Помощь в написании студенческих работ
Антистрессовый сервис

Формирование и оптические свойства пленочных покрытий на основе хитозана

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В отличие от многих синтетических полимеров, применение которых часто сопряжено с использованием органических растворителей, природные пленкообразующие полисахариды являются водорастворимыми, что существенно упрощает процесс их обработки и позволяет реализовать простые экологически чистые технологии изготовления оптических сенсоров с хемочувствительным полимерным слоем. Среди множества известных… Читать ещё >

Формирование и оптические свойства пленочных покрытий на основе хитозана (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • ГЛАВА 1. ОПТИЧЕСКИЕ ХИМИЧЕСКИЕ СЕНСОРЫ
    • 1. 1. Оптические волноводы и основные типы сенсорных систем на их основе
    • 1. 2. Сенсоры для детектирования концентрации аммиака и уровня влажности в окружающей среде
      • 1. 2. 1. Задачи детектирования аммиака
      • 1. 2. 2. Способы детектирования аммиака
      • 1. 2. 3. Оптические методы детектирования аммиака
      • 1. 2. 4. Задачи измерения влажности
      • 1. 2. 5. Методы измерения влажности
      • 1. 2. 6. Оптические методы измерения влажности
    • 1. 3. Методы формирования тонких полимерных и композитных покрытий для оптических
  • приложений
    • 1. 3. 1. Методы формирования полимерных пленочных покрытий
    • 1. 3. 2. Композитные полимерные покрытия, содержащие наночастицы металлов
    • 1. 3. 3. Полисахариды в синтезе металлических наночастиц

Актуальность работы. Развитие экологически безопасных технологий во многих областях науки и техники тесно связано с использованием возобновляемых природных ресурсов, среди которых большое значение имеют полисахариды. Наряду с динамично развивающимся биомедицинским направлением, в последнее время огромный интерес вызывает получение нанокомпозитных материалов на основе полисахаридов для решения прикладных экологических задач, синтеза наночастиц металлов и оксидов металлов для сорбции и катализа. Не менее перспективным является применение природных полимеров в качестве альтернативы синтетическим и даже неорганическим материалам в оптике, в том числе, в оптических детекторах химических веществ различной природы, как в газовой среде, так и в растворах.

В отличие от многих синтетических полимеров, применение которых часто сопряжено с использованием органических растворителей, природные пленкообразующие полисахариды являются водорастворимыми, что существенно упрощает процесс их обработки и позволяет реализовать простые экологически чистые технологии изготовления оптических сенсоров с хемочувствительным полимерным слоем. Среди множества известных на сегодняшний день типов сенсоров для детектирования токсичных газов, оптические сенсоры, обладающие такими преимуществами, как быстрое время реагирования, хорошая воспроизводимость, высокая помехоустойчивость к электромагнитным полям, являются одними из наиболее перспективных.

Общий принцип действия сенсоров с полимерным чувствительным слоем основан на изменении оптических свойств покрытия, нанесенного на поверхность оптической матрицы, в зависимости от условий среды (влажности, температуры) или присутствия молекул определяемого вещества, взаимодействующего с полимером или оптически активным компонентом, внедренным в полимерный слой. Достижение требуемых характеристик сенсоров — малого времени отклика и релаксации, высокой чувствительности и воспроизводимости, в значительной степени зависит не только от правильного выбора полимерной матрицы, но и от наличия эффективных методов контроля толщины формируемого полимерного слоя и количества допирующих добавок, в роли которых могут выступать рН-индикаторы, наночастицы металлов и другие оптически активные материалы.

Высокая актуальность исследования свойств хитозана как полимера для создания оптических волноводов и хемочувствительных сенсорных покрытий определяется, во-первых, его широкой доступностью и отличными пленкообразующими свойствами, во-вторых, высокой сорбционной емкостью по отношению ко многим красителям и ионам металлов, что позволяет эффективно контролировать уровень допирования покрытий хитозана и получать оптические материалы различного назначения.

Цель работы заключалась в разработке способов формирования и исследовании оптических свойств хитозан-содержащих покрытий, в том числе, допированных рН-индикаторами и наночастицами благородных металлов, для применения в качестве чувствительных слоев оптических сенсоров влажности и мониторинга содержания паров кислот и аммиака в воздухе.

Для достижения поставленной цели решались следующие научные задачи:

— исследование реологических свойств растворов различных солевых форм хитозана и оптимизация условий нанесения тонкопленочных покрытий на подложки из стекла, кварца и фторида магния для реализации в них режима волноводного распространения оптического излучения;

— формирование оптических волноводов на основе хитозана в различных солевых формах и доказательство их применимости в качестве высокоэффективных сенсоров для детектирования уровня относительной влажности воздуха;

— разработка способа получения и исследование оптических свойств композитных пленочных покрытий хитозан/металлические (биметаллические) наночастицы и оптических волноводов на их основе;

— разработка способа получения и исследование оптических свойств хитозан-содержащих хемочувствптельпых мультислойных покрытий, допированных рН-индикаторами, для детектирования паров кислот и оснований.

Научная новизна.

Впервые проведены систематические исследования формирования покрытий из уксуснокислых и лимоннокислых растворов хитозана методом центрифугирования, оптимизированы условия получения оптических волноводов на основе хитозана, установлен диапазон относительной влажности, в котором данные волноводы могут быть использованы в качестве оптических детекторов влажности.

Разработан способ «in situ» получения нанокомпозитных покрытий хитозана, содержащих наночастицы Ag, Au и биметаллические наночастицы Ag/Au размером менее 10 нмустановлена зависимость длины волны максимума плазмонного резонанса от состава биметаллических частиц.

Исследованы особенности допирования нанесенных на планарный волновод мультислойных покрытий хитозанА.-каррагинан анионными и амфотерными рН-индикаторами, установлено оптимальное количество бислоев для получения хемочувствительного слоя, обеспечивающего возможность оптического детектирования аммиака и соляной кислоты с пределом обнаружения менее 1 рргп.

На защиту выносятся:

— способ получения однородных покрытий хитозана, обеспечивающих режим волноводного распространения излучения;

— доказательство возможности использования волноводных покрытий хитозана в нейтральной и солевой форме в качестве сенсоров относительной влажности;

— способ «in situ» получения покрытий хитозана, содержащих наночастицы Ag, Au и биметаллические наночастицы Ag/Au размером менее 10 нм и результаты исследования оптических свойств полученных композитных материалов;

— способ получения хемочувствительных мультислопных покрытий хитозанА,-каррагинан, допированных индикаторами бромтимоловым синим и Конго красным, и доказательство возможности их использования для детектирования паров ]МН3 и НС1.

