Помощь в написании студенческих работ
Антистрессовый сервис

Функциональные наноматериалы на основе диоксидов церия и элементов подгруппы титана: синтез, исследование структуры и размерных эффектов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Процессы формирования наноматериалов и их> физико-химические свойстваисследовали сиспользованием^ следующихметодов: растровая (РЭМ) И' просвечивающая (в т.ч. высокого разрешения) (ПЭМ1 иПЭМВР) электронная* микроскопия, дифракция электронов, рентгеноспектральный микроанализ (РСМД) рентгенофазовый анализ (РФА) с уточнением параметров кристаллической структуры по методу Ритвельдарентгеновская… Читать ещё >

Функциональные наноматериалы на основе диоксидов церия и элементов подгруппы титана: синтез, исследование структуры и размерных эффектов (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. Избранные сведения о существующих методах получения, структуре и свойствах диоксида церия и гидратированных оксидов элементов подгруппы титана
    • 1. 1. Методы синтеза, структура и свойства нанодисперсного диоксида церия
      • 1. 1. 1. Методы получения нанокристаллического диоксида церия
      • 1. 1. 2. Структура нанокристаллического диоксида церия
      • 1. 1. 3. Некоторые применения нанокристаллического диоксида церия
    • 1. 2. Фрактальная структура аморфных гелей гидратированных оксидов элементов подгруппы титана
      • 1. 2. 1. Базовые положения теории фракталов
      • 1. 2. 2. Мезоструктура аморфных гелей гидратированных оксидов элементов подгруппы титана
  • 2. Методы синтеза и исследования аморфных и нанокристаллических материалов-на основе оксидов церия, титана, циркония, гафния
    • 2. 1. Синтез, термическая и гидротермальная (гидротермально-микроволновая) обработка аморфных ксерогелей гидратированных оксидов титана, циркония, гафния
    • 2. 2. Синтез нанопорошков и коллоидных растворов диоксида церия, а также функциональных материалов на их основе
    • 2. 3. Методы исследования материалов
  • 3. Состав, структура и физико-химические свойства аморфных и нанокристаллических материалов на основе диоксидов титана, циркония, гафния
    • 3. 1. Мезоструктура и фрактальная структура гидратированных диоксидов элементов подгруппы титана
    • 3. 2. Закономерности изменения состава и структуры в ходе высокотемпературного отжига гидратированного диоксида циркония
    • 3. 3. Синтез, структура и свойства сульфатированного нанокристаллического диоксида циркония
    • 3. 4. Закономерности изменения состава, структуры и свойств диоксидов титана, циркония, гафния в гидротермальных и гидротермально-микроволновых условиях
  • 4. Функциональные материалы на основе нанокристаллического диоксида церия: синтез, механизмы формирования и структурно-чувствительные свойства
    • 4. 1. Синтез нанокристаллического диоксида церия методами быстрого осаждения и гомогенного гидролиза из растворов солей Се (Ш) и Се (1У)
    • 4. 2. Особенности роста наночастиц диоксида церия в гидротермальных и гидротермально-микроволновых условиях
    • 4. 3. Синтез стабильных коллоидных растворов нанокристаллического диоксида церия в водных и неводных средах
    • 4. 4. Особенности высокотемпературного роста наночастиц диоксида церия
    • 4. 5. Параметр кристаллической ячейки и кислородная нестехиометрия нанокристаллического диоксида церия
    • 4. 6. Влияние размерного фактора на структуру и физико-химические свойства нанодисперсного диоксида церия
  • Выводы
  • Цитируемая
  • литература

Значительный интерес, проявляемый в России и мире к нанотехнологиям, в значительной степени обусловлен возможностью направленного изменения физико-химических свойств веществ и материалов при уменьшении размеров частиц. К настоящему времени детально описаны изменения магнитных свойств наночастиц, эффект снижения температур плавления веществ в нанокристаллическом состоянии, увеличение ширины запрещенной' зоны для полупроводников как результат проявления квантоворазмерных^эффектов и т. д.

Поиск новых размерных эффектов, свойственных наноматериалам1, и их количественное определение требуют разработки воспроизводимых масштабируемых методов получения веществ в нанодисперсномг состоянии. Одними из наиболее перспективных, как с технологической, так ис экономической точек зрения, методов синтеза оксидных наноматериалов являются методы «мягкой химии», основанные на синтезе из водных^ и неводных растворов при невысоких температурах. Следует отметить, что, несмотря на относительную простоту экспериментальной, реализации, существующие методы зачастую не обеспечивают возможности направленного получения наночастиц заданного размера и морфологии. Это ограничение обусловлено в первую очередь тем, что в целом ряде случаев практически неизученной остается сама последовательность физико-химических процессов (в том числе многостадийныхреакций' образования и трансформациигидроксоИ' оксосоединений металлов), приводящих к получению нанодисперсных оксидов. В связи^ с этим* большое значение приобретают комплексные исследованиязакономерностей образования? ис роста наночастиц оксидов металлов с привлечением современных физико-химических методов, обеспечивающих необходимую информацию о составе, структуре и дисперсности промежуточных и конечных продуктов синтеза, а также разработка новых синтетических подходов (в т.ч. основанных на комбинировании различного рода физических воздействий на реакционные системы), способных обеспечить требуемый уровень контроля морфологических и функциональных характеристик оксидных наноматериалов.

Среди многочисленных функциональных оксидных наноматериалов в качестве объектов исследования в настоящей работе были выбраны нанокристаллические оксиды М02 (М = Се, «П, Тх, НО, представляющие особый интерес вследствие комплекса особых свойств, в т. ч. высокой химической и термической стабильности, и многочисленных практических применений, включая использование в составе высокоэффективных катализаторов, сорбентов, сенсоров, твердых электролитов. Схожесть электронного строения указанных элементов (в ранних вариантах периодической системы церий отнбсили к подгруппе титана) обусловливает близость физико-химических свойств соответствующих оксидов, а имеющиеся между ними1 различия дополнительно расширяют спектр их возможных примененийтак, ярко выраженнаязависимость кислородной нестехиометрии диоксида» церия от размеров5 наночастиц в последние годы привлекает особое внимание вследствие биологической активности этого материала.

Можно констатировать, что размерный фактор, является определяющим' в отношении многих свойств материалов на основе М02. В связи с этим, одной из: ключевых задач настоящего исследования стал-направленный поиск новых практически значимых функциональных свойств-диоксидов церия и элементов-подгруппы титана.

Цели и задачи работы.

Цель работы заключалась в разработке физико-химических основ направленного синтеза нанодисперсных* оксидов церия, титана, циркония, гафния и исследовании влияния структуры и размерного фактора на. их функциональные свойства.

Для достижения этой цели были решены следующие задачи: исследование мезоструктуры1 и фрактальной структуры аморфных-гидратированных диоксидов элементов подгруппы титанаустановление основных закономерностей изменения-фрактальной' размерности1 поверхности' диоксидов элементов подгруппы титанапри' термической’и гидротермальной обработкеразработка способов получениянанопорошков и коллоидных растворов нанокристаллического диоксида церия с контролируемым размером и формой наночастицанализ механизма роста наночастиц Се02-х в условиях гидротермальной и гидротермально-микроволновой обработки и высокотемпературных отжиговвыявление влияния размерного фактора на структуру и физико-химические свойства нанокристаллического диоксида церия. синтез и исследование функциональных наноматериалов на основе диоксидов церия и элементов подгруппы титана.

1 Согласно номенклатуре ИЮПАК, термин «мезо-» относится к диапазону размеров 2−50 нм.

Объекты и методы исследования.

Для решения поставленных задач в качестве объектов исследования были выбраны аморфные и кристаллические нанодисперсные оксиды церия, титана, циркония и гафния, образующиеся при синтезе методами «мягкой химии», втом числев гидротермальных и сольвотермальныхусловиях. Особое, вниманиев. работе уделено определению ранее неизученных закономерностей. формирования оксидных, наноматериалов в-гидротермально-микроволновыхусловиях и выявлению специфических эффектов микроволнового, воздействия на" процессы роста наночастиц в гидротермальных условиях:

Процессы формирования наноматериалов и их> физико-химические свойстваисследовали сиспользованием^ следующихметодов: растровая (РЭМ) И' просвечивающая (в т.ч. высокого разрешения) (ПЭМ1 иПЭМВР) электронная* микроскопия, дифракция электронов, рентгеноспектральный микроанализ (РСМД) рентгенофазовый анализ (РФА) с уточнением параметров кристаллической структуры по методу Ритвельдарентгеновская фотоэлектронная спектроскопия (РФЭС) — динамическое. светорассеяние (ДСР) — оптическая спектроскопия в УФ-, видимоми ИК-диапазонахспектроскопия комбинационного рассеяниятермический-анализ (в.т.ч. совмещенный8с масс-спектрометрическим определением состава газообразных продуктов термолиза), калориметрия теплового потокартутная порометрия' и низкотемпературная адсорбция* азотаанализ каталитическойи* фотокаталитическойактивностианализ биологической" активности^ с применением? стандартных тест-систем:

Для количественного описанияструктуры аморфныхгидратированных диоксидов титана, циркония и гафния, атакже нанокристаллического диоксида, церия были" впервые предприняты их систематические, исследования методами малоуглового (в т.ч. ультрамалоуглового) рассеяния нейтронов.

Достоверность и обоснованность результатов обеспечена использованием комплекса взаимодополняющих физико-химических методов исследования состава, структуры и свойств полученных функциональных оксидных наноматериалов и обобщением полученных результатов на основе современных представлений в области химии твердого тела.

Научная новизна может быть сформулирована в виде следующих положений: 1. Впервые в широком диапазоне масштабов исследована мезоструктура аморфных ксерогелей гидратированных диоксидов титана, циркония и гафния, впервые обнаружено и проанализировано особое влияние рН осаждения на фрактальную структуру поверхности ксерогелей Zr02"xH20 и НЮ2"хН20.

2. Впервые установлена принципиальная возможность формирования фрактальных свойств поверхности' индивидуальных оксидов металлов в результате протекания топохимических реакций и* установлены закономерностиизменения фрактальной размерности, поверхности5 оксидов при высокотемпературном’отжиге.

3. Экспериментально определено влияние условий, гидротермального и гидротермально-микроволнового синтеза на состав И' морфологию нанодисперсных" диоксидов титана, циркония, гафния. Впервые продемонстрирован эффект наследования фрактальной' структуры при кристаллизации' Zr02 в гидротермальных' и гидротермально-микроволновых условиях.

Л. Разработаны физико-химические основы методов направленного синтеза* наноматериалов на. основе нанокристаллического диоксида церия с контролируемыми" размерами частиц (1−50 нм), включая-твердые растворы Cei. xRx025 (R = Lar Рг, Nd, Sm, Eu, Gd, Er, Yb) с размером^частиц.менее 10 нм. Предложены новые методикиполучения анизотропных наночастиц Се02. х, включая наностержни’и нанопластины субнанометровой толщины.

