Помощь в написании студенческих работ
Антистрессовый сервис

Антигенсвязывающие свойства бифункциональных моноклональных антител

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Актуальность проблемы. Наряду с обычными моноклональными антителами (МКА) гибридомная технология позволяет получать биспецифические (бифункциональные) антитела1 (БИАТ), несущие сайты связывания двух различных антигенов (АГ). БИАТ синтезируются гибридными гибридомами (тетрадомами), которые образуются при слиянии двух родительских гибридом (Рис. 1). Молекулы бифункциональных антител образуются… Читать ещё >

Антигенсвязывающие свойства бифункциональных моноклональных антител (реферат, курсовая, диплом, контрольная)

Содержание

  • Список использованных сокращений
  • I. ВВЕДЕНИЕ
  • II. ОБЗОР ЛИТЕРАТУРЫ
  • 1. История создания бифункциональных антител и области их применения
  • 2. Тестирование бифункциональных антител
  • 3. Взаимодействие антител с антигенами в растворе и на 17 твердой фазе
  • 4. Антигенсвязывающие свойства бифункциональных моноклональных антител
  • 5. Применение бифункциональных антител в иммуногистохимии, иммуноблоттинге и твердофазном иммуноферментном методе

Актуальность проблемы. Наряду с обычными моноклональными антителами (МКА) гибридомная технология позволяет получать биспецифические (бифункциональные) антитела1 (БИАТ), несущие сайты связывания двух различных антигенов (АГ) [Milstein and Cuello, 1983]. БИАТ синтезируются гибридными гибридомами (тетрадомами), которые образуются при слиянии двух родительских гибридом (Рис. 1). Молекулы бифункциональных антител образуются в тетрадомах при рекомбинации двух АГ-связывающих сайтов («полумолекул»). Родительские МКА и соответствующий АГ-связывающий сайт БИАТ имеют одинаковую структуру АГ-связывающих центров (см. Рис. 1) и, как следствие, проявляют одинаковые АГ-связывающие свойства. В работе Алларда с соавторами [Allard et al., 1992], показано, что при связывании с антигеном в растворе аффинность родительских моноклональных антител равна аффинности соответствующего АГ-связывающего сайта БИАТ.

В практическом плане БИАТ, несущие сайты связывания с тестируемым антигеном и ферментом, (например пероксидазой хрена [ПХ]) могут выполнять роль меченых2 молекул и заменять традиционные конъюгаты (антитела, ковалентно связанные с ферментом). Такие БИАТ могут успешно использоваться в иммуногистохимии, иммуноблоттинге и иммуноферментном анализе (ИФА), и их называют биоконъюгатами нового поколения — см. обзор: [Cao and Sures (1998)]. Другим важным приложением БИАТ,.

БИАТ могут быть также получены химически: путем ковалентного связывания АГ-связывающих сайтов (Fab-фрагментов) к двум неидентичным антигенам. Однако такие антитела в настоящем исследовании не рассматриваются., 2 Здесь и ниже термин меченые антитела употребляется нами в широком смысле и может предполагать любой характер маркирования (метка изотопом, ферментом, коллоидом и т. п.).

• •.

Антитела к антигену 1 (Гибридома 1).

Антитела к антигену 2 (Гибридома 2).

Антиген 1 Y.

Антиген 2.

Бифункциональные антитела (Тетрадома).

Рис. 1. Родительские и бифункциональные антитела, образуемые гибридными гибридомами (тетрадомами).

Антитело.

Антиген.

Бифункциональное антитело.

Fab-фрагмент ч:

Твердая фаза о с/о О в.