Практическая значимость.

Разработанный способ формирования оптических волноводов на основе хитозана является основой для создания оптических сенсоров для определения уровня относительной влажности воздуха в диапазоне 15−95%.

С помощью метода электростатической самосборки противоположно заряженных полиэлектролитов на поверхности коммерчески доступных волноводов решена задача воспроизводимого изготовления полимерного сенсорного слоя с контролируемой толщиной и содержанием рН-индикатора. Показано, что оптический химический сенсор на аммиак на основе таких покрытий имеет предел обнаружения менее 1 ррт и время отклика менее 1 с, что позволяет использовать его в системах мониторинга содержания аммиака в воздухе населенных мест и рабочих зон в режиме реального времени.

Соответствие диссертации паспорту научной специальности.

Диссертация соответствует паспорту специальности 02.00.04 — физическая химия в пунктах: п. З «Определение термодинамических характеристик процессов на поверхности, установление закономерностей адсорбции на границе раздела фаз и формирования активных центров на таких поверхностях», п. 4 «Теория растворов, межмолекулярные и межчастичные взаимодействия" — п. 5. «Изучение физико-химических свойств систем при воздействии внешних полей, а также в экстремальных условиях высоких температур и давлений».

Достоверность полученных результатов обеспечена применением совокупности взаимодополняющих физико-химических методов исследования (эллипсометрия, сканирующая электронная микроскопия, просвечивающая электронная микроскопия, УФ-видимая спектроскопия, ш-спектроскопия), хорошей повторяемостью результатов, использованием статистических методов обработки экспериментальных данных.

Апробация работы.

Основные положения и результаты диссертационной работы были доложены на 10th International Symposium on Advanced Organic Photonics (ISAOP-10) & 1st International Symposium on Super-hybrid Materials (ISSM-1) (Токио-Сендай, Япония, 2010) — «SPIE Optics + Photonics» international conference (Сан Диего, США, 2011) — всероссийской конференции «Фотоника органических и гибридных наноструктур» (Черноголовка, 2011) — 5-ом международном симпозиуме «химия и химическое образование» (Владивосток, 2011) — asian school-conference on physics and technology of nanostructured materials (Владивосток, 2011) — «Eupoc2011 — Biobased Polymers and Related Biomaterials» (Гарньяно, Италия, 2011) — V научно-технической конференции молодых ученых «Научно-практические проблемы в области химии и химических технологий» (Апатиты, 2011) — «10th International Conference of the European Chitin Society» (Advances in Chitin Science) (Санкт-Петербург, 2011) — VII международной конференции молодых ученых и специалистов «Оптика — 2011» (Санкт-Петербург, 2011) — Одиннадцатой Международной Конференции «Современные перспективы в исследовании хитина и хитозана» (Мурманск, 2012) — 9th International Symposium on Polyelectrolytes ISP 2012 (Лозанна, Швейцария, 2012) — международной конференции «Фундаментальные проблемы оптики — 2012» (Санкт-Петербург, 2012) — 20th International Symposium «Nanostructures: Physics and Technology» (Нижний Новгород, 2012) — IIth International Conference of the European Chitin Society (Порту, Португалия, 2013).

Публикации по теме диссертации.

По теме диссертации опубликовано 18 печатных работ из них 5 статей в изданиях, рекомендованных ВАК.

Личный вклад автора заключался в анализе литературных данных, получении и обработке основной части экспериментальных данных, участии в обсуждении полученных результатов и подготовке публикаций и докладов на конференциях, в том числе международных. Исследования волноводных и сенсорных свойств покрытий на основе хитозана и сенсорного отклика полученных в работе оптических сенсоров были проведены Сергеевым A.A. под руководством д.ф.-м.н. Вознесенского С. С. Автор выражает благодарность д.фм.н. Вознесенскому С. С., Сергееву A.A. за плодотворное сотрудничество.

Связь работы с научными программами.

Работа проводилась при поддержке грантов: Президиума ДВО РАН № 10-Ш-В-0Ф-065, № 12-III-B-04−050- гранта РФФИ № 11−02−98 512-рвостока, грантов по программе Президиума РАН «Фундаментальные основы технологий наноструктур и наноматериалов» (№ 09−1-П27−12, № 12−1-0−02−011).

Структура работы.

Работа состоит из введения, пяти глав, выводов и списка литературы из 197 наименований. Работа изложена на 120 страницах, содержит 41 рисунок и 7 таблиц.

ВЫВОДЫ.

1. Разработаны способы получения хитозан-содержащих покрытий заданной толщины с контролируемым уровнем допирования рН-индикаторами и наночастицами благородных металлов для применения в устройствах интегральной оптики,.

2. Впервые проведены систематические исследования формирования покрытий из уксуснокислых и лимоннокислых растворов хитозана методом центрифугирования. Оптимизированы условия получения однородных оптически прозрачных покрытий хитозана на натрий-силикатном стекле, кварце и фториде магния, обеспечивающих режим волноводного распространения оптического излучения с низкими потерями. Установлено, что оптические потери зависят как от солевой формы хитозана, так и от способа предварительной подготовки раствора полимера.

3. Установлена зависимость между уровнем относительной влажности и оптическими свойствами покрытий хитозана. Доказана возможность использования покрытий хитозана в нейтральной форме толщиной 1.5 мкм в качестве волноводного и сенсорного слоя для определения относительной влажности в диапазоне от 15 до 95%, с чувствительностью не менее 0.02 дБ на 1% относительной влажности.

4. Предложен способ получения композитных покрытий хитозана, содержащих наночастицы золота, серебра и биметаллические наночастицы Au/Ag методом «in situ» восстановления ионов металлов-прекурсоров в объеме предварительно сформированного полимерного покрытия. Для покрытий, содержащих биметаллические частицы, установлена зависимость положения максимума плазмонного резонанса от состава частиц. Показано, что метод обеспечивает контролируемый уровень допирования полимерных покрытий наночастицами размером менее 10 нм. Установлено, что при допировании хитозанового покрытия наночастицами серебра до объемного содержания 1.3% возможно увеличение показателя преломления покрытия на 0.04 ед. (А=633 нм) при сохранении в нем режима волноводного распространения излучения с длиной волны 633 нм.

5. Разработан способ получения на коммерчески доступных оптических волноводах из натрий-силикатного стекла допированных рН-индикаторами хемочувствительных мультислойных покрытий хитозанА,—каррагинан, обеспечивающих обнаружение паров 1ЧН3 и НС1 в воздухе при содержании от 1 ррш. Установлено, что оптимальная толщина покрытия для реализации интегральных оптических детекторов ЫН3 и НС1 в газовой среде составляет 30−70 нм.