5. На основании анализа взаимодополняющих экспериментальных данных, полученных с использованием комплекса независимых физико-химических методов, установлено, что рост наночастиц Се02. х в условияхтермическойгидротермальной1 и гидротермально-микроволновой обработкипроисходит преимущественно по механизму ориентированного присоединения" и-сращивания кристаллитов.

6. Экспериментально определена, зависимость параметра элементарной ячейки Се02. х от размера частиц в диапазоне 2−50 нм. Впервые выявлено и-проанализировано влияние размерного фактора на ряд физико-химических свойств нанокристаллического диоксида церия, включая его каталитическую и фотокаталитическую активность, электрохимические характеристики, антиоксидантную активность, в т. ч. способность ингибировать окисление р-каротина и антоцианов винограда и инактивировать долгоживущие свободные радикалы, а также биологическую активность Се02.х.

Практическая значимость работьь.

В результате выполнения настоящей работы созданы эффективные методики получения функциональных наноматериалов на основе Се02, ТЮ2, Zr02, НЮ2 с контролируемым составом, структурой и свойствами. В частности, предложены способы синтеза нанопорошков (включая слабоагрегированные), а также стабильных водных и неводных коллоидных растворов диоксида церия с размерами частиц в диапазоне от 1 до 50 нмпродемонстрирована высокая перспективность использования полученных препаратов нанокристаллического диоксида церия в биомедицинских целяхв качестве антиоксидантовобеспечивающих защиту от окислительного стресса, индуцируемого активными? формами кислорода. Разработаны методики: получениякатализаторов наг основе диоксида церия, позволяющих достичь 99% конверсии? при глубоком окислении СО уже при570°С. Предложен способ гидротермального получения фотокатализаторов на": основе нанокристаллического диоксида титана, превосходящих* по своей активности промышленные аналоги. Показана, перспективность гидротермально-микроволнового метода^ для одностадийного получения суперкислотных катализаторов на основе сульфатированного диоксида титана: Получены* образцы эффективных суперкислотных катализаторов на основе сульфатированного диоксида циркония.

Настоящая, работа связана с одной/ из, критических технологий РоссийскойФедерации? — «Нанотехнологии и наноматериалы», часть исследований, выполнена по заказу Российского агентства по науке и инновациями в рамках Федеральных^ целевых программ «Исследованияи разработки по приоритетным направлениям развития науки и*, техникина 2007;2012 годы» ич<�Научные и научно-педагогические-кадры инновационной, России' на 2009;2013 годы". Выполненные разработки^ прошли стадию проблемно-ориентированных поисковыхисследований, подготовлены технические заданияна выполнение опытно-конструкторских? работ. На^ основанииполученных, результатов получены 2 патента^ РФ и^ патент Украины.

Основные результаты и положениявыносимые, на защиту.

1) Результаты исследований мезоструктуры, в том числе фрактальной структуры, аморфных материалов на основе ксерогелей гидратированных диоксидов элементов подгруппы титана.

2) Анализ закономерностей изменения фрактальной структуры оксидов металлов при высокотемпературных отжигах и гидротермальной (гидротермально-микроволновой) обработке.

3) Исследование закономерностей формирования суперкислотных катализаторов на основе сульфатированного диоксида циркония.

4) Методики гидротермального и гидротермально-микроволнового получения фотокатализаторов на основе нанодисперсного диоксида титана.

5) Методики получения нанопорошков и коллоидных растворов нанодисперсного диоксида церия с контролируемыми размерамичастиц в диапазоне 1−50 нм, а также твердых растворов на основе диоксида церия, допированного РЗЭ (1а, Рг, Ыс!, Бт, Ей, Сс1, Ег, УЬ), с размерами частиц менее Ю.нм.

6) Анализ механизмов роста наночастиц диоксида церия в гидротермальных условиях и при-высокотемпературном отжиге.

7) Анализ влияния, размерного эффекта на физико-химические* свойства нанокристаллического диоксида церия':

Личныйвклад .автора^.

В диссертации представлены результаты исследованийвыполненных лично автором. или под его непосредственным’руководством^ ИОНХ-им: Н: С. Курнакова РАН. Личный вклад автора^ в. настоящую работу заключается в постановке цели и задач, разработке экспериментальных методик, и* установок, непосредственном" проведение экспериментовобработке, анализе и обобщении* полученных, результатов. Вклад авторав>. постановку задач исследований? иинтерпретацию результатов исследований, выполненных в соавторстве, является определяющим. Часть экспериментов выполнена в рамках, кандидатских диссертаций— О.С. Полежаевой^ и** A.C. Шапорева, научным руководителем которых являлся автор: Большоевлияние наформирование концепции* исследований оказал чл.-корр. РАН* H.H.

Олейников! Автор' искренне благодарен своему учителю акад.

Ю:Д, Третьякову за постоянное внимание и.поддержку.

Апробация работы;

Основные результаты работы докладывались на следующих, научных конференциях: «Актуальные направления современной неорганической химии и материаловедения» (Дубна- 2001) — 8 European Conference on Solid State Chemistry (Осло, 2001) — «Нелинейные процессы в дизайне материалов» (Воронеж, 2002) — MRS Symposium 2003 (Бостон, 2003) — Topical Meeting of the European Ceramic Society (Санкт-Петербург, 2004) — 4 International Conference on Inorganic Materials (Антверпен, 2004) — VII International Workshop «High-Temperature Superconductors and Novel Inorganic Materials Engineering (Москва, 2004) — VI Conference on Solid State Chemistry (Прага, 2004) — 21 International Seminar on Ceramics (Гванджу, Ю. Корея, 2004) — «Современные проблемы общей и неорганической химии» (Москва, 2004) — XV и XVI Международные конференции по химической термодинамике (Москва, Суздаль, 2005, 2007) — World congress on ultrasonics (Пекин, 2005) — 10 European.

Conference on Solid State Chemistry (Шеффилд, Великобритания, 2005) — Eighth International Symposium on Hydrothermal Reactions (Сендаи, Япония, 2006) — VI Международный семинар «Нелинейные процессы и проблемы самоорганизации в современном материаловедении» (Астрахань, 2006) — VI и VII Национальные конференции* по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов (Москва, 2007, 2009) — 6- Всероссийская Школа-конференция «Нелинейные процессы и проблемы самоорганизации в современном» материаловедении1 (Воронеж, 2007) — «Ионный перенос в органических и неорганических мембранах» (Краснодар, 2007) — E-MRS 2007 Fall Meeting (Варшава, 2007) — XVIII Менделеевский съезд по общей иг прикладной^химии" (Москва, 2007) — Asian Symposium on Advanced Materials (Владивосток, 2007) — XLI и XLV Зимние школы. ПИЯФ' РАН (Репино, Рощино, 2007, 2011) — «Полифукциональные наноматериалы и нанотехнологии» (Томск, 2008) — 4″ Школа-конференция молодых ученых по химической синергетике (Москва, 2007) — 4 European Conference on Neutron Scattering (Лунд, Швеция, 2007) — 42 lUPAC Congress (Глазго, 2009) — 2 International IUPAC Conference on Green Chemistry (Москва-Санкт-Петербург, 2008) — XVIII International Conference on Chemical Reactors (Мальта, 2008) — Deutsche Neutronenstreutagung 2008 (Мюнхен, 2008) — XIV International Conference on Small-Angle Scattering (Оксфорд, 2009), IX Международное Курнаковское совещание по физико-химическому анализу. (Пермь, 2010), XXI Совещание по использованию рассеяния нейтронов в исследованиях конденсированного состояния (Москва, 2010), «Актуальные проблемы химии и физики-поверхности» (Киев, 2011).

За отдельные исследования, составляющие основу данной диссертации: автор был удостоен Премии РАН с медалью для молодых ученых (2004 г.), гранта Фонда содействия отечественной науке по номинации «Кандидат наук РАН» (2006 г.) и премии «МАИК/Наука» за цикл публикаций в «Журнале неорганической химии» (2007 г.). Работа выполнена при финансовой поддержке Федерального агентства по образованию (гос. контракт П-2440), Федерального агентства по науке и инновациям (гос. контракты №№ 02.513.11.3352, 02.513.11.3400), Российского фонда фундаментальных исследований (гранты 05−03−33 036-а, 08−03−471-а, 09−03−12 191-офим), Российской академии наук (в рамках программ Президиума РАН № 8 «Разработка методов получения химических веществ и создание новых материалов», ОХНМ РАН № 7 «Создание научных основ экологически безопасных и ресурсосберегающих химико-технологических процессов. Отработка процессов с получением опытных партий веществ и материалов»), гранта Президента РФ для поддержки молодых российских ученых (МК-955.2005.03), гранта Президента РФ для поддержки ведущих научных школ (НШ-1118.2008.3), ФЦП «Государственная поддержка интеграции высшего образования и фундаментальной науки на 1997;2001 годы» (проект А0078).

Нейтронные исследования-материалов выполнены автором совместно с Г. П. Копицей в исследовательском центре GKSS (Гамбург, Германия). Автор благодарен М. С. Якимовой и Л. Л. Юрковой за исследования каталитической активности наноматериалов. Автор выражает особую признательность за совместное проведение исследований и обсуждение результатов работы к.х.н. А. Е. Баранчикову и к.х.н. А. Б. Щербакову. Автор также глубоко признателен д.х.н. Б. Р. Чурагулову, к.х.н. Ю. Г. Метлину, к.х.н. A.C. Лермонтову, д.х.н. П. П! Федорову, к.х.н. A.C. Ванецеву, д.х.н. С. А. Лермонтову, к.х.н. Ф. Ю. Шарикову, д.х.н. И. А. Зверевой, к.х.н. Т. Л. Куловой.

Публикации.

По, результатам проведенных исследования опубликовано 125 работ, включая^ 57 статей (в т.ч. 4 обзора) в рецензируемых отечественных и международных научных журналах (из них 53 статьи — в журналах, рекомендованных перечнем ВАК) и 68 тезисов докладов на, конференциях. Получены решения о выдаче 2 патентов РФ и 1 патента Украины.

Выводы.

1. Разработаны физико-химические основы направленного синтеза функциональных нанодисперсных материалов на основе диоксидов церия и элементов подгруппы титана, базирующиеся на комплексном исследовании механизмов формирования указанных соединений, а также закономерностей изменения их структуры (в том числе фрактальной) и^ структурно-чувствительных свойств в результате высокотемпературной, гидротермальной и гидротермально-микроволновой обработки.

2. Установлено, что аморфные материалы на основе ксерогелей гидратированных диоксидов циркония и гафния характеризуются фрактальными свойствами в широком диапазоне размеров, в ряде случаев достигающем 3 порядков. Впервые выявлено и проанализировано особое влияние pH осаждения на фрактальную структуру ксерогелей Zr02*xH20 и НЮ2*хН20.

3. Показана принципиальная возможность формирования фрактальных свойств поверхности оксидов металлов в результате протекания топохимических реакций, установлены закономерности изменения фрактальной размерности при высокотемпературной обработке. Впервые показано, что нанокристаллический Zr02, образующийся при гидротермальной, и гидротермально-микроволновой обработке аморфных ксерогелей Zr02*xH20, наследуют присущие последним фрактальные свойства поверхности. Разработан способ получения эффективных суперкислотных катализаторов1 на основе сульфатированного диоксида циркония.