Рис. 2. Связывание моноклональных (монофункциональных) и бифункциональных антител с антигеном, иммобилизованным на твердой фазе. а — моновалентное связывание антител с иммобилизованным антигеномб — бивалентное связывание антител с иммобилизованным антигеномв — связывание бифункциональных антител с иммобилизованным антигеном (может быть только моновалентным) — г — связывание Fab-фрагмента антител с иммобилизованным антигеном (может быть только моновалентным) включающих сайты связывания с антигеном злокачественной клетки и биологически активным веществом, может быть направленный транспорт лекарств к опухолевым клеткам (направленная химиотерапия) [Webb at al., 1985].

Весьма важной как с практической, так и с теоретической точки зрения, является проблема взаимодействия антител (AT) с поверхностными АГ клеток и вирусов, а также с АГ, адсорбированными на твердой фазе. Молекула иммуноглобулина класса IgG несет два АГ-связывающих сайта и может связываться с поверхностными и иммобилизованными АГ как одним антигенсвязывающим сайтом (моновалентно, см. Рис. 2, а), так и двумя антигенсвязывающими сайтами одновременно (бивалентно, см. Рис 2, б). БИАТ несут два сайта, специфичных к различным антигенам, и, таким образом, могут связываться с адсорбированным АГ только моновалентно (см. Рис. 2, в). При этом следует принять во внимание, что структура молекулы БИАТ, исключая один АГ-связывающий сайт (как первичная, так и третичная), тождественна структуре родительских AT. Таким образом, сравнительный анализ связывания монофункциональных AT и БИАТ с иммобилизованным АГ позволяет корректно оценить характер взаимодействия МКА (моновалентное или бивалентное). Отметим, что до сих пор характер взаимодействия AT с иммобилизованным АГ оценивали путем сравнения параметров связывания нативной молекулы AT и ее Fab-фрагментов [Greenwood et al., 1963]. Эти фрагменты включают антигенсвязывающий сайт и образуются из молекулы IgG после обработки папаином (Рис. 2, г). Очевидно, что для оценки характера взаимодействия AT с АГ Fab-фрагмент AT является гораздо менее полноценной молекулой, чем БИАТ.

Бесспорно, что бивалентное связывание AT с антигенами существенно прочнее, чем моновалентное. Следовательно (по крайней мере, теоретически), обычные МКА должны обеспечивать более чувствительную детекцию иммобилизованного антигена по сравнению с БИАТ. Вместе с тем, большой массив публикаций свидетельствует об успешном применении БИАТ как меченых молекул в иммуногистохимии, иммуноблоттинге и твердофазном ИФА (эти данные суммированы в обзоре [Cao and Sures, 1998]). Однако постулируемые преимущества БИАТ как меченых молекул по сравнению с обычными конъюгатами представляются весьма спорными. На сегодняшний день, на наш взгляд, отсутствуют работы, в которых бы корректно сравнивались свойства БИАТ и обычных МКА, конъюгированных с ферментом, как меченых молекул.

Цели и задачи исследования. Цель исследования — изучение типа взаимодействия AT с иммобилизованными АГ (моновалентное или бивалентное) путем сравнительного анализа связывания МКА и БИАТ, содержащих тождественные сайты связывания с АГ, а также сопоставление двух типов меченых молекул: традиционных коныогатов МКА с ферментом и БИАТ, несущих сайт связывания с ферментом.

В задачи работы входило:

1) для определения типа взаимодействия антител с иммобилизованным антигеном (моновалентное или бивалентное) соотнести равновесные константы связывания родительских антител и тождественного антигенсвязывающего сайта бифункциональных антител;

2) для анализа характера взаимодействия сравнить антитела к антигенам различной молекулярной массы и структуры: миоглобину (мол. масса" 18, б кДа), пероксидазе хрена (мол. масса"40 кДа) и IgG человека (мол. масса"160 кДа).

3) сравнить два типа меченых молекул: конъюгаты антимиоглобиновых антител с пероксидазой хрена и бифункциональных антител, несущих тождественный сайт связывания с миоглобином и пероксидазой хрена в твердофазном ИФА и сделать вывод о чувствительности анализа.