Показать весь текст

Список литературы

  1. P.V. 1.tegrated optical sensors for the chemical domain // Meas. Sci. Technol. — 2006. — Vol. 17. — P. 93-116.
  2. Lee C.Y., Lee G.B. Humidity Sensors: A Review // Sens. Lett. — 2005. — Vol. 5.1. P. 1−15.
  3. Ma H., Jen K., Dalton L. Polymer-Based Optical Waveguides: Materials, Processing, and Devices // Adv. Mater. — 2002. — Vol. 14. — P. 1339−1365.
  4. Kurauchi Y., Ogata Т., Egashira N., Ohga K. Fiber-Optic Sensor with a Dye-Modified Chitosan/Poly (vinyl alcohol) Cladding for the Determination of Organic Acids // Anal. Sci. — 1996. — Vol. 12. — P. 55−59.
  5. Arregui F.J., Ciaurriz Z., Oneca M., Matias I.R. An experimental study about hydrogels for the fabrication of optical fiber humidity sensors // Sensor. Actuat. B. — 2003. —Vol. 96,—P. 165−172.
  6. Т. Интегральная оптика. —М.: Мир, 1978.
  7. Grattan К. Sun Т. Fiber optic sensor technology: an overview // Sensor. Actuat. A.2000. — Vol. 82. — P. 40−61.
  8. Yimit A., Rossberg A., Amemiya Т., Itoh K. Thin film composite optical waveguides for sensor applications: a review // Talanta. — 2005. — Vol. 65. — P. 1102−1109.
  9. Erisman J.W., Otjes R., Hensen A., Jongejan P., Bulk P.v.d., Khlystov A., Mols H., Slanina S. Instrument development and application in studies and monitoring of ambient ammonia//Atmos. Environ. — 2001. — Vol. 35. — P. 1913−1922.
  10. Durbin T. D, Wilson R.D., Norbeck J.M., Miller J.W., Huai T., Rhee S.H. Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles // Atmos. Environ. — 2002. — Vol. 36. — P. 14 751 482.
  11. Jerger A., Kohler H., Becker F., Keller H.B., Seifert R. New applications of tin oxide gas sensors. II: Intelligent sensor system for reliable monitoring of ammonia leakage // Sensor. Actuat. B. — 2002. — Vol. 81. — P. 301−307.
  12. Ament W., Huizenga J.R., Kort E., Mark T.W., Grevink R.G., Verkerke G.J. Respiratory ammonia output and blood ammonia concentration during incremental exercise//Int. J. Sports Med. — 1999.—Vol. 38. —P. 140−143.
  13. Kearney D.J., Hubbard T., Putnam D. Breath ammonia measurement in Helicobacter pylori infection // Digest. Dis. Sci. — 2002. — Vol. 47. — P. 2523−2530.
  14. Riegel J., Neumann H., Wiedenmann H.M. Exhaust gas sensors for automotive emission control // Solid State Ionics. —2002. — Vol. 152/153. — P. 783−800.
  15. Dubbe A. Fundamentals of solid state ionic micro gas sensors // Sensor. Actuat. B. — 2003. — Vol. 88. — P. 138−148.
  16. Banerji S., Peng W., Kim Y.C., Menegazzo N., Booksh K.S. Evaluation of polymer coatings for ammonia vapor sensing with surface plasmon resonance spectroscopy // Sensor. Actuat. B. — 2010. — Vol. 147. — P. 255−262.
  17. Zakrzewska K. Mixed oxides as gas sensors // Thin Solid Films. — 2001. — Vol. 391. —P. 229−238.
  18. Srivastava R.K., Lai P., Dwivedi R., Srivastatva S.K. Sensing mechanism in tin oxide-based thick film gas sensors // Sensor. Actuat. B. — 1984. — Vol. 21. — P. 213 218.
  19. JT.A., Губанова Д. П. Быстрая идентификация хлора и диоксида хлора в воздухе полупроводниковыми сенсорами // Ж. Аналит. Химии. — 2004.1. Т. 59, —С. 876−878.
  20. Xu C.N., Miura N., Ishida Y., Matuda К., Yamazoe N. Selective detection of NH3 over NO in combustion exhausts by using Au and M0O3 doubly promoted WO3 element //Sensor. Actuat. B. — 2000. — Vol. 65.—P. 163−165.
  21. Aslam M., Chaudhary V.A., Mulla I.S., Sainkar S.R., Mandale A.B., Belhekar A.A., Vijayamohanan K. A highly selective ammonia gas sensor using surface-ruthenated zinc oxide // Sensor. Actuat. A. — 1999. — Vol. 75. — P. 162−167.
  22. Tomchenko A.A., Harmer G.P., Marquis B.T., Allen J.W. Semiconducting metal oxide sensor array for the selective detection of combustion gases // Sensor. Actuat. B.2003.—Vol. 93,—P. 126−134.
  23. Moseley P.T. Solid state gas sensors // Meas. Sci. Technol. — 1997. — Vol. 8. — P. 223−237.
  24. Spetz A., Armgath M., Lundstrom I. Hydrogen and ammonia response of metal-silicon dioxide-silicon structures with thin platinum gates // J. Appl. Phys. — 1998. — Vol. 64. —P. 1274−1283.
  25. Lahdesmaki I., Lewenstam A., Ivaska A. A polypyrrole-based amperometric ammonia sensor// Talanta. — 1996. —Vol. 43. — P. 125−134.
  26. Nicolas-Debarnot D., Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors // Anal. Chim. Acta. — 2003. — Vol. 475. — P. 1−15.
  27. Kukla A.L., Shirshov Y.M., Piletsky S.A. Ammonia sensors based on sensitive polyaniline films // Sensor. Actuat. B. — 1996. — Vol. 37. — P. 135−140.
  28. Lahdesmaki I., Kubiak W.W., Lewenstam A., Ivaska A. Interference in a polypyrrole-based amperometric ammonia sensor // Talanta. — 2000. — Vol. 52. — P. 269−275.
  29. Corres J.M., Arregui F.J., Matias I.R. Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings // Sensor. Actuat. B. — 2007. — Vol. 122. — P. 442−449.
  30. Jin Z., Su Y., Duan Y. Development of a polyaniline based optical ammonia sensor // Sensor. Actuat. B. — 2001. — Vol. 72. — P. 75−79.
  31. Tao S., Xu L., Fanguy L., Joseph C. Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers // Sensor. Actuat. B. — 2006.1. Vol. 115. —P. 158−163.
  32. Yimit A., Itoh K., Murabayashi M. Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor // Sensor. Actuat. B. — 2003. — Vol. 88.1. P. 239−245.
  33. Courbat J., Briand D., Damon-Lacoste J., Wollenstein J., de Rooij N.F. Evaluation of pH indicator-based colorimetric films for ammonia detection using optical waveguides // Sensor. Actuat. B. — 2009. — Vol. 143. — P. 62−70.