4. Определены закономерности формирования нанокристаллического (10 100 нм) диоксида титана из сернокислых растворов в гидротермальных и гидротермально-микроволновых условиях. Предложен способ синтеза нанокристаллического анатаза, превосходящего по фотокаталитической активности промышленный катализатор Degussa Р25. Показано, что гидротермально-микроволновой синтез является перспективным для получения суперкислотных катализаторов на основе сульфатированного диоксида титана. Впервые обнаружено явление образования мезопор в наночастицах ТЮ2, а также ln203 и с03о4, и предложена модель, описывающая это явление.

5. Определены закономерности формирования нанокристаллического диоксида церия при синтезе методами быстрого и гомогенного осаждения (в том числе в гидротермальных условиях) из водных и водно-спиртовых растворов солей Се (Ш) и Ce (IV). Установлено, что изменение состава и концентрации исходных растворов солей позволяет целенаправленно варьировать размеры (в пределах от 1 до 50 нм) и характер агрегации наночастиц Се02.х. Методом гомогенного гидролиза впервые получены ультратонкие пластины диоксида церия субнанометровой толщины. Показана применимость метода гомогенного гидролиза для получения наночастиц диоксида церия, допированного РЗЭ (1а, Рг, N01, вт, Ей, вб, Ег, УЬ).

6. Систематически исследована динамикафоста наночастиц диоксида церия в гидротермальных и гидротермально-микроволновых условиях в нейтральной и сильнощелочной средах в широком диапазоне температур (до 210°С), а также при высокотемпературном (до 700°С) отжиге. Установлено, что рост частиц СеОг-х осуществляется преимущественно по механизму ориентированного присоединения кристаллитов. Предложены^ методики^ гидротермального получения наностержней т изотропных* наночастиц Се02. х контролируемого размера, а также агрегативно-устойчивых коллоидных растворовнаночастиц диоксида церияв полярных и, неполярных средах, — характеризующихся долговременной (до 1 года и более) стабильностью физико-химических, свойств.

7. Впервые установлено влияние размерного эффекта* на ряд физико-химических свойств нанокристаллического диоксида церия. Определена зависимость параметра элементарной. ячейки Се02. х от размера* частиц в диапазоне 2−50″ нм. Показан размерныйэффект в реакции глубокого окисления СО на диоксиде церия. Впервые установлено влияние* размерного*фактора на электрохимические характеристики нанодисперсного диоксидацерияВпервые продемонстрирована зависимость биологической активности. Се02. х от размера наночастиц. Установлена высокая антиоксидантная? активность золей нанокристаллического диоксида церия, а также его способность инактивировать свободные радикалы.