Научная новизна и научно-практическая значимость исследования. Для оценки характера взаимодействия антител с иммобилизованным антигеном (моновалентное или бивалентное) предложен оригинальный подход, который предполагает сравнительный анализ параметров связывания родительских моноклональных антител и бифункциональных моноклональных антител, несущих тождественный сайт связывания с антигеном.

Проведен сравнительный анализ двух типов меченых молекул антител: антител, конъюгированных с пероксидазой хрена (традиционного конъюгата) и БИАТ, несущих тождественный сайт связывания с тестируемым антигеном и пероксидазой хрена. Показано, что бифункциональные антитела в качестве меченых молекул не дают выигрыша в чувствительности иммуноферментного анализа в сравнении с традиционными конъюгатами.

Полученные результаты могут представлять интерес для возможного использования этого нового класса биомолекул.

II. ОБЗОР ЛИТЕРАТУРЫ.

В настоящем обзоре мы кратко опишем историю создания БИАТ и области их применения, отсылая, в основном, к обзорным статьям, опубликованным за последние 10 лет. Относительно полно будут освещены только проблемы, которые составляют предмет наших исследований. Мы опишем методы получения клонов-продуцентов БИАТ, механизмы взаимодействия антител с антигенами (включая антигены, иммобилизованные на твердой фазе) и применение БИАТ в качестве меченых антител в твердофазном ИФА.

VII. выводы.

1. Для определения типа взаимодействия антител с иммобилизованным антигеном (моновалентное или бивалентное) предложен сравнительный анализ параметров связывания родительских антител и тождественного антигенсвязывающего сайта бифункциональных антител.

2. Получены доказательства того, что в выбранных условиях тестирования антимиоглобиновые и антипероксидазные антитела связываются с антигеном, иммобилизованным на поверхности иммунных планшетов, преимущественно двумя антигенсвязывающими сайтами (бивалентно). Вместе с тем, антитела к IgG человека связываются с иммобилизованным антигеном, в основном, одним антигенсвязывающим сайтом (моновалентно).

3. Получены доказательства того, что степень связывания бифункциональных антител с антигеном, иммобилизованным на твердой фазе, существенно ниже, чем родительских монофункциональных.

4. Показано, что использование бифункциональных антител, несущих сайты связывания с миоглобином и пероксидазой хрена, в качестве детектирующих молекул при анализе миоглобина, не дает выигрыша в чувствительности анализа в сравнении с традиционными конъюгатами (антителами, ковалентно связанными с пероксидазой хрена) — как при определении иммобилизованного миоглобина, так и в двухсайтном сэндвич-методе ИФА.