  34. Klein R., Voges E. Integrated-optic ammonia sensor // Sensor. Actuat. B. — 1993.1. Vol. 11. —P. 221−225.
  35. Malins C., Butler T.M., MacCraith B.D. Influence of the surface polarity of dye-doped sol-gel glass films on optical ammonia sensor response // Thin Solid Films. — 2000. — Vol. 368. — P. 105−110.
  36. Shang Y., Wang X., Xu E., Tong C., Wu J. Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye // Anal. Chim. Acta. — 2011. —Vol. 658. —P. 58−64.
  37. Lavers C.R., Itoh K., Wu S.C., Murabayashi M., Mauchline 1., Stewart G., Stout T. Planar optical waveguides for sensing applications // Sensor. Actuat. B. — 2000. — Vol. 69.—P. 85−95.
  38. Malins C., Landl M., Simon P., MacCraith B.D. Fibre optic ammonia sensing employing novel near infrared dyes // Sensor. Actuat. B. — 1998. — Vol. 51. — P. 359−367.
  39. Airoudj A., Debarnot D., Beche B., Poncin-Epaillard F. Design and Sensing Properties of an Integrated Optical Gas Sensor Based on a Multilayer Structure // Anal. Chem. — 2008. — Vol. 80.— P. 9188−9194.
  40. Flutter T., Horesh M., Ruschin S. Method for increasing reliability in gas detection based on indicator gradient in a sensor array // Sensor. Actuat. B. — 2001. — Vol. 152. — P. 29−36.
  41. Wiederhold P. Water Vapor Measurement: Methods and Instrumentation. — New York: Dekker, 1997.
  42. Rittersma Z.M. Recent achievements in miniaturised humidity sensors-a review of transduction techniques // Sensor. Actuat. A. — 2002. — Vol. 96. —P. 196−210.
  43. Yeo T.L., Sun T., Grattan K. Fibre-optic sensor technologies for humidity and moisture measurement // Sensor. Actuat. A. — 2008. — Vol. 144. — P. 280−295.
  44. Tao S" Winstead C.B., Jindal R., Singh J.P. Optical-fiber sensor using // IEEE Sens. J. — 2004. — Vol. 4. — P. 322−328.
  45. Otsuki S., Adachi K. Humidity dependence of visible absorption spectrum of gelatin films containing cobalt chloride // J. Appl. Polym. Sci. — 1993. — Vol. 45. — P. 1557−1564.
  46. Ando M., Kobayashi T., Harutu M. Humidity-sensitive optical absorption of C03O4 film // Sensor. Actuat. B. — 1996. — Vol. 32. — P. 157−160.
  47. Otsuki S., Adachi K., Taguchi T. A novel fiber-optic gas sensing arrangement based on an air gap design and an application to optical detection of humidity // Anal. Sci.— 1998. — Vol. 14, —P. 633−635.
  48. Choi M., Tse O. Humidity-sensitive optode membrane based on a fluorescent dye immobilised in gelatin film // Anal. Chim. Acta. — 1999. — Vol. 378. — P. 127−134.
  49. Brook T.E., Taib M.N., Narayanaswamy R. Extending the range of a fibre-optic relative humidity sensor // Sensor. Actuat. B. — 1997. — Vol. 38−39. — P. 272−276.
  50. Sadaoka Y., Matsuguchi M., Sakai Y., Murata Y. Optical humidity sensing characteristic of Nafion-dyes composite thin film // Sensor. Actuat. B. — 1992. — Vol. 7. — P. 443−446.
  51. Kondratowicz B., Narayanaswamy R., Persaud K.C. An investigation into the use of electrochromic polymers in optical fibre gas sensors // Sensor. Actuat. B. — 2001. — Vol.74. —P. 138−144.
  52. Kharaz A., Jones B.E., Hale K.F., Roche L., Bromley K. Optical fibre relative humidity sensor using a spectrally absorptive material // SPIE Proc. — 2000. — Vol. 4185. —P. 370−373.
  53. Jindal R., Tao S., Singh J.P., Gaikwad P. High dynamic range fiber optic relative humidity // Opt. Eng. — 2002. — Vol. 41. —P. 1093−1096.
  54. Khijwania S.K., Srinivasan K.L., Singh J.P. Performance optimised fiber sensor for humidity measurement // Opt. Eng. — 2005. — Vol. 44. — P. 344 011−7.
  55. Bariain C., Matias I.R., Arregui F.J., Lopez-Amo M. Optical fiber humidity sensor based on a tapered fiber coated with agarose gel // Sensor. Actuat. B. — 2000. — Vol. 69.—P. 127−131.
  56. Posch H.E., Wolfbeis O.S. Fibre-optic humidity sensor based on fluorescence quenching // Sensor. Actuator. — 1988. — Vol. 15. — P. 77−78.
  57. Bedoya M., Diez M.T., Moreno-Bondi M.C., Orellana G. Humidity sensing with a luminescent Ru (II) complex and phase-sensitive detection // Sensor. Actuat. B. — 2006. —Vol. 113. —P. 573−581.
  58. Skrdla P.J., Saavedra S.S., Armstrong N.R., Mendes S.B., Peyghambarian N. Sol-gel-based planar waveguide sensor for water vapor // Anal. Chem. — 1999. — Vol. 71.1. P. 1332−1337.
  59. Ansari Z.A. Karekar R.N., Aiyer R.C. Humidity sensor using planar optical waveguides with claddings of various oxide materials // Thin Solid Films. — 1997. — Vol. 305,—P. 330−335.
  60. Zhou Q., Shahriari M., Kritz D., Sigel G. Porous fiber-optic sensor for high-sensitivity humidity measurements // Anal. Chem. — 1988. — Vol. 60. — P. 2317— 2320.
  61. Ogawa K., Tsuchiya S., Kawakami H., Tsutsui T. Humidity-sensing effects of optical fibres with microporous Si02 cladding // Electron. Lett. — 1988. — Vol. 24. — P. 42−43.
  62. Gupta B. A novel probe for a fiber optic humidity sensor // Sensor. Actuat. B. — 2001, —Vol. 80.—P. 132−135.
  63. Gaston A. Perez F., Sevilla J. Optical Fiber Relative-Humidity Sensor with Polyvinyl Alcohol Film // Appl. Optics. — 2004. — Vol. 43. — P. 4127.
  64. Fuke M., Vijayan S., Kanitkar P., Kulkarni M., Kale B., Aiyer R. Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor // J. Mater. Sci.2008. — Vol. 20. — P. 695−703.