Показать весь текст

Список литературы

  1. G., 1.anaka N. The binary rare earth oxides // Chem. Rev. 1998. V. 98. P. 1479-1514.
  2. Li F., Yu X., Pan H., Wang M., Xin X. Syntheses of M02 (M = Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature // Solid State Sci 2000. V. 2. P. 767−772.
  3. Yu X., Li F., Ye X., Xin X., Xue Z. Synthesis of cerium (IV) oxide ultrafine particles by solid-state reactions // J. Am. Ceram. Soc. 2000. V 83. P. 964−966.
  4. Tschope A., Ying J.Y. Synthesis of nanostructured catalytic materials using a" modified magnetron sputtering technique // Nanostr. Mater. 1994. V. 4. P. 617−619.
  5. Bai W., Choy K.L., Stelzer N.H.J., Scoonman J. Thermophoresis-assisted vapour phase synthesis of Ce02 and CexYi. x02.deita nanoparticles // Solid State Ionics. 1999. V. 116. P. 225−228.
  6. Djuricic В., Pickering S. Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders // J. Europ. Ceram. Soc. 1999. V. 19. P. 19 251 934.
  7. Bumajdad A., Zaki M.I., Eastoe J., Pasupulety L. Microemulsion-based synthesis of Ce02 powders with high surface area and high-temperature stabilities // Langmuir. 2004. V. 20. P 11 223−11 233.
  8. Liu Y.L., He S.T., Uehara M., Maeda H. Wet chemical preparation of well-dispersed colloidal cerium oxide nanocrystals // Chem. Lett. 2007. V. 36. P. 764 765.
  9. Hirano M., Kato E. Hydrothermal synthesis of nanocrystalline cerium (IV) oxide powders // J. Am. Ceram. Soc. 1999. V. 82. P. 786−788.
  10. Hirano M., Inagaki M: J. Preparation of monodispersed cerium (IV) oxide particles by thermal hydrolysis: influence of the presence of urea and Gd doping on their morphology and growth // J. Mater. Chem. 2000. V. 10. 473−477.
  11. Cheng M.Y., Hwang D.H., Sheu H.S., Hwang B.J. Formation of Ce08Sm02Oig nanoparticles by urea-based low-temperature hydrothermal process // J. Power Sources 2008. V. 175. P. 137−144.
  12. Chen P.L., Chen I.W. Reactive cerium (IV) oxide powders by the homogeneous precipitation method //J. Am. Ceram. Soc. 1993. V. 76. P. 1577−1583.
  13. Zhang F., Jin Q., Chan S.W. Ceria nanoparticles: Size, size distribution, and shape // J. Appl. Phys. 2004. V. 95. P. 4319−4326.
  14. F., Chan S. W., Spanier J.E., Арак E., Jin Q., Robinson R.D., Herman I.P. Cerium oxide nanoparticles: Size-selective formation and structure analysis // Appl. Phys. Lett. 2002. V. 80. P. 127−129.
  15. Полежаева.О. С. Дис.. канд. хим. наук. М.: ИОНХ РАН, 2008, 187 с.
  16. Markmann J., Tschope A., Birringer R. Low temperature processing of dense nanocrystalline yttrium-doped"cerium oxide ceramics // Acta Mater. 2002. V. 50. P. 1434−1440.
  17. Rojas T.C., Ocana M. Uniform nanoparticles of Pr (lll)/Ceria- solid, solutions prepared by homogeneous precipitation // Scripta Mater. 2002. V. 46. P. 655−660.
  18. Li J.G., Wang Y., Ikegami Т., Mori Т., Ishigaki T. Reactive 10 mol% RE203 (RE = Gd and" Sm) doped. Ce02 nanopowders: Synthesis, characterization, and low-temperature sintering into densexeramics // Mat. Sci. Eng. B. 2005. V. 121. P. 5459.
  19. Vasylkiv O., Sakka^Y., Skorokhod V.V. Nano-blast:synthesis of nano-size Ce02-Gd203 powders"// J. Am. Ceram. Soc. 2006. V. 89. P. 1822−1826.
  20. Vasylkiv O., Sakka-Y., Skorokhod V.V. Nano-explosion synthesis of multi-component ceramic nano-composites // J. Europ. Ceram. Soc: 2007. V. 27. P. 585 592.
  21. Matijevic E., Hsu W.P. Preparation and properties of monodispersed colloidal particles of lanthanide compounds, 1. Gadolinium, europium, terbium, samarium and cerium (lll) // J. Coll. Int. Sci: 1987. V. 118. P. 506−522.
  22. Hirano M, Kato E. Hydrothermal synthesis of two- types of cerium carbonate particles//J. Mat. Sci. Lett. 1999. V. 18. P. 403−405.
  23. Wang S., Gu.F., Li С., Cao H. Shape-controlled synthesis of СеОНСОэ and Ce02 microstructures//J. Cryst. Growth. 2007. V. 307. P. 386−394.
  24. Zhang D., Huang L., Zhang J., Shi L. Facile synthesis of ceria rhombic microplates // J. Mater. Sci. 2008. V. 43. P. 5647−5650.
  25. Wu G.S., Xie Т., Yuan X.Y., Cheng B.C., Zhang L.D. An improved sol-gel template synthetic route to large-scale Ce02 nanowires // Mat. Res. Bull. 2004. V. 39. P. 1023−1028.
  26. Cheng M.Y., Hwang D.H., Sheu H.S., Hwang B.J. Formation of Ce0.8Sm02Oi.9 nanoparticles by urea-based low-temperature hydrothermal process // J. Power Sources. 2008. V. 175. P. 137−144.
  27. Jobbagy M., Marino F., Schonbrod В., Baronetti G., Laborde M. Synthesis of Copper-Promoted Ce02 Catalysts // Chem. Mater. 2006. V. 18. P. 1945−1950.
  28. Tani E., Yoshimura. M., Somiya S. Crystallization and crystal growth of Ce02 under hydrothermal conditions //J. Mat. Sei. Lett. 1982. V. 1. P. 461−462.
  29. Hirano M., Kato E. Hydrothermal synthesis of Cerium (IV) oxide // J. Am. Ceram. Soc. 1996. V. 79. P. 777−780.
  30. Hirano M., Kato E. The hydrothermal synthesis of ultrafine cerium (IV) oxide powders//J. Mat. Sei. Lett. 1996. V. 15. P. 1249−1250.
  31. Lakhwani S., Rahaman M.N. Hydrothermal coarsening of Ce02 particles // J. Mat. Res. 1999. V. 14. P. 1455−1461.
  32. Wu N.C., Shi E.W., Zheng Y.Q., Li W.J. Effect of pH of medium on hydrothermal synthesis of nanocrystalline cerium (IV) oxide powders // J. Am. Ceram. Soc. 2002. V. 85. P. 2462−2468.
  33. Ток A.I.Y., Boey F.Y.C., Dong Z., Sun X.L. Hydrothermal synthesis of Ce02 nanoparticles//J. Mat. Proc. Tech. 2007. V. 190. P. 217−222.
  34. Malta L.F.B., Caffarena V.R., Medeiros M.E., Ogasawara Т. ТА of non-stoichiometric ceria obtained via hydrothermal synthesis // J. Therm. Anal. Calorim. 2004. V. 75. P. 901−910.
  35. Microwave-Enhanced Chemistry. Eds H.M. Kingston- S.J. Haswell. Washington: ACS. 1997. 748"p.
  36. A.C., Третьяков Ю. Д. Микроволновой синтез индивидуальных многокомпонентных оксидов // Успехи химии. 2007. Т. 76. С. 435−453.
  37. Yang Н., Huang С., Tang A., Zhang X., Yang W. Microwave-assisted synthesis of ceria nanoparticles // Mat. Res. Bull. 2005. V. 40. P. 1690−1695.
  38. Bonamartini A., Bondioli F., Ferrari A.M., Manfredini Т. Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method // Mater. Research Bull. 2006. V. 41. P. 38−44.
  39. Gao F., Lu Q., Komarneni S. Fast synthesis of cerium oxide nanoparticles and nanorods//J. Nanosci. Nanotech. 2006. V. 6. P. 3812−3819.
  40. Chen H.I., Chang H.Y. Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation // Solid State Comm. 2005. V. 133. P. 593−598.
  41. Chen H.I., Chang H.Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method // Ceram. Int. 2005. V. 31. P. 795−802.
  42. Chang H.Y., Chen H.I. Morphological evolution for Ce02 nanoparticles synthesized by precipitation technique // J. Cryst. Growth. 2005. V. 283. P. 457−468.
  43. Han W.Q., Wu L., Zhu Y. Formation and oxidation state of Ce02-x nanotubes // J. Am. Chem. Soc. 2005. V. 127. P. 12 814−12 815.
  44. Zhou K., YangrZ., Yang S. Highly reducible Ce02 nanotubes // Chem. Mater. 2007. V. 19r P. 1215−1217.
  45. Mai H.X., Sun L.D., Zhang, Y.W., Si R., FengW., Zhang.H.P., Liu H.C., Yan C.H. Shape-selective synthesis and oxygen storage behavior of ceriar nanopolyhedra, nanorods, and nanocubes//J. Phys. Chem. B. 2005. V. 109. P. 24 380−24 385.
  46. Yang Z., Zhou. K., Liu X., Tian Q., Lu D., Yang- S. Single-crystalline ceria nanocubes: size-controlled synthesis, characterization and, redox property // Nanotechnology. 2007. V. 18. P. 185 606−1-185 606−4:
  47. Higashine Y., Fujihara.S. Facile synthesis of single-crystalline Ce02 nanorods from aqueous CeCI3 solutions 11 J. Ceram. Soc. Jap. 2007. V. 115. P. 916−919.
  48. Huang P.X., Wu.F., Zhu B.L., Gao.X.P., Zhu H.Y., Yan T.Y., Huang W.P., Wu S.H., Song D.Y. Ce02 nanorods and gold nanocrystals supported, on Ce02 nanorods as catalyst//J. Phys. Chem. B. 2005. V. 109. P. 19 169−19 174.
  49. Penn R.L., Banfield J.F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania^// Geochim. Cosmochim. Acta. 1999. V. 63. P. 1549−1557.
  50. Penn R.L., Banfield J.F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights" frorni nanocrystalline Ti02 // Am. Mineral. 1998. V. 83. P. 1077−1082.
  51. Penn R.L., Banfield J.F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals // Science. 1998. V. 281. P. 969−971.
  52. Si R., Zhang Y.W., You L.P., Yan C.H. Self-organized monolayer of nanosized ceria colloids stabilized by poly (vinylpyrrolidone) // J. Phys. Chem. B. 2006. V. 110. P. 5994−6000.
  53. Du N., Zhang H., Chen B., Ma X., Yang D. Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature // J. Phys. Chem. C. 2007. V. 111. P. 12 677−12 680.
  54. Chuang F.Y., Yang S.M. Cerium dioxide/polyaniline core-shell nanocomposites //J. Colloid Interface Sei. 2008. V. 320. P. 194−201.
  55. Yin L., Wang Y., Pang G., Koltypin Yu., Gedanken A. Sonochemical synthesis of cerium oxide nanoparticles Effect of additives and quantum size effect // J. Coll. Int. Sei. 2002. V. 246. P. 78−84.
  56. Gupta S., Brouwer P., Bandyopadhyay S., Patil S., Briggs R., Jain J., Seal S. TEM/AFMl investigation of size, and- surface properties of nanocrystalline ceria // J Nanosci. Nanotechnol. 2005. V. 5. P. 1101−1107.
  57. Lee J. Si, Lee J.S., Choi S.Ch. Synthesis of nano-sized ceria-powders by two-emulsion method using sodium hydroxide II Mat. Lett: 2005. V. 59: P. 395−398^
  58. Seal S., Petersen E.L., Deshpande S., Patil Si, Kuiry S.Ch. Патент США № 7 419 516. Опубл. 02.09.2008.
  59. Т. Патент США № 7 229 600. Опубл. 12.06.2007.62! Sarkas- H.W., Piepenbrink Jonathan J. Патент США № 6 669 823. Опубл. 30.12.2003.
  60. Chane-ChingJ.Y., Chopin Т. Патент США № 5 733 361'. Опубл: 31.03.1998.
  61. Picard S., et al. Патент США № 5 132 048, опубл. 21.07.1992.
  62. Le Loarer J.I., et al. Патент США № 5 891 412, опубл. 06.04.1999.
  63. Chane-Ching J.Y. Патент США № 5 344 588, опубл. 06.09.1994.
  64. Baker J.M., Morvan М., Sehgal А., Wo S. Патент США № 20 060 241 008, опубл. 26.10.2006.
  65. Cabane В., Nabavi М: Патент США № 6 033 677, опубл. 03.07.2000.
  66. S.W. Патент США №'7 141 227, опубл. 28.11.2006.
  67. Karakoti A.S., Monteiro-Riviere N.A., Aggarwal R., Davis J.P., Narayan R.J., Seif W.T., McGinnis J., Seal S. Nanoceria. as antioxidant: Synthesis and biomedical applications // JOM1 2008. V. 60. P. 33−37.