Показать весь текст

Список литературы

  1. .Д., Рохлин О. В. (1978) Молекулярные и клеточные основы иммунологического распознавания, Наука, Москва.
  2. С.Д., Зайцев С. В., Мевх А. Т. (1985) Физико-химические исследования молекулярных механизмов действия физиологически активных соединений. Рецепция. «Биоорганическая химия» (Итоги науки и техники) ВИНИТИ, Москва, «Мир», т. 3, стр. 51−55.
  3. А.Д., Массино Ю. С., Дергунова Н. Н., Кизим Е. А., Сегал О. Л., Смирнова М. Б., Востриков В. М., Коляскина Г. И. (1996). Моноклональные биспецифические антитела: получение и изучение антигенсвязывающих свойств. Вестник РАМН, т. 4, стр. 46−51.
  4. Н.Н., Массино Ю. С., Кизим Е. А., Дмитриев А. Д. (1993). Изучение взаимодействия бифункциональных моноклональных антител с антигенами радиоиммунологическим методом. Бюл. Эксп. Биол. Мед., т. CIV, № 9, стр. 299−301.
  5. А.А., Пшеничкин С. Ф., Щурин М. Р. (1988) Опиоиды в регуляции иммунитета, в сб. «Новое в иммунологии и терапии психических заболеваний», Москва, стр. 7−20.
  6. Иммунология, под ред. У. Пола (1989) Москва, «Мир», т. 3, стр. 15.
  7. А. (1985) «Основы биохимии», Москва, «Мир», т.2.
  8. А., Бростофф Дж., Мейл Д. (2000) Иммунология. М., Мир.
  9. М. (1993) «Структура и функции иммуноглобулинов» в сб. «Структура и функции антител» под ред. Глинна Л., Стыоарда М., Москва, «Мир», стр. 31.
  10. В.П., Рябухин И. А., Морозов Г. В., (1989) Иммуноферментная детекция специфических антигенов мозга как критерий проницаемости гематоэнцефалического барьера крыс после острого у-облучения. Бюлл. Эксп. Биол. Мед., 107, № 4, 464 466.
  11. В.П., Жирков Ю. А., Дмитриева Т. Б. (1995) Направленный транспорт психотропных средств через гематоэнцефалический барьер. Моноклональные антитела в нейробиологии: Под ред. М. Б. Штарка, М. В. Старостиной.- Новосибирск: АО «Офсет», стр. 171 182.
  12. W. J., Moran С. A., Nagel Е., Collins G., Largen M. Т. (1992) Antigen binding properties of highly purified bispecific antibodies. Mol. Immunol., 29, № 10, 1219−1227.
  13. J., Guesdon J.L., Masc J.C., Nato F. (1994) Development of a bispecific monoclonal antibody for use in molecular hybridisation. J. Immunol. Methods, 169, № 1, 123−133.
  14. Azimzadeh, A., Pellequer, J.L., and Van Regenmortel, M.H.V. (1992) Operational aspects of antibody affinity constants measured by liquid-phase and solid-phase assays. J Mol Recogn, 5, 9−18.
  15. Т., Takada J., Motoyama N., Okada H. (1992) Mol. Immunol., 29, 37−44.
  16. R.M., Utiger R.D. (1972) The preparation and specificity of antibody to thyrotropin releasing hormone. Endocrinology, 90, 722 727.
  17. Bohlen H., Manzke O., Patel В., Moldenhauer G., Dorken В., Von Fliedner V., Diehl V., Tesch H. (1993) Cytolysis of leukemic B-cells by T-cells activated via two bispecific antibodies. Cancer Res., 55, № 18, 4310−4314.
  18. K., Stainstraesser A., Hermentin P., Kuhlmann L., Bruynck A., Magerstaedt M., Seemann G., Schwarz A., Sedlacek H. H. (1991) Generation of bispecific monoclonal antibodies for two phase radioimmunotherapy. Br. J. Cancer, 63, № 5, 681−686.
  19. G., Polesi C., Beretta A., Ghelmi S., Albertini A. (1990) Quantitative immunoenzymatic assay of human lutropin, with use of a bispecific monoclonal antibody. Clin. Chem., 36, № 1, 47−52.
  20. Burchiel S.W. and Rhodes B.A. (eds) (1983) Radioimmunoimaging and Radioimmunotherapy Elsevier, New York, 1983.