  65. Weiss M. Srivastava R., Groger H. Experimental investigation of a surface plasmon-based integrated-optic humidity sensor // Electron. Lett. — 1996. — Vol. 32.1. P. 842−843.
  66. Luo J., Qin J., Kang H., Ye C. A Postfunctionalization Strategy To Develop PVK-Based Nonlinear Optical Polymers with a High Density of Chromophores and Improved Processibility // Chem. Mater. — 2001. — Vol. 13. — P.927−931.
  67. Zhao Y., Lu W., Ma Y., Kim S., Ho S., Marks T. Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared // Appl. Phys. Lett. — 2000. —Vol. 77,—P. 2961.
  68. Chu A, Lee K, Pong B., Lin C., Ho W., Shih T. // Electron. Lett. — 2000. — Vol. 36. —P.1539−1540.
  69. Han K., You K., Kim E., Kim J. Polymeric optical waveguides using fluorinated polyimides // Mol. Cryst. Liq. Crys. A. — 2000. — Vol. 349. —P. 37−41.
  70. Faupel F., Zaporojtchenko V., Strunskus T., Elbahri M. Metal-Polymer Nanocomposites for Functional Applications // Adv. Eng. Mat. — 2010. — Vol. 12. ¦—¦ P. 1177−1190.
  71. Beers K., Douglas J., Amis E., Karim A. Combinatorial measurements of crystallization growth rate and morphology in thin films of isotactic polystyrene // Langmuir. — 2003. — Vol. 19. — P. 3935−3940.
  72. Belleville P. Bonnin C., Priotton J. Room-temperature mirror preparation using sol-gel chemistry and laminar-flow coating technique // J. Sol-Gel Sci. Techn. — 2000. — Vol. 19. — P. 223−226.
  73. Willey R.R. Practical Design and Production of Optical Thin Films. — New York: Marcel Dekker, Inc, 1997.
  74. Callewaert M., Gohy J., Dupont-Gillain C., Boulange-Petermann L., Rouxhet P. Surface morphology and wetting properties of surfaces coated with an amphiphilic diblock copolymer//Surf. Sci. — 2005. — Vol. 575, —P. 125−135.
  75. Ichiki M., Zhang L., Yang Z., Ikehara T., Maeda R. Thin film formation on non-planar surface with use of spray coating fabrication // Microsyst. Technol. — 2004. — Vol. 10. —P. 360−363.
  76. Washo B.D. Rheology and Modeling of the Spin Coating Process // IBM J. Res. Dev. — 1977. —Vol. 21.—P. 190−198.
  77. Jenekhe S. The rheology and spin coating of polyimide solutions // Polym. Eng. Sci. — 1983. — Vol. 23. — P. 15−19.
  78. Higgins B.G. Film flow on a rotating disk // Phys. Fluid. — 1986. — Vol. 29. — P. 3522.
  79. Lai J. An investigation of spin coating of electron resists // Polym. Eng. Sci. — 1979. —Vol. 19. —P. 1117−1121.
  80. Givens F. Daughton W. On the uniformity of thin films: a new technique applied to polyimides//J. Electrochem. Soc. — 1979. — Vol. 126.—P. 269−272.
  81. Daughton W. Givens F. An Investigation of the Thickness Variation of Spun-on Thin Films Commonly Associated with the Semiconductor Industry // J. Electrochem. Soc. — 1982.— Vol. 129, —P. 173−179.
  82. Chen B. Investigation of the solvent evaporation effect on spin coating of thin films//Polym. Eng. Sci. — 1983. — Vol. 23. — P. 399−403.
  83. Weill A. Dechenaux E. The spin-coating process mechanism related to polymer solution properties // Polym. Eng. Sc. — 1988. — Vol. 28. — P. 945−948.
  84. Spangler L. Influence of solvent and molecular weight on thickness and surface topography of spin-coated polymer films // Polym. Eng. Sci. — 1990. — Vol. 30. — P. 945−948.
  85. Pham J.Q. Green P.F. The glass transition of thin film polymer/polymer blends: Interfacial interactions and confinement // J. Chem. Phys. — 2002. — Vol. 116. — P. 5801.
  86. Lawrence C.J. The mechanics of spin coating of polymer films // Phys. Fluid. — 1988, —Vol. 31. —P. 2786.
  87. Jiang H., Su W., Caracci S., Bunning T.I., Cooper T., Adams W.W. Optical waveguiding and morphology of chitosan thin films // J. Appl. Polym. Sci. — 1996. — Vol. 61, —P. 1163−1171.
  88. Yoon S.H. Development of the Biopolymeric Optical Planar Waveguide with Nanopattern // JSEMAT. — 2011. — Vol. 1. — P. 56−61.
  89. Nicol E., Habib-Jiwan J., Jonas A.M. Polyelectrolyte Multilayers as Nanocontainers for Functional Hydrophilic Molecules // Langmuir. — 2003. — Vol. 19. —P. 6178−6186.
  90. GuyomardA. MullerG., GlinelK. Buildup of Multilayers Based on Amphiphilic Poly electrolytes // Macromolecules. — 2005. Vol. 38. —P. 5737−5742.
  91. McAloneyD., StudnaA., DudnikV., GohC. Atomic Force Microscopy Studies of Salt Effects on Polyelectrolyte Multilayer Film Morphology // Langmuir. — 2001. — Vol. 17,—P. 6655−6663.
  92. Raoufia N. Surre F. Sun T., Rajarajan M., Grattan K. Wavelength dependent pH optical sensor using the layer-by-layer technique // Sensor. Actuat. B. — 2012. — Vol. 169. —P. 374−381.
  93. Gu B., Yin M., Zhang A., Qian J., He S. Biocompatible Fiber-Optic pH Sensor Based on Optical Fiber Modal Interferometer Self-Assembled With Sodium Alginate/Polyethylenimine Coating // IEEE Sens. J. — 2012. — Vol. 12. — P. 14 771 482 .
  94. Protsenko I.E., Zaimidoroga O.A., Samoilov V.N. Heterogeneous medium as a filter of electromagnetic radiation // J. Opt. A: Pure Appl. Opt. — 2007. — Vol. 9. — P. 363−368.
  95. Kachan S., Stenzel O., Ponyavina A. High-absorbing gradient multilayer coatings with silver nanoparticles // Appl. Phys. B. — 2006. — Vol. 84. — P. 281−287.
  96. Cai W., Shalaev, V. Optical Metamaterials: Fundamentals and Applications. — New York: Springer, 2010.
  97. Hutter E., Fendler J. Exploitation of Localized Surface Plasmon Resonance // Adv. Mater. — 2004. — Vol. 16, —P. 1685−1706.
  98. Moiseev S.G., Pashinina E.A., Sukhov S.V. On the problems of transparency of metal-dielectric composite media with dissipative and amplifying components // Quantum Electron. — 2007. — Vol. 37. — P. 446−452.
