчет сил вида АХ)=У]—-— Для произвольных
G (x-ry) весовых коэффициентов kj и любой функции G (г) вектора г .
Вычислительные узлы MD3 PCIX представляют из себя компьютерные карты, предназначенные для подключения к слотам расширения формата PCI X типичной рабочей станции на базе операционной системы Linux. Пиковая производительность вычислительного узла MD3 PCIX составляет 330 гигафлопс. Все остальные операции производит основная вычислительная машина, на которой установлена карта MD3 PCIX. Эта компьютерная система была применена для моделирования траекторий движения ионов во многоходовом времяпролетном масс-анализаторе MULTUM 11 с использованием метода поверхностного заряда [63]. Авторы отмечают, что на основе предложенного подхода можно было бы также вычислять и кулоновское взаимодействие между ионами [64].
Одни из первых исследований, в области моделирования динамики неравновесной заряженной плазмы в ловушке Пеннинга с помощью метода частиц в ячейке были проведены в работе [65]. Авторами была продемонстрирована возможность моделирования равновесного состояния электронной плазмы на протяжении десятков циклотронных периодов. При отслеживании эволюции изначально неравновесной конфигурации в структуре электронного облака было выявлено так называемое осциллирующее ядро, поле которого компенсирует аксиальное удерживающее поле, и гало, состоящее из частиц, обладающее большой энергией. При добавлении тормозящей силы внешние частицы замедляются, а амплитуда колебаний ядра уменьшается: с увеличением времени ядро приходит в равновесное состояние в поле внешнего удерживающего потенциала.
Д. Митчелл и Р. Смит разработали двумерный код частиц в ячейке для моделирования удержания заряженной плазмы в ионных ловушках [59]. Основная часть их работы состоит в исследовании эволюции невозбужденных ионных облаков, а заключительная имеет отношение к задачам масс-спектрометрии ионно-циклотронного резонанса. С помощью их кода было выполнено исследование зависимости максимального количества ионов, которые могут находиться в ловушке Пеннинга, от величины удерживающего потенциала, и было получено качественное согласие с теоретическими оценками. Продемонстрировано, что при достижении бриллюновского предела плотности ионное облако расширяется в радиальном направлении. Облако, находящееся в равновесном состоянии, приобретало сигарообразную форму. Для комбинированной ловушки (ловушка Пауля с постоянным магнитным полем) исследовалось влияние кулоновских взаимодействий на фоне высокого давления со стороны нейтрального газа. Далее исследовалось воздействие нейтрального газа на изначально холодное облако, с равномерным распределением ионов в ловушке Пеннинга, по результатам был сделан вывод о том, чтобы сгенерировать облако, находящееся в состоянии термодинамического равновесия, достаточно начать с некоторой неравновесной конфигурации и в течение некоторого времени осуществлять столкновения с нейтральными частицами. Исследовалось движение и внутреннее вращение ионного облака, смещенного относительно центра в ловушке Пенинга с заземленными торцевыми электродами, связанное с кулоновским полем самого облака и влиянием зарядов, индуцированных на стенках ловушки. Были выполнены расчеты, моделирующие слияние двух ионных облаков, смещенных относительно центра. В этих расчетах были подтверждены теоретические и экспериментальные оценки минимального расстояния между ионными облаками, при которых возможно их слияние. Для динамики полого пучка была продемонстрирована нестабильность • Кельвина-Гельмгольца. В заключительной части работы ионное облако было подвергнуто циклотронному возбуждению.
Следующая работа Д. Митчелла [60] проводилась для демонстрации возможности его нового трехмерного кода на примере исследования динамики двух достаточно плотных ионных облаков с ионами близкой массы. Принято, что это было первое реалистичное моделирование масс-спектрометрии ионно-циклотронного резонанса, включавшего очень большое число частиц. Расчеты Д. Митчелла проводились в четыре этапа. На первом происходило накопление ионов: на протяжении некоторого числа шагов ионы последовательно вводились в ловушку, получая случайные позиции внутри цилиндра, ось которого совпадала с осью г ловушки. На следующем этапе ионы повергались столкновениям с нейтральными частицами, что привело к. формированию равновесной в термодинамическом смысле конфигурации. Далее, ионы подвергались циклотронному возбуждению и последующему длительному периоду детектирования. Д. Митчелл провел серию вычислительных экспериментов, детально описывает три из них, в которых общее число ионов составляло 50 000,150000,350 000 частиц. При самой низкой плотности ионные облака постепенно размываются по объему ловушки, что приводит к спектральным пикам сравнительно небольшой интенсивности. При средней плотности облака вращаютсяв виде концентрических сгустков, на масс-спектрометре имеется два отчетливых пика. При самой высокой плотности два облака сливаются в одно, и имеется лишь один спектральный пик. Автор находит, что результаты его вычислительного эксперимента находятся в хорошем соответствии с теоретическими оценками. Цель работы.
Целью диссертации является исследование с помощью численных экспериментов явлений, определяющих аналитические характеристики Фурье масс-анализаторов, посредством анализа динамики ионных ансамблей.
Задачей работы является исследование следующих эффектов:
1)слияния облаков, состоящих из ионов близких масс, при их движении в магнитном и создаваемых облаками электрических полях, с целью определения связи между ограничением разрешающей способности и динамического диапазона для масс-анализаторов ионного циклотронного резонанса.
2)столкновений ионных облаков в ИЦР-ПФ ловушках и орбитальных ионных ловушках с целью определения их влияния на величину динамического диапазона.