  21. Cao Y., Suresh M.R. (1998). Bispecific antibodies as novel bioconjugates. Bioconjug. Chem., 9, № 6, 635−44.
  22. Cao Y., Christian S., Suresh M.R. (1998) Development of a bispecific monoclonal antibody as a universal immunoprobe for detecting biotinylated macromolecules. J. Immunol. Methods. 220, № 1, 85−91.
  23. Chervonsky A. V., Faerman A. J., Evdonina L. V., Jazova A. K., Kazarov A. R. and Gussev A. I. (1988) A simple metabolic system for selection of hybrid hybridomas (tetradomas) producing bispecific monoclonal antibodies. Mol. Immunol., 25, 913−915.
  24. Cifone M.A. and Fidler I J. (1981) Increasing metastatic potential is associated with increasing genetic instability of clones isolated from murine neoplasms. Proc. Natl. Acad. Sci., 78, 6949−6952.
  25. M.J., Morrison S.L. (1997) Design and production of novel tetravalent bispecific antibodies. Nat. Biotechnol., 15, № 2, 159−63.
  26. Cotton R. G. H., Milstein C. (1973) Fusion of two immunoglobulin-producing myeloma cells. Nature, 244, 42−43.
  27. Crothers, D.M. and Metzger, H. (1972) The influence of polyvalency on binding properties of antibodies. Immunochemistry, 9, 341−346.
  28. De Lau W. В. M., Van Loon A. E., Heije K., Valerio D. and Bast B. J. E. G. (1989) Production of hybrid hybridoma based on HATS -neomycinr double mutants. J. Immunol. Methods, 117, 1−8.
  29. De Lau W. В. M., Heije K., Neeijes J. J., Oosterwegel M., Rosemuller E. and Bast B. J. C. G. (1991) Absence of preferential homologous H/L chain association in hybrid hybridomas. J. Immunology, 146, № 3, 906 914.
  30. Demanet C., Brissink J., Moser M., Leo O., Thielemans K. (1992) Bispecific antibody therapy of two murine B-cell lymphomas. Int. J. Cancer, Suppl., 7, 67−68.
  31. Dower, S.K., Ozato, K., and Segal, D. M (1984) The interaction of monoclonal antibodies with MHC class I antigens on mouse spleen cells. I. Analasys of the mechanism of binding. J. Immunol., 132, 751 758.
  32. De Preval C. and Fougereau M. (1976) Specific interaction between VH and Vl regions of human monoclonal immunoglobulins. J. Mol. Biol., 102, 657−678.
  33. Eipper B.A. and Mains R.E. (1980) Structure and biosynthesis of pro-adrenocorticitropin/endorphin and related peptides. Endocrinol. Rev., 1, № 1, 1−27.
  34. O’Farrel P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250,4007−4021.
  35. R.R., Penney C.A., Browning A.C., Stripe F. Goerge A.J., Glennie M.J. (1995) Delivery of the ribosome-inactivating protein, gelonin, to lymphoma cells via CD22 and CD38 using bicpecific antibodies. Br. J. Cancer, 71, № 5, 986−994.
  36. Friguet, В., A.F. Chafotte, L. Djavadt-Ohaniance and M.E. Goldberg (1985) Measurments of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J. of Immunol. Meth., 77, № 2, 305−319.
  37. J.R., Hendershot L.M. (1993) Mutations within the nucleotide binding site of immunoglobulin binding protein inhibit ATPase activity and interfere with release of immunoglobulin heavy chain. J. Biol. Chem., 268, № 10, 7248−7255.
  38. G., Gandolfi A., Paradisi G., Rolleri E., Klasen E., Dressi V., Strom R., Celada F. (1989) Use of bispecific hybrid antibodies for the development of a homogeneous enzyme immunoassay. J. Immunol. Methods, 123, № 1, 131−140.
  39. Graciano, R.F., Somasundaram, С., and Goldstein, J. (1995) The production of bispecific antibodies, in 'Bispecific antibodies' (Finger, M.W., ed.), Spring Verlag, New York, Berlin, pp. 1−20.