  99. Oraevskii A.N., Protsenko I.E. High refractive index and other optical properties of heterogeneous media // JETP Lett. — 2000. — Vol. 72. — P. 445−448.
  100. Shalaev V.M., Cai W., Chettiar U.K., Yuan H., Sarychev A.K., Drachev V.P., Kildishev A.V. Negative index of refraction in optical Metamaterials // Optics Lett. — 2005. — Vol. 30. — P. 3356−3358.
  101. Shen J., Catrysse P., Fan S Mechanism for Designing Metallic Metamaterials with a High Index of Refraction // Phys. Rev. Lett. — 2005. — Vol. 94. — P. 197 401.
  102. Sukhov S.V. Nanocomposite material with the unit refractive index // Quantum Electron. — 2005. — Vol. 35. — P. 741−744.
  103. Yuan H., Chettiar U. K., Cai W. A negative permeability material at red light // Optics Express.—2007, —Vol. 15. —P. 1076−1083.
  104. Vavarelsky I.U., Maenosono R., Kwek J.W., Higashitani K. Thermal modification of layer-by-layer assembled gold nanoparticle films // Colloid. Surface. — 2009. — Vol. 340, —P. 193−198.
  105. David C., Guillot N., Shen H., Toury T., Chapelle M. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor // Nanotechnology. — 2010. — Vol. 21. — P. 475 501.
  106. Kneipp K., Wang Y., Kneipp H., Perelman L., Itzkan I., Dasari R., Feld M. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) // Phys. Rev. Lett. — 1997. —Vol. 78. —P. 1667−1670.
  107. Avasthi D.K., Mishra Y.K., Singhal R., Kabiraj D., Mohapatra S., Mohanta B., Gohil N.K., Singh N. Synthesis of Plasmonic Nanocomposites for Diverse Applications // J. Nanosci. Nanotechno. — 2010. — Vol. 10. — P. 2705−2712.
  108. Larsson E.M., Langhammer C., Zone I., Kasemo B. Nanoplasmonic probes of catalytic reactions // Science. — 2009. — Vol. 326. — P. 1091−1094.
  109. Hugall J.T., Baumberg J.J., Mahajan S. Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces // Appl. Phys. Lett. — 2009.1. Vol. 95, —P. 141 111.
  110. Adhyapak P.V., Singh N., Vijayan A., Aiyer R.C., Khanna P.K. Single mode waveguide properties of m-NA doped Au/PVA nano-composites: Synthesis characterization and studies //Material. Lett. — 2007. —Vol. 61. — P. 3456−3461.
  111. Almeida R.M., Marques A.C., Ferrari M. Optical Nanocomposite Planar Waveguides Doped with Rare-Earth and Noble Metal Elements // J. Sol-Gel Sci. Tech.2003. —Vol.26. —P. 891−896.
  112. Spano F., Massaro A., Cingolani R., Athanassiou A. Optical enhancement by means of concentration tuning of gold precursors in polymer nanocomposite materials // Microelectron. Eng. — 2011. — Vol. 88. — P. 2763−2766.
  113. Sarkar S., Guibal E., Quignard F., SenGupta A.K. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications // J. Nanopart. Res. —2012, —Vol. 14. —P. 715.
  114. Kitaoka T., Yokota S., Opietnik M., Rosenau T. Synthesis and bio-applications of carbohydrate-gold nanoconjugates with nanoparticle and nanolayer forms // Mat. Sci. Eng. C. — 2011. — Vol. 31. — P. 1221−1229.
  115. Pal A., Esumi K., Pal T. Preparation of nanosized gold particles in a biopolymer using UV photoactivation // J. Colloid. Interf. Sci. — 2005. — Vol. 288. — P. 396−401.
  116. Huang H., Yang X. Synthesis of Chitosan-Stabilized Gold Nanoparticles in the Absence/Presence of Tripolyphosphate // Biomacromolecules. — 2004. — Vol. 5. — P. 2340−2346.
  117. Esumi K., Takei N., Yoshimura T. Antioxidant-potentiality of gold/chitosan nanocomposites//Colloid. Surface. B. — 2003. — Vol. 32. — P. 117−123.
  118. Tiwari A.D., Mishra A.K., Mishra S.B., Arotiba O.A., Mamba B.B. Green synthesis and stabilization of gold nanoparticles in chemically modified chitosan matrices // Int. J. Biol. Macromol. — 2011. — Vol. 48. — P. 682−687.
  119. Yang K.H., Liu Y.C., Hsu T.C., Tsai H.I. pH-insensitive fabrication of gold nanoparticles with high concentration by ultrasound-assisted electrochemical process via aid of chitosan//Mater. Res. Bull. — 2010. — Vol. 45. — P. 63−68.
  120. Venkatpurwar V., Pokharkar V. Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity // Mater. Lett. — 2011. — Vol. 65. —P. 999−1002.
  121. Hussain S.T., Iqbal M., Mazhar M. Size control synthesis of starch capped-gold nanoparticles//J. Nanopart. Res. — 2009. — Vol. 11. — P. 1383−1391.
  122. Shervani Z., Yamamoto Y. Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites // Carbohyd. Res. — 2011. — Vol. 346. — P. 651 658.
  123. Rozenberg B.A., Tenne R. Polymer-assisted fabrication of nanoparticles and nanocomposites // Prog. Polym. Sci. — 2008. — Vol. 33. — P. 40−112.
  124. Huang H., Yuan Q., Yang X. Preparation and characterization of metal-chitosan nanocomposites // Colloid. Surface. B. — 2004. — Vol. 39. — P. 31−37.
  125. El-Rafie M. I-L, El-Naggar M.E., Ramadan M.A., Fouda M.M.G., Al-Deyab S.S., Hebeish A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization // Carbohyd. Polym. — 2011. — Vol. 86. — P. 630−635.
  126. Hebeish A.A., El-Rafie M.H., Abdel-Mohdy F.A., Abdel-I-Ialim E.S., Emam H.E. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles // Carbohyd. Polym. — 2010. — Vol. 82. — P. 933−941.
  127. Mayer A.B.R, Mark J.E. Colloidal gold nanoparticles protected by water-soluble homopolymers and random copolymers // Eur. Polym. J. — 1998. — Vol. 34. — P. 103−108.
  128. Ding Y., Xia X.H., Zhang C. Synthesis of metallic nanoparticles protected with N, N, N-trimethyl chitosan chloride via a relatively weak affinity // Nanotechnology. — 2006, —Vol. 17,—P. 4156−4162.