  68. Tsai Y.Y., Oca-Cossio J., Agering К., Simpson N.E., Atkinson M.A., Wasserfall C.H., Constantinidis I., Sigmund W. Novel synthesis of cerium oxide nanoparticles for free radical scavenging II Nanomed. 2007. V. 2. P. 325−332.
  69. Perez J.M., Asati A., Nath S., Kaittanis C. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties // Small. 2008. V. 4. P. 552−556.
  70. Maensiri S., Masingboon Ch., Laokul P., Jareonboon W., Promarak V., Anderson Ph.L., Seraphin S. Egg white synthesis and photoluminescence of platelike clusters of Ce02 nanoparticles // Cryst. Growth. Design. 2007. V. 7. P. 950−955.
  71. Izu N., Matsubara I., Itoh T., Shin W., Nishibori M. Controlled synthesis of monodispersed cerium oxide nanoparticle sols applicable to preparing ordered self-assemblies// Bull. Chem. Soc. Jpn. 2008. V. 81. P. 761−766.
  72. Patil S., Reshetnikov S., Haldar M.K., Seal S., Mallik S. Surface-derivatized nanoceria with human carbonic anhydrase II inhibitors and fluorophores: A potential drug delivery device // J. Phys. Chem. C. 2007. V. 111. P. 8437−8442.
  73. Mays C.W., Vermaak J.S., Kuhlmann-Wilsdorf D. On surface stress and surface tension .2. determination of surface stress of goldJl Surf. Sci. 1968. V. 12. P. 134&.
  74. TsunekawaS., Sivamohan R., Ito S., Kasuya-A., Fukuda T. Structural study on monosize Ce02-x nano-particles//Nanostruct. Mater. 1999- V. 11. P. 141−147.
  75. Tsunekawa SM Ishikawa- K., Li Z.Q.,' Kawazoe Y., Kasuyaf A. Origin- of anomalous lattice expansion in oxide nanoparticles // Phys. Rev. Lett. 2000. V. 85. P. 3440−3443.
  76. Wu L.J., Wiesmann H.J., Moodenbaugh A.R., Klie R.F., Zhu Y.M., Welch D.O., Suenaga, M. Oxidation state and lattice expansion of Ce02. x nanoparticles as a function of particle size // Phys. Rev. B. 2004. V. 69. P. 125 415−1.
  77. Deshpande S., Patil S., Kuchibhatla S.V.N.T., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide II Appl. Phys. 2005. V. 87. P. 133 113−1.
  78. Tsunekawa S., Ito S., Kawazoe Y. Surface structures of cerium oxide nanocrystalline particles from the size dependence of the lattice parameters // Appl. Phys. Lett. 2004. V. 85. P. 3845−3847.
  79. Tsunekawa S., Wang J.T., Kawazoe Y. Lattice constants and electron gap energies of nano- and subnano-sized cerium oxides from the experiments and first-principles calculations // J. Alloys Comp. 2006. V. 408−412. P. 1145−1148.
  80. Ozawa M., Loong C.K. In situ X-ray and neutron powder diffraction studies of redox behavior in Ce02-containing oxide catalysts // Catal. Today. 1999. V. 50. P. 329−342.
  81. Graham G.W., Weber W.H., Peters C.R., Usmen R. Empirical-method for determining Ce02-particle size in catalysts by raman-spectroscopy // J. Catalysis. 1991. V. 130. P. 310−313.
  82. Weber W.H., Hass K.C., McBride J.R. Raman-study of Ce02 2nd-order scattering- lattice-dynamics, and particle-size effects // Phys. Rev. B. 1993. V. 48. P. 178−185.
  83. McBride J.R., Hass K.C., Poindexter B.D., Weber W.H. Raman and X-ray studies of Ce^xRexO^y, where Re = La- Pr, Nd, Eu, Gd, and Tb // J. Appl. Phys. 1994″. V. 76. P. 2435−2441.
  84. Spanier J.E., Robinson R.D., Zhang F., Chan S.W., Herman I.P. Size-dependent properties of Ce02. y nanoparticles as studied by Raman* scattering,// Phys. Rev. B. 2001. V. 64: P. 245 407−1.
  85. Saitzek S., Blach J.F., Villain S., Gavarri J.R. Nanostructured^ ceria: a comparative study from X-ray diffraction, Raman spectroscopy and BET specific surface measurements // Phys. Stat. Sol. 2008: V. 205. PI 1534−1539.
  86. A. 4f-level and core-level photoemission satellites in cerium compounds // Phys. Rev. B. 1983. V. 27. P. 3992−4001.
  87. Fujimori A. Mixed-valent ground-state of Ce02 // Phys. Rev. B. 1983. V. 28. P. 2281−2283.
  88. Fujimori A. Correlation-effects in the electronic-structure and photoemission spectra of mixed-valence cerium compounds // Phys. Rev. B. 1983. V. 28. 44 894 499.
  89. Paparazzo E. XPS studies of damage induced by X-ray-irradiation on Ce02 surfaces//Surf. Sci. Lett. 1990. V. 234. L253-L258.
  90. Paparazzo E., Ingo G.M., Zachetti N. X-ray-induced reduction effects at Ce02 surfaces an x-ray photoelectron-spectroscopy study // J. Vac. Sci. Technol. A. 199T. V. 9. 1416−1420.
  91. Rama Rao M.V., Shripathi T. Photoelectron spectroscopic study of X-ray induced reduction of Ce02 // J. Electron. Spectrosc. Relat. Phenom. 1997. V. 87. P. 121−126.
  92. Paparazzo E., Ingo G.M. On the X-ray induced chemical reduction of Ce02 as seen with X-ray photoemission spectroscopy // J. Electron. Spectrosc. Relat. Phenom. 1998. V. 95. P. 301−304.
  93. Pfau A., Schierbaum K.D. The electronic-structure of stoichiometric and reduced Ce02 surfaces an XPS, UPS and HREELS study // Surf. Sci. 1994. V. 321. P. 71−80.
  94. Romeo M., Bak K., Le Normand F., Hilaire L. XPS study of the reduction of cerium dioxide // Surf. Interface Anal. 1993. V. 20. P. 508−512.
  95. Holgado J.P., Alvarez R., Munuera G. Study of CeC>2 XPS spectra by factor analysis: reduction of Ce02 // Appl. Surf. Sci. 2000. V. 161. P. 301−315:
  96. Holgado J.P., Munuera G., Espinos J.P., Gonzalez-Elipe A.R. XPS study of oxidation processes of CeOx defective layers // Appl. Surf. Sci. 2000. V. 158. P: 164−171'.
  97. Park P.W., Ledford J.S. Effect of crystallinity on the photoreduction of cerium-oxide: A study of Ce02 and Ce/AI2C>3 catalysts // Langmuir- 1996: V. 12. P. 17 941 799.
  98. Natile M. M, Boccaletti G., Glisenti A. Properties and reactivity of nanostructured Ce02 powders: Comparison among two synthesis procedures // Chem. Mater. 2005. V. 17. P. 6272−6286.
  99. Qiu L., Liu F., Zhao L., Ma Y., Yao J. Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria. powder // Appk Surf. Sci. 2006. V. 252. P. 4931−4935.
  100. Masui T., Fujiwara K., Machida K., Adachi G. Characterization*of Cerium (IV) oxide, ultrafine particles prepared using-reversed micelles // Chem. Mater. 1997. V. 9. P. 2197−2204.
  101. Tsunekawa S., Fukuda T., Kasuya A. Blue shift in ultraviolet absorption spectra of monodisperse Ce02. x nanoparticles//J. Appl. Phys. 2000. V. 87. P*. 1318−1321.
  102. Nie J.C., Hua Z.Y., Dou R.F., Tu Q.T. Quantum confinement effect in high quality nanostructured Ce02 thin films // J. Appl. Phys. 2008. V. 103. P. 54 308−1.
  103. Patsalas P., Logothetidis S., Sygellou L., Kennou S. Structure-dependent electronic properties of nanocrystalline cerium oxide films // Phys. Rev. B. 2003. V. 68. P. 35 104−1.
  104. Zhang Y.W., Si R., Liao C.S., Yan C.H., Xiao C.X., Kou Y. Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals // J. Phys. Chem. B. 2003. V. 107. P. 10 159−10 167.
  105. Jakupec M.A., Unfried P., Keppler B.K. Pharmacological properties of cerium compounds//Rev. Physiol. Biochem. Pharmacol. 2005. V. 153. P. 101−111.
  106. Ji Y., Xiao B., Wang Z.H., Cui M.Z., Lu Y. The suppression effect of light rare earth elements on proliferation of two cancer cell lines // Biomed. Environ. Sci. 2000. V. 13. P. 287−292.
  107. Fashui H. Study on the mechanism of cerium nitrate effects on germination of aged rice seed // Biol. Trace. Elem. Res. 2002. V. 87. P. 191−200.
  108. He M.L., Rambeck W.A. Rare earth elements A new generation of growth promoters for pigs? //Arch. Tierernahr. 2000. V. 53. P. 323−334.
  109. He M.L., Ranz D., Rambeck W.A. Study on the performance enhancing effect of rare earth elements in growing and fattening’pigs // J. Anim. Physiol. Anim. Nutr. 2001. V. 85. P. 263−270.
  110. He M.L., Wang Y.Z., Xu Z.R., Chen M: L, Rambeck W.A. Effect of dietary rare earth elements on growth performance and blood parameters of rats // J. Anim. Physiol. Anim. Nutr. 2003. V. 87. P. 229−235.
  111. Heckert E.G., Karakoti A.S., Seal S., Self W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria // Biomaterials. 2008. V. 29. P. 2705−2709.
  112. Babu S., Velez A., Wozniak K., Szydlowska J., Seal S. Electron paramagnetic study on radical scavenging properties of ceria nanoparticles // Chem. Phys. Lett. 2007. V. 442. P. 405−408.
  113. Rzigalinski B.A., Meehan K., Davis R.M., Xu Y., Miles W.C., Cohen- C.A. Radical nanomedicine // Nanomed. 2006. V. 1. P. 399−412.
  114. Chen J., Patil S., Seal S., McGinnis J.F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides II Nat. Nanotechnol. 2006. V.1. P. 142−150.
  115. Schubert D., Dargusch R., Raitano J., Chan S.W. Cerium and yttrium oxide nanoparticles are neuroprotective // Biochem. Biophys. Res. Comm. 2006. V. 342. P. 86−91.
  116. Patil D.S., Bhargava N. Kang J.F., Riedel L., Seal S., Hickman J.J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons // Biomat. 2007. V. 28. P. 1918−1925.
  117. Tan S., Schubert D., Maher P. Oxytosis: A novel form of programmed cell death // Curr. Top. Med. Chem. 2001. V. 1. P. 497−499.
  118. Niua J., Azfera A., Rogersa L.M., Wanga X., Kolattukudy P.E. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy//Cardiovasc. Res. 2007. V. 73. P. 549−561.
  119. Hirst S.M., Peairs A.D., Gogal R., Seal S., Reilly C.M. Cerium oxide nanoparticles decrease inflammation in J774 cells // FASEB J. 2008. V. 22. P. 758.2.
  120. Juzenas P., Chen W., Sun Y.P., Coelho M.A.N., Generalova R., Generalova N., Christensen I.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer//Adv. Drug Delivery Rev. 2008. V. 60. P. 1600−1614.
  121. Singh N., Amateis E., Mahaney J.E., Meehan K., Rzigalinski B.A. The Antioxidant Activity of Cerium Oxide Nanoparticles is Size Dependant and’Blocks A{beta}1 -42-lnduced Free Radical Production and Neurotoxicity // FASEB Jl 2008. V. 22. P: 624.2.
  122. Zhang L., Rzigalinski B.A., Ellis E.F., Satin L.S. Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons // Science. 1996. V. 274. P. 1921−1923.
  123. Silva G.A. Nanomedicine Seeing the benefits of ceria // Nat. Nanotechnol. 2006. V. 1. P. 92−94.
  124. Chen J., Patil S., Seal S., et al. Nanoceria particles prevent ROI-induced blindness//Adv. Exp. Med. Biol. 2008. V. 613. P. 53−59.
  125. McGinnis J.F., Chen J., Wong L., Sezate S., Seal S., Patil S. Патент США № 20 060 246 152, опубл. 11.02.2006.
  126. B.A., Clark A.M. Патент США № WO/2007/2 662, опубл. 04.01.2007.
  127. Rzigalinski B.A. Nanoparticles and cell longevity // Technol. Cancer. Res. Treat. 2005. V. 4. P. 651−659.
  128. Cohen C.A., Karfakis J.A., Kurnick M.D., Rzigalinski B. Cerium Oxide Nanoparticles Reduce Free Radical-Mediated Toxicity in Drosophila melanogaster // FASEB J. 2008. V. 22. P. 624.1.