  40. F.G., Hunter W.M., Glover J.S. (1963) The preparation of1 3 t1.labeled human growth hormone of hihg specific activity. Biochem. J., 89, 114−123.
  41. D. S., Stickney D. R., Slater J. M. (1988) Effects of murine bifunctional antibody infusion on leukocyte populations of patients with colon cancer. FASEB J., 2, A695
  42. Gruber M., Schodin B.A., Wilson E.R. and Kranz D.M. (1994) Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Esherichia coli. J. Immunology, 152, № 11, 5368−5374.
  43. Hamel P. A., Klein M. H. and Dorrington K. J. (1986) The role of the VL and Vh segments in the preferential reassociation of immunoglobulin subunits. Mol. Immunol., 23, № 5, 503−510.
  44. Hamel P. A., Klein M. H., Smith-Gill S. J., Dorrington K. J. (1987) Relative noncovalent association constant between immunoglobulin H and L chains is unrelated to their expression or antigen-binding activity. J. Immunol., 139, 3012−3020.
  45. Hammerling U., Aoki Т., DeHarven E., Boyse E. A., Old L. J. (1986) Use of hybrid antibody with anti-G and anti-ferritin specificities in locating cell surface antigens by electron microscopy. J. Exp. Med., 128,1461−1473.
  46. Handbook of biochemistry and molecular biology. Ed. G.O. Faseuau. (1976). V. II. P. 383. 3rd ed. CRC Press.
  47. L. M., Bole D. G., Kearney J. F. (1987a) The role of immunoglobulin heavy chain binding protein. Immunol. Today, 8, 111 115.
  48. L., Bole D., Koller G., Kearney J.F. (1987b) Assembly and secretion of heavy chains that do not associate posttranslationally with immunoglobulin heavy chain binding protein. J. Cell. Biol., 104, № 3, 761−767.
  49. L.M. (1990) Immunoglobulin heavy chain and binding protein complexes are dissociate in vivo by light chain addition. J. Cell. Biol., Ill, № 3, 829−837.
  50. Hendershot L.M., Wie J.Y., Gaut J.R., Lawson В., Freiden P.J., Murti K.G. (1995) In vivo expression of the endoplasmic reticulum. Mol. Biol. Cell., 6, № 3, 283−296.
  51. Holliger P., Prospero T. and Winter G. (1993) «Diabodies»: small bivalent and bispecific antibody fragments. Proc. Nat. Acad. Sci., USA, 90, 6444−6448.
  52. N. W., Mudgett M., Panka D. J., Margolies M. N. (1987) Immunoglobulin chain recombination among antidigoxin antibodies by hybridoma-hybridoma fusion. J. Immunol., 139, 2715−2723.
  53. Ishikawa E., Imagava M., Hashida S., Yoshitake S., Hamaguchi Y., Ueno T.(1983) J Immunoassay, 4, 209−314.
  54. L., Behrsing O., Kaiser G., Micheel B. (1988) Production and ELISA application of bispecific monoclonal antibodies against fluorescein isothiocyanate (FITC) and horseradish peroxidase (HRP). J. Immunol. Methods, 111, № 1, 95−99.
  55. Kaufman, E. N., Jain, R. K. (1992) Effect of bivalent interaction upon apperant antibody affinity: experimantal confirmation of theory using fluoresence photobleaching and implications for antibody binding assays. Cancer res., 52, 4157−4169.
  56. K. L., Gridley D. S., Stickney D. R. (1988) Autoradiographic biodistribution of bifunctional antibody 111 In BLEDTAIV in nude mice bearing human colon tumour. FASEB J., 2, A694
  57. Knarr G., Gething M.J., Modrow S. and Bucher J. (1995) BIP binding sequences in antibodies. J. Biol. Chem., 270, № 46, 27 589−27 594.
  58. Koelemij R., Kuppen P.J., Van de Velde C.J., Fleuren G.J., Hagenaars M., Eggermont A.M. (1999) Bispecific antibodies in cancer therapy, from the laboratory to the clinic. J Immunother., 22, № 6, 514−524.