  129. Laudenslager M.J., Schiffman J.D., Schauer C.L. Carboxymethyl Chitosan as a Matrix Material for Platinum, Gold, and Silver Nanoparticles // Biomacromolecules. — 2008. — Vol. 9. — P. 2682−2685.
  130. Di Carlo G., Curulli A., Toro R.G., Bianchini C., De Caro T., Padeletti G., Zane D., Ingo G.M. Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing//Langmuir. — 2012. — Vol. 28. —P. 5471−5479.
  131. Huang L., Zhai M., Peng J., Xu L., Li J., Wei G. Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions // J. Colloid. Interf. Sci. — 2007. — Vol. 316. — P. 398−404.
  132. Yonezawa Y., Miyama T., Sato T. Transfer of Dye Monolayers onto Silver Metal Films Formed by Photolysis of Silver Salt of Carboxymethylcellulose // Chem. Lett. — 1992. — Vol. 21. — P. 2455−2458.
  133. Raveendran P., Fu J., Wallen S.L. Completely «Green» Synthesis and Stabilization of Metal Nanoparticles//J. Am. Chem. Soc. — 2003. — Vol. 125. —P. 13 940−13 941.
  134. Valodkar M., Modi S., Pal A., Thakore S. Synthesis and antibacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach // Mater. Res. Bull. — 2011. — Vol.46. —P. 384−389.
  135. Murugadoss A., Sakurai H. Chitosan-stabilized gold, gold-palladium, and gold-platinum nanoclusters as efficient catalysts for aerobic oxidation of alcohols // J. Mol. Catal. A.—2011. —Vol. 341. —P. 1−6.
  136. Daniel M.C., Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology // Chem. Rev. — 2004. — Vol. 104. — P. 293−346.
  137. Yonezawa Y., Sato T., Ohno M., Hada H. Photochemical formation of colloidal metals //J. Chem. Soc. Farad. T. 1. — 1987.— Vol. 83.—P. 1559−1567.
  138. Wei D., Qian W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent//Colloid. Surface. B. — 2008. — Vol. 62.—P. 136−142.
  139. Esumi K., Hosoya T., Suzuki A., Torigoe K. Spontaneous Formation of Gold Nanoparticles in Aqueous Solution of Sugar-Persubstituted Poly (amidoamine)dendrimers // Langmuir. — 2000. — Vol. 16. — P. 2978−2980.
  140. Colloidal Gold: Principles, Methods, and Applications / ed. Hayat M.A. — San Diego: Academic Press, 1989.
  141. No H.K., Kim S.H., Lee S.H., Park N.Y., Prinyawiwatkul W. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time // Carbohyd. Polym. — 2006. — Vol. 65. — P. 174−178.
  142. Hugerth A., Caram-Lelham N., Sundelof L.O. The effect of charge density and conformation on the polyelectrolyte complex formation between carrageenan and chitosan // Carbohyd. Polym. — 1997. — Vol. 34. — P. 149−156.
  143. Chang C.C., Pai C.L., Chen W.C., Jenekhe S.A. Spin coating of conjugated polymers for electronic applications // Thin Solid Films. — 2005. — Vol. 479. — P. 254−260.
  144. Middleman S., Hochberg A.K. Process Engineering Analysis in Semiconductor Device Fabrication. — McGraw-Hill, 1993.
  145. Lawrence C.J., Zhou W. Spin coating of non-Newtonian fluids // Journal of Non-Newtonian Fluid Mechanics. — 1991. —Vol. 39. —P. 137−187.
  146. Burgess S.L., Wilson S.D. Spincoating of a viscoplastic material // Phys. Fluids. — 1996. —Vol. 8. —C. 2291−2997.
  147. Charpin J.P.F., Lombe M., Myers T.G. Spin coating of non-Newtonian fluids with a moving front // Phys. Rev. — 2007. — Vol. 76. — P. 163 122−163 129.
  148. Britten J.A., Thomas I.M. Non-Newtonian flow effects during spin coating large-area optical coatings with colloidal suspensions // J. Appl. Phys. — 1992. — Vol. 71.1. P. 972−979.
  149. Niamsa N., Baimark Y. Preparation and Characterization of Highly Flexible Chitosan Films for Use as Food Packaging // Am. J. Food Techn. — 2009. — Vol. 4. — P. 162−169.
  150. Kim K. M, Son J.H., Kim S.K., Weller C.L., Hanna M.A. Properties of Chitosan Films as a Function of pH and Solvent Type // J. Food Sci. — 2006. — Vol. 71. — P. 119−124.
  151. Muller F.L., Davidson J.F. Rheology of Shear Thinning Polymer Solutions // Ind. Eng. Chem. Res. — 1994. — Vol. 33. — P. 2364−2367.
  152. Wang W., Bo S., Li S., Qin W. Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. // Int. J. Biol. Macromol. — 1991. — Vol. 13. —P. 281−285.
  153. Suyatma N.E., Tighzert L., Copinet A. Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films // J. Agric. Food Chem.2005. — Vol. 53. — P. 3950−3957.
  154. Bajdik J., Marciello M., Caramella C., Domjan A., Suvegh К., Marek Т., Pintye-Hodi K. Evaluation of surface and microstructure of differently plasticized chitosan films // J. Pharmaceut. Biomed. — 2009. — Vol. 49. — P. 655−659.
  155. Ziania K., Oses J., Coma V., Mate J. Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation // LWT-Food Sci. Technol. — 2008. — Vol. 41. — P. 21 592 165.
  156. Ligler F., Lingerfelt В., Price R., Schoen P. Development of Uniform Chitosan Thin-Film Layers on Silicon Chips // Langmuir. — 2001. — Vol. 17. — P. 5082−5084.
  157. P., Лейтон P., Сэндс M. Фейнмановские лекции по физике. Том 7: Физика сплошных сред. — Эдиториал УРСС, 2004.
  158. Mathew J., Thomas K.J., Nampoori V.P., Radhakrishnan P. A Comparative Study of Fiber Optic Humidity Sensors Based on Chitosan and Agarose // S&T. — 2007. — Vol. 84, —P. 1633−1640.
  159. Brack H. Tirmizi S., Jr W.R. A spectroscopic and viscometric study of the metal ion-induced gelation of the biopolymer chitosan // Polymer. — 1997. — Vol. 38. — C. 2351−2362.