  129. Fleming J.E., Reveillaud I., Niedzwiecki A. Role of oxidative stress in drosophila aging // Mutat. Res. 1992. V. 275. P. 267−279.
  130. B.A., Панченко Л. Ф. Современные концепции свободнорадикальной теории старения//Нейрохимия. 1997. Т. 14. С. 14−29.
  131. Sigmund W.M., Tsai Y.Y., Constantinidis I., Oca-cossio J.A., at al. Патент США № W0/2008/64 357, опубл. 29.05.2008.
  132. Takaya M., Shinohara Y., Serita F., Ono-Ogasawara M., Otaki N., Toya T., Takata A., Yoshida K., Kohyama N. Dissolution of functional materials and rare earth oxides into pseudo alveolar fluid // Ind. Health. 2006. V. 44. P. 639−644.
  133. Lin W., Huang Y.W., Zhou X Y., Ma-Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells // Int. J. Toxicol. 2006. V. 25. P. 451−457.
  134. Thill A., Zeyons O., Spalla O., Chauvat F., Rose J., Auffan M., Flank A.M. Cytotoxicity of Ce02 Nanoparticles for Escherichia coli. Physico-Chemical Insight of the Cytotoxicity Mechanism II Environ Sci Technol. 2006. V. 40. P. 6151−6156.
  135. Olgun S., Rzigalinski B., Reilly C.M. Cerium oxide nanoparticles decreases disease severity in lupus mice // J. Immunol. 2006. V. 24. P. C162.
  136. Mohammad G., Mishra. V.K., Pandey H. Antioxidant properties of some nanoparticles may enhance wound healing in type 2 diabetic patients // Digest J. Nanomat. Biostruct. 2008. V. 3, P. 159−162.
  137. Mohammad G., Pandey H.P., Tripati K. Diabetic wound healing and* its angiogenesis with special reference to nanoparticles // Digest J. Nanomat. Biostruct. 2008. V. 3. P. 203−208.
  138. Serpone N., Dondi D., Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products II Inorg. chim. Acta. 2007. V. 360. P. 794−802.
  139. Linsebigler A.L., Lu G.Q., Yates J.T. Photocatalysis on Ti02 Surfaces: Principles, Mechanisms, and Selected Results // Chem. Rev. 1995. V. 95. P. 735 738.
  140. Herrmann J.M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants // Catal. Today. 1999. V. 53. P. 115−129.
  141. Dunford R., Salinaro A., Cai L., Serpone N., Horikoshi S., Hidaka H., Knowland J. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients // FEBS Lett. 1997. V. 418. P. 87−90.
  142. Warner W.G., Yin J.J., Wei R.R. Oxidative Damage to Nucleic Acids Photosensitized by Titanium Dioxide // Free Radical Biol. Med. 1997. V. 23. P. 851 858.
  143. Li R., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T. UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes // Mat. Chem. Phys. 2002. V. 75. P. 39−44.
  144. Li R., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T. Synthesis and UV-shielding properties of ZnO- and CaO-doped Ce02 via soft solution chemical process // Solid State Ionics. 2002. V 151. P. 235−241.
  145. Yamashita M., Kameyama K., Yabe S., Yoshida.S., Fujishiro Y., Kawai T., Sato T. Synthesis and" microstructure of calcia doped ceria as UV filters // J. Mat. Sci.2002. V. 37. P. 683−687.
  146. Yabe S., Sato T. Cerium oxide for sunscreen cosmetics // J. Solid State Chem.2003. V. 171. P. 7−1T.
  147. Sato T., Katakura T., Yin S., Fujimoto T., Yabe S. Synthesis and UV-shielding properties of calcia-doped ceria nanoparticles coated with"amorphous silica // Solid, State Ionics. 2004. V. 172. P. 377−382.
  148. El-Toni A.M., Yin S., Hayasaka Y., Sato T. Coating and photochemical properties of calcia-doped ceria with amorphous silica by a seeded polymerization technique//J. Mater. Chem. 2005. V. 15. P. 1293−1297.
  149. El-Toni A.M., Yin S., Yabe S., Sato T. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique // Mat. Res. Bull. 2005. V. 40. P. 1059−1064.
  150. El-Toni A.M., Yin S., Hayasaka Y., Sato T. Synthesis and UV-shielding properties of silica-coated calcia-doped ceria nanoparticles via soft solution processes//J. Electroceram. 2006. V. 17. P. 9−14.
  151. Richards B.S. Comparison of Ti02 and other dielectric coatings for buried-contact solar cells: a review// Progr. Photovolt: Res. Appl. 2004. V. 12. P. 253−281.
  152. Huang D., Qin F., Yao Z., Ren Z., Lim L., Gao W., Ren Q. High quality Ce02 film grown on Si (111) substrate by using low energy dual ion beam deposition technology//Appl. Phys. Lett. 1995. V. 67. P. 3724−3725.
  153. Inoue T., Yamamoto Y., Koyama S., Suzuki S., Ueda Y. Epitaxial growth of Ce02 layers on silicon //Appl. Phys. Lett. 1990. V. 56. P. 1332−1333.
  154. Corma A., Atienzar P., Garcia H., Chane-Ching Y.Y. Hierarchically mesostructured doped Ce02 with potential for solar-cell use // Nature Materials. 2004. V. 3. P. 394−397.
  155. Lira-Cantu M., Krebs F.C. Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (Ti02, Nb205, ZnO, Ce02 and Ce02-Ti02): Performance improvement during long-time irradiation // Sol. Energy Mater. Sol. Cells. 2006. V. 90. P. 2076−2086.
  156. Baudry, P., Rodrigues A.C.M., Aegerter M: A., Bulhoes L.O. Dip-coated Ti02-Ce02 films as transparent counter-electrode for transmissive. electrochromic devices //J. Non-Cryst. Solids. 1990. V. 121. P. 319−322.
  157. Keomany D., Poinsignon C., Deroo D. Sol gel preparation of mixed cerium-titanium oxide thin films // Sol. Energy Mater. Sol. Cells. 1994. V. 33. P. 429−441.
  158. Keomany D., Petit J.-P., Deroo D. Electrochemical insertion in sol-gel made Ce02-Ti02 from lithium conducting polymer electrolyte: Relation with the material structure // Sol. Energy Mater. Sol. Cells. 1995. V. 36. P. 397−408.
  159. Verma A., Samanta S.B., Bakshi A.K., Agnihotry S.A. Optimization of Ce02-Ti02 composition for fast switching kinetics and improved Li ion storage capacity // Solid State Ionics. 2004. V. 171. P. 81−90.
  160. Orel Z. C., Orel B. Electrochemical and optical properties of sol-gel-derived Ce02 and mixed Ce02-Sn02 coatings // SPIE Proc. 1994. V. 2255. P. 285−296.
  161. Huggins R.A. Alloy negative electrodes for lithium batteries-formed in-situ from, oxides // Ionics. 1997. V. 3. P. 245−255.
  162. Berton M.A.C., Avellaneda C.O., Bulhoes L.O.S. Sol. Thin film of Ce02-Si02: a new ion storage layer for smart windows // Sol. Energy Mater. Sol. Cells. 2003. V. 80. P. 443−449.
  163. Zhu B., Luo Z., Xia C. Transparent conducting Ce02-Si02 thin films // Mater. Res. Bull. 1999. V. 34. P. 1507−1512.
  164. Veszelei M., Kullman L., Azens A., Granqvist C.G., Hjorvarsson B. Transparent ion intercalation films of Zr-Ce oxide // J. Appl. Phys. 1997. V. 81. P. 2024−2026.
  165. Kullman L., Veszelei M., Ragan D.D., Isidorsson J., Vaivars G., Kanders UM Azens A., Schelle S., Hjorvarsson B., Granqvist C.G. Cerium-containing counter electrodes for transparent electrochromic devices // SPIE Proc. 1996. V. 2968. P. 219−224.
  166. Varsano F., Decker F., Masetti E., Cardellini F., Licciulli A. Optical and electrochemical properties of cerium-zirconium mixed oxide thin films deposited by sol-gel and r.f. sputtering // Electrochim. Acta. 1999. V. 44. P. 3149−3156.
  167. H.A., Саркисов П. Д. Основы, золь-гель технологии нанодисперсного кремнезема. М.: ИКЦ «Академкнига», 2004. 208 с.
  168. D.A., Ко E.I. Preparing Catalytic Materials, by the Sol-Gel Method // Ind. Eng. Chem. Res. 1995. V. 34. P. 421−433.
  169. A.A., Лукашин A.B. Функциональные наноматериалы. (Под ред. Ю.Д. Третьякова). Mi: ФИЗМАТЛИТ, 2010. 456 с.
  170. Г. Д., Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
  171. Geiculescu А.С., Rack H.J. X-ray scattering studies of polymeric zirconium species in aqueous xerogels II J. Non-Cryst. Sol. 2002. V. 306. P. 30−41.
  172. Geiculescu A.C., Rack H.J. Atomic-Scale Structure of Water-Based Zirconia Xerogels by X-Ray Diffraction // J. Sol-Gel Sci: Tech. 2001. V. 20. P. 13−26.
  173. Squattrito P.J., Rudolf P.R., Clearfield A. Crystal structure of a, complex basic-zirconium sulfate // Inorg. Chem. 1987. V. 26. P. 4240244.
  174. Kawaguti C.A., Chiavacci L.A., Pulcinelli C.H., Santilli C.V., Briois V Structural features of phosphate and sulfate modified zirconia prepared by, sol-gel route // J. Sol-Gel Sci. Tech. 2004. V. 32. P. 91−97.
  175. Geiculescu A.C., Garth Spencer H. Effect of Oxygen Environment on the Decomposition and Crystallization of an Aqueous Sol-Gel Derived Zirconium Acetate Gel //J. Sol-Gel Sci. Technol. 1999. V. 14. P. 257−272.
  176. Geiculescu A.C., Garth Spencer H. Thermal Decomposition and Crystallization of Aqueous Sol-Gel Derived Zirconium Acetate Gels: Effects of the Precursor Solution pH //J. Sol-Gel Sci. Technol. 1999. V. 16. P. 243−256.
  177. Geiculescu A.C., Garth Spencer H. Thermal Decomposition and Crystallization of Aqueous Sol-Gel Derived Zirconium Acetate Gels: Effects of the Additive Anions //J. Sol-Gel Sci. Technol. 2000. V. 17. P. 25−35.
  178. Ying J.Y., Benziger J.В., Navrotsky A. Structural Evolution of Alkoxide Silica Gels to Glass: Effect of Catalyst pH // J. Am. Ceram. Soc. 1993. V. 76. P. 25 712 582.
  179. Campbell L.K., Na B.K., Ко E.I. Synthesis and characterization of titania aerogels//Chem. Mater. 1992. V. 4. P. 1329−1333.
  180. D.A., Ко E.I. Synthesis and structural transformation of zirconia aerogels // Chem. Mater. 1993. V. 5. P. 956−969.
  181. Hu M.Z.C., Zielke J.T., Byers C.H., Lin J.S., Harris M.T. Probing the early-stage/rapid processes. in hydrolysis and condensation of metal alkoxides // J. Mater. Sci. 2000. V. 35. P. 1957−1971.
  182. Hu M.Z.C., Zielke J.T., Lin J.S., Harris, МЛГ. Small-angle x-ray scattering studies of early-stage colloid formation by thermohydrolytic polymerization of aqueous zirconyl salt solutions // J. Mater. Res. 1999. V. 14. P. 103−113.
  183. Falaras P., Xagas A.P. Roughness and fractality of nanostructured Ti02 films prepared via sol-gel technique // J. Mater. Sci. 2002. V. 37. P. 3855−3860.
  184. Zaharescu. МГ, Teodorescu V.S., Gartner M., Blanchin- M.G., Barau A., Anastasescu M: Correlation between the method. of preparation and1 the properties of the sol-gel Hf02 thin film // J. Non-Cryst. Solids. 2008. V. 354: P. 409−415.
  185. Smith D.M., Deshpande R*., Brinker C.J., Earl W.L., Ewing В., Davis P.J. In-situ pore structure characterization during sol-gel synthesis of controlled: porosity materials // Catal. Today. 1992. V. 14. P. 293−303.
  186. Glaves C.L., Brinker C.J., Smith D.M., Davis P.J. In situ pore structure studies of xerogel drying // Chem. Mater. 1989: V. 1. P. 34−40.