3)стабилизации ионных облаков в неоднородном магнитном и ангармоническом электрическом полях с целью определения диапазона изменения количества ионов в масс-анализаторе ИЦР-ПФ, при котором не наблюдается заметного снижения разрешающей способности, а также исследование ограничения на разрешающую способность орбитальной ионной ловушки из-за ангармоничности удерживающего электрического поля.
Научная новизна
1. На основании результатов численного моделирования динамики движения ионов в ловушке ИЦР впервые получены эмпирические зависимости для количества зарядов в ионных облаках, необходимого для их слияния, как функции напряженности магнитного поля (В), среднего отношения массы к заряду ((m/z)i+(m/z)2)/2, разницы отношения масс к зарядам (m/z)2-(m/z)i, радиуса циклотронной орбиты ®. Эти результаты убедительно доказывают квадратичность зависимости количества зарядов, необходимого для слияния ионных облаков, от магнитного поля и количественно совпадают с теоретической оценкой, предложенной И. А. Болдиным и E.H. Николаевым[79].
2. На основании результатов численного моделирования динамики движения ионов в ловушке ИЦР впервые предложен механизм стабилизации ионных облаков в неоднородном магнитном, а также негармоническом электрическом полях. Построены эмпирические зависимости для количеств ионов, необходимых для стабилизации ионных облаков при разных степенях неоднородности и негармоничности полей.
3. Показано, что столкновения ионных облаков в ИЦР ловушках и орбитальных ионных ловушках являются одной из причин ограничения динамического диапазона. Предложен способ определения динамического диапазона для ИЦР масс-анализаторов, учитывающий эффекты, вызванные ион-ионным взаимодействием.
4. Для орбитальной ионной ловушки определены требования к гармоничности электрического поля для достижения разрешения свыше 100 000 на массе 500 Да. Предложен механизм возникновения частотных сдвигов при изменении числа ионов в ловушке, основанный на наличии зависимости частоты колебаний от амплитуды для нелинейных колебаний. Практическая значимость работы
Оценка скорости расфазировки и количества ионов, необходимого для стабилизации ионных облаков в неоднородном магнитном поле, может быть использована для определения требований! к величине максимально допустимой неоднородности магнитного поля для магнитов, которые проектируются для использования в масс-спектрометрии ИЦР.
Выявленные эффекты, ограничивающие динамический диапазон, и проведенные оценки степени их влияния на него позволяют предсказывать аналитические характеристики, которые могут быть достигнуты в конструируемых приборах.
Полученные оценки степени допустимой ангармоничности электрического поля могут быть использованы для выбора минимально допустимых продольных размеров орбитальной ионной ловушки. Личный вклад автора
Автор внес основной вклад в проведение численных экспериментов и обработку результатов, изложенных в диссертации. На основе имеющегося в лаборатории задела автором был разработан параллельный код, использующий метод частиц в ячейке для моделирования движения заряженных частиц в масс-анализаторе ИЦР-ПФ с возможностью работы с неоднородным магнитным полем, произвольными электростатическими полями, задаваемыми как аналитически, так и в виде массивов, полученных с помощью программы БШКЖ. Также автором был разработано программное обеспечение для моделирования движения ионов в орбитальной ионной ловушке.
Выводы
Проведено моделирование движения ионных облаков в орбитальных ионных ловушках масс-спектрометров типа орбитрэп. Определены сдвиги частот аксиальных колебаний, вызванные изменением амплитуд колебаний ионов при изменении количества зарядов в ионных облаках, которое из-за нелинейности колебаний приводит к сдвигу частот. Полученные результаты позволяют сделать вывод, что для устранения влияния частотных сдвигов, вызванных изменением количества зарядов в ионных облаках в орбитальной ионной ловушке, можно использовать в качестве калибровочного закона выражение, где Сконстанты f — измеряемая частота, КГчисло зарядов в ионном облаке.
Показано, что отличие электростатического поля орбитальной ионной ловушки от идеального является причиной расфазировки ионов в ионных облаках, что ограничивает разрешающую способность масс-спектрометров, использующих ловушки такого типа. Продемонстрировано усиление эффекта расфазировки движения ионов при увеличении числа зарядов в ионном облаке для орбитальной ионной ловушки с неидеальным полем.
Заключение
1) С помощью компьютерного моделирования движения ионных ансамблей в ловушках Пеннинга спектрометров ИЦР-ПФ установлен механизм явления стабилизации синхронного движения облаков в неоднородном магнитном и ангармоническом электростатическом полях. В основе механизма лежит обнаруженное нами явление сужения ширины распределения амплитуд колебаний ионов в запирающем потенциале, которое предотвращает разброс по магнетронным частотам.
2) На основе результатов численного моделирования получены эмпирические зависимости, описывающие явление слияния ионных облаков в магнитном и собственном электростатическом поле облаков для ИЦР-ПФ масс-анализатора, приводящее к слиянию (коалесценции) пиков в масс-спектрах.
3) С помощью компьютерного моделирования установлен механизм явления разрушения ионных облаков при их столкновениях в масс-анализаторах ионного циклотронного резонанса и орбитальных ионных ловушках, приводящего к уширению или исчезновению пиков в спектрах.
4) Предложен способ определения динамического диапазона для ИЦР-ПФ масс-анализаторов, учитывающий эффекты, вызванные ион-ионным взаимодействием.
5) С помощью компьютерного моделирования определены требования к ангармоничности электростатического поля орбитальной ионной ловушки.
6) С помощью компьютерного моделирования определены требования к однородности магнитного поля для магнитов, которые используются в масс-спектрометрии ИЦР-ПФ.