  59. G., Milstein C. (1975) Continuous culture of fused cells secreting antibody of predefined specificity. Nature, 256, 495−497.
  60. Koolwijk P., Rosemuller E., Kees Stad R., De Lau W. В. M. and Bast B. J. E. G. (1988) Enrichment and selection of hybrid hybridomas by percoll density gradient centrifugation and fluorescent-activated cell sorting. Hybridoma, 7, 217−225.
  61. Kranz D.M., Herron J.N. and Voss E.W. (1982) Mechanisms of ligand binding by monoclonal anti-fluorecyl antibodies. J. Biol. Chem., 257, № 12, 6987−6995.
  62. F.T., Suresh M.R. (1997) Novel bispecific immunoprobe for rapid and sensitive detection of prostate-specific antigen. Clin. Chem. 43, № 4, 649−656.
  63. L.J. (1994) Selected strategies for improving sensitivity and reliability of immunoassays. Clin. Chem., 40, № 3, 347−357.
  64. U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 277, 680−685.
  65. Langer Т., Lu C., Echols H., Flanagan J., Hayer M.K. and Hartl F.U. (1992) Successive action of DNAK, DNAj and Gro EL along thepatheway of chaperone-mediated protein folding. Nature, 356, № 6371, 683−689.
  66. W. (1964) Selectiion of hybrids from matings of fibroblasts in vitro and their presumed recombinations. Science, 145, 709−710.
  67. Mallender W.D. and Voss E.VJ. (1994) Construction, expression and activity of a bivalent bispecific single-chain antibody. J. Biol. Chem., 269 № 1, 199−206.
  68. Massino Y.S., Kizim E.A., Dergunova N.N., Vostrikov V.M. and Dmitriev A.D. (1992) Immunology Lett., 33, № 3, 217−222.
  69. D.H., Cieplinski W., Dharmgrongartama В., Gefter M.L., Morrison S.L., Kelly Т., Scharff M.D. (1977) Regulation of immunoglobulin expression in mouse myeloma cells. Cold Spring Harbor Sympos. Quant. Biol., 41 (pt.2): 781−791.
  70. Mariani M., Bonelli F., Tarditi L., Calogero R., Camagna M., Spranzi E., Seccamani E., Deleide G. and Scassellati G.A. (1989) BioChromatography, 4,149−157.
  71. C., Cuello A.C. (1983) Hybrid hybridomas and their use in immunohistochemistry. Nature, 305, № 5934, 537−40.
  72. C., Cuello A. C. (1984) Hybrid hybridomas and the production of bispecific monoclonal antibody. Immunol. Today, 5, 299−304.
  73. L., Plotkin L., Leoni J., Fossati C.A., Margni R.A. (1993) Mol. Immunol., 3, 695−700.
  74. Nakane, P.K., Kawaoi, A. (1974) Peroxidase-labelled antibody. A new method of conjugation. J. Histochem. Cytochem. 22, 1084.
  75. Neri D.M., Momo M., Prospero T. and Winter G. (1995) High-affinity antigen binding by chelating recombinant antibodies (CRAbs). J. Mol. Biol., 246, 367−373.
  76. A., Rivers M. M. (1961) Recombination of a mixture of univalent antibody fragments of different specificity. Arch. Biochem. Biophys., 93, № 2, 460−462.
  77. Nolan, O., and Kennedy, O.R. (1990) Biochim. Biophys. Acta, 1040, 111.
  78. A. (1976) The clonal evolution of tumor cell populations. Science, 194, 23−28.
  79. Pack P. and Plutckthun A. (1992) Miniantibodies: Use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in Escherichia coli. Biochemistry, 31, 1579−1584.
  80. Paya С. V., McKean D. J., Segal D. M., Schoon R. A., Showalter S. D., Leibson P. J. (1989) Heteroconjugate antibodies enhance cell-mediated anti-herpes simplex virus immunity. J. Immunol., 142, № 2, 666−671.
  81. Perry G., Friedman R., Kang D.R., Maneto V., Antilio-Gambetti L., Gambetti P. (1987) Antibodies to the neuronal cytoskeleton are elicited by Alzheimer paired helical filament fractions. Brain Res., 420, № 2, 233−242.