  187. T.A. Состояние протонсодержащих групп в сорбентах на.основе оксигидроксидных, гетерополиметаллатных и цианоферратных, фаз // Автореферат диссертации на^ соискание ученой- степени доктора химических наук. Екатеринбург, 2009. 43 с.
  188. Y.W., Riello P., Benedetti A., Fagherazzi G. /Fractal model of amorphous and semicrystalline nano-sized zirconia aerogels // J. Non-Cryst. Solids. 1995. V. 185. P. 78−83.
  189. Kravchyk K.V., Gomza Yu.P., Pashkova O.V., V’yunov O.I., Nesin S.D., Belous A.G. Effect of synthesis conditions on the fractal structure of yttrium-stabilized zirconium dioxide//J. Non-Cryst. Solids. 2009. V. 355. P. 2557−2561.
  190. Belous A.G., Kravchyk K.V., Pashkova O.V., Gomza Yu.P., Nesin S.D. Spontaneous fractal ordering of zirconium oxide nanoparticles during synthesis from solution // J. Eur. Ceram. Soc. 2010. V. 30. P. 141−145.
  191. Liang L, Xu Y., Hou X., Wu D., Sun Y., Li Z., Wu Z. Small-angle X-ray scattering study on the microstructure evolution of zirconia nanoparticles during calcinations//J. Solid State Chem. 2006. V. 179. P. 959−967.
  192. Chuah G.K., Liu S.H., Jaenicke S., Li J. High surface area zirconia by digestion of zirconium propoxide at different pH // Mocropor. Mesopor. Mater. 2000. V. 39. P. 381−392.
  193. Gavrilov V.Yu., Zenkovets G.A. Formation of the Pore Structure of Zirconium Dioxide at the Stage of Gel Aging // Kinet. Catal. 2000. V. 41. P. 561−565.
  194. Suh D.J., Park T.J. Effect of ageing conditions on the pore structural properties oftitania aerogels//J. Mater. Sci. Lett. 1997. V. 16. P. 490−492.
  195. Golubko N.V., Yanovskaya M.I., Romm I.P., Ozerin A.N. Hydrolysis of Titanium Alkoxides: Thermochemical, Electron Microscopy, SAXS studies // J. Sol-Gel Sci. Tech. 2001. V. 20. P. 245−262.
  196. Molino F., Barthes J.M., Ayral A., Guizard C., Jullien R., Marignan J. Influence of surfactants on the structure of titanium oxide gels: Experiments and simulations // Phys. Rev. E. 1996. V. 53. P. 921—925.
  197. Pattier B., Henderson M., Brotons G., Gibaud A. Study of Titanium Sol-Gel Condensation Using Small-Angle X-ray Scattering //J. Phys.Chem. B. 2010. V. 114. P. 5227−5232.
  198. Ponton A., Griesmar P., Barboux-Doeuff S., Sanchez C. Rheological investigation of the sol-gel transition: effect of hydrolysis variation in silicon oxide and titanium oxide based matrices//J. Mater. Chem. 2001. V. 11. P. 3125−3129.
  199. Rivallin M., Benmami M., Gaunand A., Kanaev A. Temperature dependence of the titanium oxide sols precipitation kinetics in the sol-gel process // Chem. Phys. Lett. 2004. V. 398. P. 157−162.
  200. Jalava J.P., Hiltunen E., Kahkonen H., Erkkila H., Harma H., Taavitsainen V.M. Structural Investigation of Hydrous Titanium Dioxide Precipitates and Their Formation by Small-Angle X-ray Scattering // Ind. Eng. Chem. Res. 2000. V. 39. P. 349−361.
  201. Lecomte A., Blanchard F., Dauger A., Silva M.C., Guinebretiere R. Synthesis and sintering of zirconium oxide aerogel // J. Non-Cryst. Solids. 1998. V. 225. P. 120−124.
  202. Lopez Т., Rojas F., Alexander-Katz R., Galindo F., Balankin A., Buljan A. Porosity, structural and fractal study of sol-gel Ti02-Ce02 mixed oxides // J. Solid State Chem. 2004. V. 177. P. 1873−1885.
  203. Patra A.K., Ramanathan S., Sen D., Mazumder S. SANS study of fractal microstructure and pore morphology in porous titania // J. Alloys. Сотр. 2005. V. 397. P. 300−305.
  204. Stachs O., Gerber Т., Petkov V. The structure formation of zirconium oxide gels in alcoholic solutions//J. Sol-Gel Sci. Tech. 1999. V. 15. P. 23−30.
  205. Liang L., Xu Y., Hou X., Wu D., Sun Y., Li Z., Wu Z. Small-angle X-ray scattering study on the microstructure evolution of zirconia nanoparticles during calcinations//J. Solid State Chem. 2006. V. 179. P. 959−967.
  206. Petricek V., Dusek M., Palatinus L. Jana2006. The crystallographic computings system. 2006. Institute of Physics, Praha, Czech Republic.
  207. Toraya H., Yoshimura M., Somiya S. Calibration curve for quantitative-analysis of the monoclinic-tetragonal Zr02 system by X-ray-diffraction // Comm. Am. Ceram. Soc. 1984. V. 67. P. C119-C121.
  208. Benin A.I., Kossoy A.A., Sharikov F.Yu. Automated-system for kinetic research in thermal-analysis. 2. Organization of kinetic-experiments in askr // J. Therm: Anal. 1992. V. 38. P. 1167−1180.
  209. Wignall G.D., Bates F.S. Absolute calibration of small-angle neutron scattering data //J. Appl. Cryst. 1987. V. 20. P. 2810.
  210. Schmatz W., Springer Т., Schelten J., Ibel K. Neutron small-angle scattering -experimental techniques and applications // J. Appl. Cryst. 1974: V. 7. P. 96−116.
  211. Ivanov V.K., Kopitsa G.P., Baranchikov A.Ye., Sharp M., Pranzas K., Grigoriev S.V. Mesostructure, Fractal Properties and Thermal Decomposition of Hydrous Zirconia and Hafnia // Russ. J. Inorg. Chem. V. 54. No. 14*. P. 2091−2106.
  212. B.C., Зарубина А. П., Ерошников Г. Е. и др. Сенсорные биолюминесцентные системы на основе LUX-оперонов разных видов люминесцентных бактерий // Вестн. МГУ. Сер. 16. Биология. 2002. С. 20−24.
  213. W.W., Асриели Т. В., Гаврилова Е. М., Данилов B.C. Определение антибиотиков с помощью люминесцентных Escherichia coli в присутствии сыворотки крови // Прикл. биохимия и микробиология. 2007. Т. 43. С. 471−478.
  214. Страховская М.Ґ., Пархоменко И. М., Румбаль Я. В. и др. Фотоиндуцированное подавление биолюминесценции генно-инженерного штамма бактерий Escherichia Coli TG1 (рХеп7) в присутствии фотодитазина // Микробиология. 2002. Т. 71. С. 345−348.
  215. А.А., Данилов B.C., Зубков Б. В. и др. Прибор «Биотокс-К» для экспресс-оценки экологической обстановки"// Датчикиі и системы. 2007. № 9. С. 27−31.
  216. D.A., Moroz Е. М., lvanova> A.S., Shmakov A.N., KustovaG.N. Local structure of amorphous and highly dispersed zirconium hydroxides and oxides // Kinetics and Catalysis. 2004. V. 45, P. 739−742.
  217. Zyuzin D.A., Moroz E.M., Ivanova A.S., Shmakov A.N. Structure characteristics of disordered zirconium hydroxoxides // Crystallography Reports. 2003. V. 48: P.413.415.
  218. Ivanova A.S., Fedotov M.A., Litvak G.S., Moroz E. M". Preparation of fine-particle zirconia-based materials // Inorg. Mater. 2000. V. 36. P. 352−358:
  219. Carter G.A., Hart R.D., Rowles M. R, Buckley C.E., Ogden M.I. The effect of processing parameters on particle~size in ammonia-induced*precipitation of zirconyl chloride under industrially relevant conditions // Powder Tech. 2009. V. 191. P."218.226.
  220. Kosmulski M: A literature survey of the differences between the reported isoelectric points and their discussion // Coll. Surf. A. 2003. V. 222. P. 113−118.
  221. Pechenyuk S.I. The use of the pH at the point of zero charge for characterizing the properties of oxide hydroxides // Russ. Chem. Bull. 1999. V. 48. P. 1017−1023.
  222. Parks G.A. Isoelectric points of solid oxides solid hydroxides and aqueous hydroxo complex systems // Chem. Rev. 1965. V. 65. P. 177-&.
  223. Kosmulski M., Gustafsson J., Rosenholm J.B. Correlation between the zeta potential and Theological properties of anatase dispersions II J. Coll. Int. Sci. 1999. V. 209. P. 200−206.
  224. Hsu J.P., Nacu A. An experimental study on the rheological properties of aqueous ceria dispersions //J. Coll. Int. Sci. 2004. V. 274. P. 277−284.
  225. Abov Yu.G., Denisov D.S., Elyutin N.O., Matveev S.K., Smirnov Yu.l., Eidlin A.O., Dzheparov F.S., L’vov D.V. Asymptotic behavior of neutron small-angle multiple. scattering spectra// J. Exper. Theor. Phys. 1998. V. 87. P. 1195−1200.
  226. Vasil’ev V.P., Lytkin A.I., Chernyavskaya N: V. Thermodynamic characteristics of zirconium andhafniunrr hydroxides in aqueous, solution // J. Thermal Analysis-and Calorimetry.1999. V. 55. P. 1003−1009.
  227. Liang, L., Xu Y., Hou X., Wu D., Sun Y., Li Z" Wu. Z. Small-angle X-ray scattering-study on the microstructure evolution of zirconia nanoparticles during calcination //J. Solid State Chem. 2006. V. 179. P.959−967.
  228. Brinker C.J., Keefer K.D., Schaeffer D.W., Assink R.A.Q., Kay B.D., Ashley C.S. Sol-gel transition in simple silicates.2 // J. Non-Cryst. Solids. 1984. V. 63. P: 45−59.
  229. Clearfield A. The mechanisnrof hydrolytic polymerization of zirconyl solutions // J. Mater. Res. 1990. V. 5. P. 161−162.
  230. Kuznetsova T.G., Sadykov V.A. Specific features of the defect structure of metastable nanodisperse ceria, zirconia, and' related materials Kinetics and Catalysis. 2008. V. 49. P. 840−858.
  231. Stenina I.A., Voropaeva E.Yu., Veresov A.G., Kapustin G.I., Yaroslavtsev A.B. Effect of precipitation pH and heat treatment on the properties of hydrous> zirconium dioxide // Russ. J. Inorg. Chem. 2008. V. 53. P. 350−256:
  232. Pechenyuk S.I., Ivanov Yu.V., Semushina Yu.P. Porosity of some iron (MI),-chromium (lll), and zirconium (IV) hydroxide oxide xerogels // Russ. J. Inorg. Chem. 2006. V. 51. P. 189−193.
  233. Sato Т. The thermal decomposition of zirconium oxyhydroxide // J. Thermal Analysis and Calorimetry.2002. V. 69. 255−265.
  234. Guo G.Y., Chen Y.L., Ying W. Thermal, spectroscopic and X-ray diffractional analyses, of zirconium hydroxides precipitated at low pH values // J. Mat. Chem. Phys. 2004. V. 84. P. 308−314.
  235. Class-H.J., With G. Fractal characterization of the compaction and sintering of ferrites // J. Mater. Characterization. 2001. V. 47. P. 27−37.
  236. Emmerling A., Lenhard W., Fricke J., Vorst-. G.A.L van der Densification behavior of silica aerogels-upon isothermal sintering // J. Sol-GeLSci. Tech. 1997. V. 8. P. 837−842.
  237. Huang.W.L., CuLS. H1., Liang. K.M., Yuan F.Z., Gu S.R. Evolution of pore and: surface, characteristics' of silica- xerogels during calcining // J. Phys. Chem. Solids. 2002. V. 63. P. 645−650.
  238. Huang W.L., Cui S.H., Liang K. M, Gu S.R. Influence of calcining temperature on the mesopore structures and surface fractal dimensions of Mg0-Al203-Si02 xerogels//J. Phys. Chem. Solids. 2001. V. 62. P. 1205−1211.
  239. НиапдД/V.L., Liang K.M., Gu S.R. Calcining silica gels at. different drying stages- // Mat. Lett. 2000. V. 46. P. 136−141.
  240. Sen D., Patra A.K., Mazumder S., Ramanathan S. Pore morphology in sintered Zr02 8 mol % Y203 ceramic- a small-angle neutron scattering investigation // J. Alloys Сотр. 2002. V. 340. P. 236−241.