  160. Wang T.C., Rubner M.F., Cohen R.E. Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: Controlling metal concentration and nanoparticle size // Langmuir. — 2002. — Vol. 18. — P. 3370−3375.
  161. Joly S., Kane R., Radzilowski L., Wang T., Wu A., Cohen R.E., Thomas E.L., Rubner M.F. Multilayer nanoreactors for metallic and semiconducting particles // Langmuir. —2000. —Vol. 16. —P. 1354−1359.
  162. Ikeda S., Akamatsu K., Nawafune H., Nishino T., Deki S. Formation and growth of copper nanoparticles from ion-doped precursor polyimide layers // J. Phys. Chem. B.2004.—Vol. 108, —P. 15 599−15 607.
  163. Gotoh Y., Igarashi R., Ohkoshi Y., Nagura M., Akamatsu K., Deki S. Preparation and structure of copper nanoparticle/poly (acrylic acid) composite films // J. Mater. Sci.2000. —Vol. 10. —P. 2548−2552.
  164. Huang H., Yang X. Chitosan mediated assembly of gold nanoparticles multilayer // Colloid. Surface. A. — 2003. — Vol. 226. — P. 77−86.
  165. Miyama T., Yonezawa Y. Aggregation of Photolytic Gold Nanoparticles at the Surface of Chitosan Films // Langmuir. — 2004. — Vol. 20. — P. 5918−5923.
  166. Т. Б. Горбунова В.В., Логинов А. В. Дисперсии коллоидов меди, серебра и золота в твердых пористых и полимерных матрицах // Ж. Общ. Хим. — 1999, —Т. 69. —С. 1937−1943.
  167. Khlebtsov N.G. Determination of Size and Concentration of Gold Nanoparticles from Extinction Spectra // Anal. Chem. — 2008. — Vol. 80. — P. 6620−6625.
  168. Ogawa S., Hayashi Y., Kobayashi N., Tokizaki Т., Nakamura A. Novel preparation method of metal nanoparticles dispersed in polymer-films and their 3D-ordered optical nonlinearities // Jpn. J. Appl. Phys. 2. — 1994. — Vol. 33. — P. 331 333.
  169. Dubas S.T., Pimpan V. Optical switch from silver nanocomposite thin films // Mater. Lett. — 2008. — Vol. 62. — P. 3361−3363.
  170. Pei Y., Yao F., Ni P. Sun X. Refractive index of silver nanoparticles dispersed in polyvinyl pyrrolidone nanocomposite // J. Mod. Optic. — 2010. — Vol. 57. — P. 872 875.
  171. Pellegrini G., Bello V., Mattei G., Mazzoldi P. Local-field enhancement and plasmon tuning in bimetallic nanoplanets // Opt. Express. — 2007. — Vol. 15. — P. 10 097−10 102.
  172. Henglein A. Physicochemical properties of small metal particles in solution: «microelectrode» reactions, chemisorption, composite metal particles, and the atom-tometal transition//J. Phys. Chem. — 1993. —Vol. 97.—P. 5457−5471.
  173. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles.1. New York: Wiley, 2012.
  174. Ji Y., Yang S., Guo S., Song X., Ding В., Yang Z. Bimetallic Ag/Au nanoparticles: A low temperature ripening strategy in aqueous solution // Colloid. Surface. A. — 2010.1. Vol. 372. — P. 204−209.
  175. Richert L., Lavalle P., Payan E., Shu X, Prestwich G.D., Stoltz J.F., Schaaf P., Voegel J.C., Picart C. Layer-by-layer buildup of polysaccharide films: Physical chemistry and cellular adhesion aspects // Langmuir. — 2004. — Vol. 20. — P. 448 458.
  176. Werner T., Klimant I., Wolfbeis O.S. Ammonia-sensitive Polymer Matrix Employing Immobilized Indicator Ion Pairs // Analyst. — 1995. — Vol. 120. — P. 1627−1631.
  177. Qi Z., Matsuda N., Santos J., Itoh K., Takatsu A., Kato K. A Study of Molecular Adsorption of Bromothymol Blue by Optical Waveguide Spectroscopy // Langmuir. — 2003. —Vol. 19.—P. 214−217.
  178. Kuhr W.G., Licklider L., Amankwa L. Imaging of Electrophoretic Flow across a Capillary Junction // Anal. Chem. — 1993. — Vol. 65. — P. 277−282.
  179. Goicoechea J., Zamarreno C.R., Matias I.R., Arregui F.J. Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red // Sensor. Actuat. B. — 2008. — Vol. 132. — P. 305−31 1.
  180. Phaechamud T., Koizumi T., Ritthidej G.C. Chitosan citrate as film former: compatibility with water-soluble anionic dyes and drug dissolution from coated tablet // Int. J. Pharm. — 2000. — Vol. 198. — P. 97−111.
  181. Chung A J., Rubner M.F. Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films // Langmuir. — 2002. — Vol. 18, —P. 1176−1183.
  182. Yoo D., Shiratori S.S., Rubner M.F. Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers of Weak Polyelectrolytes // Macromolecules. — 1998. — Vol. 31. — P. 4309^1318.
  183. Kolchinskiy V., Mironenko A., Voznesenskiy S., Bratskaya S., Nepomnyaschiy A. Investigation of the humidity influence on optical properties of chitosan thin films by spectroscopic ellipsometry // Phys. Proc. 2012. Vol. 23. P. 110−114.
  184. C.C., Сергеев А. А., Мироненко А. Ю., Братская С. Ю., Колчинский В. А. Влияние относительной влажности среды на оптические и волноводные характеристики тонких хитозановых пленок // Письма ЖТФ. 2012. Т. 38. С. 56−62.
  185. Mironenko A., Sergeev A., Voznesenskiy S., Marinin D., Bratskaya S. pH-indicators doped polysaccharide LbL coatings for hazardous gases optical sensing // Carbohyd. polym. 2013. Vol. 92. P. 769−774.
  186. СЭМ изображения покрытий на основе хитозана получены Модиным Е. Б. в междисциплинарной лаборатории электронной микроскопии и обработки изображений ФГАОУ ВПО ДВФУ-
  187. ПЭМ изображения наночастиц Ag, Au, Ag/Au получены Модиным Е. Б. и Фоминым Д. В. в Дальневосточном центре электронной микроскопии (отдел электронной микроскопии ФГБУН ИБМ ДВО РАН).
  188. Выражаю искреннюю благодарность научному руководителю д.х.н. Братской Светлане Юрьевне, а также д.ф.-м.н. Вознесенскому Сергею Серафимовичу за помощь в обсуждении результатов.
Заполнить форму текущей работой