  82. A., Pack P. (1997) New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology, 3, № 2, 83−105.
  83. Reading C. L. and Bator J. M. (1988) Proceedings for the 5th Annual Industry Conference and Exhibition, San Francisco, CA.
  84. Reardan D.T., Meares C.F., Goodwin D.A., Mc. Tigne T.N., David G.S., Stone M.R., Leung J.P., Bartholomew R.M. and Frincke J.M. (1985) Antibodoes against metal chelates. Nature, 316, № 6025, 265 268
  85. G. (1949) The attractions of protiens for small molecules and ions. Ann. N. Y. Acad. Sci., 51, 660−672.
  86. D.M., Weiner G.J., Weiner L.M. (1999) Bispecific antibodies in cancer therapy. Curr. Opin. Immunol. 11, № 5, 558−562.
  87. Smith-Gill S.J., Hamel P.A., Klein M.H., Rudikoff S. and Dorrington K.J. (1986) Contribution of the Vk4 light chain to antibody specificity for lysozyme and b (l, 6) D-galactan. Mol. Immunol., 23, 919−926.
  88. U. D., Bevan M. J. (1986) Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc. Natl. Acad. Sci. USA, 83, 1453−1457.
  89. D.R., Frincke J.M., Slater J.B., Ahlem C.N., Merchant В., Slater J.M. (1988) Effects of perfluorochemical and carbogen on tumor metastases and phagocytic cell populations. FASEB J., 2, A 694.
  90. Strateeva-Taneeva P.A., Khaidukov S.V., Kovalenko V.A., Nazimov I.V., Samokhvalova L.V., Nesmeyanov V.A. (1993) Bispecific monoclonal antibodoes to human Interleukin 2 and horseradish peroxidase. Hybridoma, 12, № 3, 271−284.
  91. M. R., Cuello A. C., Milstein C. (1986) Advantages of bispecific hybridomas in one-step immunocytochemistry and in immunoassays. Proc. Natl. Acad. Sci. USA, 83, 7989−7993.
  92. H., Toyoda Y., Iwasa S. (1989) Bispecific antibody-producing hybrid hybridoma and its use in one-step immunoassays for human lymphotoxin. Hybridoma, 8, 73−83.
  93. M., Fuller S. A. (1988) Production of murine hybrid hybridomas secreting bispecific monoclonal antibodies for use in urease-based immunoassays. Clin. Chem., 34, 1693−1696.
  94. Tarditi L., Camagna M., Parisi A., Vassarotto C., De Monte L. В., Letarte M., Malavasi F., Mariani M. (1992) Selective high-performance liquid chromatographic purification of bispecific monoclonal antibodies. J. Chromatogr., 599, № 1−2, 13−20.
  95. Thompson, R.J. and Jackson, A.P. (1984) Cyclic complexes and high avidity antibodies. Trends Biochem. Sci., 9, 1−9.
  96. M.Tiebout R. F., Van Boxtel-Oosterhof F., Strieker E. A. M. and Zeijlemaker W. P. (1987) A human hybrid hybridoma. J. Immunol., 139, 3402−3405.
  97. H., Staelin Т., Gordon J. (1979) Electrophoretic transfer of proteins from polyacrilamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U.S.A., 76, № 9, 43 504 354.
  98. Ward E.S., Gussow D., Griffits A.D., Jones P.T. and Winter G. (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherihia coli. Nature, 341, № 2, 544 546.
  99. G. J. (1992) Bispecific IgG and IL-2 therapy of a syngeneic B-cell lymphoma in immunocompetent mice. Int. J. Cancer, Suppl., 7, 6366.
  100. Weiner G.J., De Gast G.C. (1995) Byspecific monoclonal antibody therapy of B-cell malignancy. Leuk.-Lymphoma, 16, № 3−4, 199−207.
  101. J. Т., Colvin R. B. (1987) Bi-specific monoclonal antibodies: selective binding and complement fixation to cells that express two different surface antigens. J. Immunol., 139, 1369−1374.1. БЛАГОДАРНОСТИ
Заполнить форму текущей работой