  241. Shukla S., Seal S. Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia // Int. Mater. Rev. 2005. V. 50. P. 45−64.
  242. В.К., Олейников Н. Н., Третьяков Ю. Д. Влияние химической предыстории и условий термической обработки на фрактальные свойства поверхности оксида железа(Ш) //Докл. РАН. 2002. Т. 386. № 6. С. 775−778.
  243. В.К., Баранов А. Н., Олейников Н. Н., Третьяков Ю. Д. Синтез оксида железа(Ш) с контролируемой фрактальной размерностью поверхности //Журн. неорган, химии. 2002. Т. 47. № 12. С. 1925−1929.
  244. В.К., Полежаева О. С., Копица Г. П., Баранчиков А. Е., Третьяков Ю. Д. Фрактальная структура нанодисперсных порошков диоксида церия // Неорг. матер. 2008. Т. 44. № 3. С. 324−330.
  245. Moafi H.F., Shojaie A.F., Zanjanchi М.А. The comparative study of photocatalytic self-cleaning properties of synthesized nanoscale titania and zirconia- onto polyacrylonitrile fibers // J. Appl. Polymer Sci. 2010. V. 118: P. 2062−2070.
  246. Moafi H.F., Shojaie A.F., Zanjanchi M.A. The comparison of photocatalytic activity of synthesized ТіОг and Zr02 nanosize onto wool fibers // Appl. Surf. Sci. 2010. V. 256. P. 4310−4316.
  247. Alvarez M., Lopez Т., Odriozola-J.A., Gonzalez R.D. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid over Zr02, Cu/Zr02 and Fe/Zr02 photocatalysts synthesized by sol gel method // J. Nanosci. Nanotech: 2008. V. 8. P. 6414−6418.
  248. Lo C. C, Hung C.H., Yuan C.S., Wu J.F. Photoreduction of carbon dioxide witfr H2 and’H20 over Ti02 and Zr02 in a circulated photocatalytic reactor // Solar, Energy Mater. Solar Cells. 2007. V. 91. P. 1765−1774.
  249. Wu C.Y., Zhao X.P., Ren Y.J., Yue Y.H., Hua W.M., Cao Y., Tang Y., Gao Z. Gas-phase photo-oxidations of organic compounds over different forms of zirconia // J. Мої. Catal. A. 2005. V. 229. P. 233−239.
  250. Navio J.A., Hidalgo M.C., Colon G., Botta S.G., Litter M.I. Preparation and physicochemical properties of Zr02 and Fe/Zr02 prepared by a sol-gel technique // Langmuir. 2001. V. 17. P. 202−210.
  251. Kohno Y., Tanaka Т., Funabiki Т., Yoshida S. Photoreduction of carbon dioxide with methane over Zr02//Chem. Lett. 1997. №.10. P. 993−994.
  252. Kohno Y., Tanaka Т., Funabiki Т., Yoshida S. Photoreduction of carbon dioxide with hydrogen over Zr02 // Chem. Comm. 1997. V. 9. P. 841−842.
  253. Wu Y., Liao S. Review of solid superacid catalysts // Front. Chem. Eng. China 2009. V. 3. P. 330−343.
  254. Reddy B.M., Patil M.K. Organic Syntheses and Transformations Catalyzed by Sulfated Zirconia // Chem. Rev. 2009. V. 109. P. 2186−2208.
  255. Arata K., Matsushita H., Hino M., Nakamura H. Synthesis of solid superacids and their activities for reactions of alkanes // Catal. Today. 2003. V. 81. P. 17−30.
  256. Yu H., Fang H., Zhang H., et al. Acidity of sulfated tin oxide and sulfated zirconia: A view from solid-state NMR spectroscopy // Catal. Commun. 2009. V. 10. P. 920 924.
  257. Djurado E., Bouvier P., Lucazeau G. Crystallite size effect on the tetragonal-monoclinic transition of undoped nanocrystalline. zirconia studiedby XRD and Raman spectrometry//J. Solid State Chem. 2000. V. 149. P. 399−407.
  258. Ф.Ю., Мескин П. Е., Иванов В. К., Чурагулов Б. Р., Третьяков Ю. Д. Исследование процесса гидротермального синтеза нанодисперсного диоксида циркония методом калориметрии теплового потока // ДАН, серия «Химия». 2005. Т. 403. № 5. С. 181−184.
  259. Ф.Ю., Апьмяшева О. В., Гусаров В. В. Термический анализ процесса образования наночастиц Zr02 в гидротермальных условиях // Журн. неорган, химии. 2006. Т. 51. С. 1636−1640.
  260. Meskin Р.Е., Ivanov V.K., Barantchikov А.Е., Churagulov B.R., Tretyakov Yu.D. Ultrasonically assisted hydrothermal synthesis of nanocrystalline Zr02, Ti02, NiFe204 and Ni0 5Zn0.5Fe2O4 powders // Ultrasonics Sonochem. 2006. V.13. P. 47−53.
  261. П.Е., Баранчиков А. Е., Иванов В. К., Афанасьев Д. Р., Гаврилов А. И., Чурагулов Б. Р., Олейников Н.Н*. Гидротермальный синтез высокодисперсных порошков ТЮ2 и Zr02 при ультразвуковом воздействии // Неорг. матер. 2004. Т. 40. № 10. С. 1208−1215.
  262. П.Е., Гаврилов А. И., Максимов В. Д., Иванов В. К., Чурагулов Б. Р. Гидротермально-микроволновой и гидротермально-ультразвуковой синтез нанокристаллических. диоксидов титана, циркония, гафния // ЖНХ. 2007. Т.52. № 11. С. 1755−1764.
  263. Ф.Ю., Иванов В. К., Шариков Ю. В., Белоглазов И:Н. Исследование кинетических" закономерностей формирования нанокристаллического диоксида-титана в гидротермальных~условиях^// Цветн. металлы. 2008. № 5. С. 47−51.
  264. Zhang W" Zhang !., Jiang Z., et al. Synthetic-route to the nano-sized titania with-high photocatalytic activity using, a mixed structure-directing- agent // Mat. Chem: Phys. 2007. V. 105. P. 414−418.
  265. Burukhin А.А., Churagulov B.R., Oleynikov N.N. Characterization of ultrafine zirconia and iron oxide powders prepared under hydrothermal conditions // High Pressure Research. 2001. V. 20. P. 255−264.
  266. Lin C.H., Lin S.D., Yang Y.H., Lin T.P. The synthesis and hydrolysis of dimethyl acetals catalyzed by sulfated metal oxides. An efficient method for protecting carbonyl groups // Catal. Lett. 2001. V. 73. P. 121−125.
  267. A.B., Пресняков И. А., Третьяков Ю. Д. // Химия твердого тела. М.: «Академия». 2006. 304 с.
  268. Boskovic S., Zee S., Brankovic G., Devecerski A., Matovic В., Aldinger F. Preparation, sintering and electrical properties of nano-grained multidoped ceria // Ceram. Int. 2010. V. 36. P. 121−127.
  269. Stojmenovic Ml, Boskovic S., Zee S., Matovic В., Bucevac D. et all. Characterization of nanometric multidoped ceria powders // J. All. Сотр. 2010. V. 507. P. 279−2851.
  270. Tadoroko S.K., Muccillo E.N. Effect of Y and Dy co-doping on electrical conductivity of ceria ceramics // J. Europ. Ceram. Soc. 2007. V. 27. P. 4261−4264.
  271. Byrappa K., Yoshimura M. Handbook of Hydrothermal- Technology. A Technology for Crystal Growth and Materials Processing. New York, USA, William Andrew Publishing. 2000. 870 p.
  272. Biemann P., Haese-Seiller M., Staron P. User-friendly software for SANS data reduction // Physica В .2000. V. 276−278. P. 156−157.
  273. Bailer J.F., Poelstra K., Hardonk M.J., Bakker W.W. A modified cerium-based histochemical method for detection of experimentally-induced atpase impairment in glomeruli of the rat-kidney//J. Histochem. Cytochem. 1993. V. 41. P. 1105−1109.
  274. Sehgal A., Lalatonne Y., Berret J.-F., Morvan M. Precipitation-redispersion of cerium oxide nanoparticles with poly (acrylic acid): Toward stable dispersions // Langmuir. 2005. V. 21. P. 9359−9364.
  275. O.O., Скорик H.A. II Журн. физ. химии. Кинетика реакции сульфата церия (1/) с цитратом и термодинамика образования промежуточных комплексов //2009. Т. 83. С. 1079−1084.
  276. Roma-Luciow R., Sarraf L., Morcellet M. Concentration effects during the formation- of poly (acrylic acid)-metal complexes in aqueous* solutions // Polymer Bull. 2000. V. 45. P. 411−418.
  277. Hetper J., Balcerowiak W., Beres J. Thermal-decomposition of metal polyacrylates //J. Therm. Analysis and Calorim. 1981. V. 20. P. 345−350.
  278. Я.Е. Физика спекания. 2-е изд., перераб. и доп. М.: Наука, 1984. 312 с.
  279. Zee S., Boskovic S., Kalurerovic В., et al. Chemical reduction of nanocrystalline Ce02 // Ceram. Int. 2009. V. 35. P.195−198.
  280. Галюс 3. Теоретические основы электрохимического анализа. М.: Мир. 1974*. 552 с.
  281. Catalysis by Ceria and Related Materials (Catalysis Science Series, Vol. 2). Ed. by A. Trovarelli. London, UK, Imperial College Press: 2002, 528 p.
  282. Zhang G., Shen Z. et al. Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids // J. Phys. Chem. B. 2006. V. 110. P. 25 782−25 790.
  283. Gouadec G., Colomban P. Raman- Spectroscopy of nanomaterials: How* spectra relate to disorder, particle size and mechanical properties // Prog. Cryst. Growth Charact. Mater. 2007. V. 53. P. 1−56.
  284. Luo M.F., Hou Z.Y., Yuan X.X., Zheng X.M. Characterization study of Ce02 supported Pd catalyst for low-temperature carbon monoxide oxidation // Catal. Lett. 1998. V.50. P. 205−209.
  285. Zhong L.S., Hu J.S. et al. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal // Chem. Mater. 2007. V.19. P. 1648−1655.
  286. Pan C., Zhang D., Shi L., Fang J. Template-free synthesis, controlled conversion, and CO oxidation properties of Ce02 nanorods, nanotubes, nanowires, and nanocubes // Eur. J. Inorg. Chem. 2008. № 15. P. 2429−2436.
  287. Roberts M.W., Wells B.R. Nature and reactivity of nickel and oxidized nickel surfaces // Discuss. Faraday Soc. 1966. V. 41. P. 162−174.
  288. Kang M., Song M.W., Kim K.L. Catalytic oxidation of carbon monoxide over CoOx/Ce02 catalysts// React. Kinet. Catal. Lett. 2003. V. 79. P. 3−10.
  289. Harrison P.G., Ball I.K., Azelee W. et al. Nature and surface redox properties of copper (ll)-promoted.cerium (IV) oxide СО-oxidation catalysts // Chem. Mater. 2000. V. 12. P. 3715−3725.
  290. Munoz-Espada A.C., Noo& K.V., Bordelon В., Watkins B.A. Anthocyanin quantification and radical scavenging capacity of Concord, Norton, and Marechal Foch grapes and wines*// J. Agric. Food Chem. 2004. V. 52. P. 6779−6786.
  291. Head K.A. Natural therapies for ocular disorders, part one: diseases of the retina // Altern. Med. Rev. 1999. V.4. P. 342−359.
  292. Head K.A. Natural therapies for ocular disorders, part two: cataracts and glaucoma//Altern. Med. Rev. 2001. V. 6. P.141−166.
  293. Lichtenthaler R., Marx F., Kind O.M. Determination of antioxidative. capacities using an enhanced total oxidant scavenging capacity (TOSC) assay // Eur. Food Res. Techn. 2003. V.216. P. 166−173.
  294. Jackman R.L., Yada' R.Y., Tung M.A., Speers R.A. Anthocyanins as food colorants A REVIEW // J. Food Biochem. 1987. V.11. P. 201−247.
  295. Markakis P. Stability of anthocyanins in foods. In: Anthocyanins as Food Colors. Ed. by P. Markakis. New York: Academic Press. 1982.163 p.
  296. Falcao L.D., Falcao A.P., Gris E.F. Spectrophotometric study of the stability of anthocyanins from Cabernet Sauvignon grape skins in a model system II Braz. J. Food Technol. 2008. V. 11. P. 63−69.
  297. Sondheimer E., Kertesz Z.I. The kinetics of the oxidation of strawberry anthocyanin by hydrogen peroxide II J. Food Sci. 2006. V. 17. P. 288−298.
  298. Yamasaki H., Uefuji H., Sakihama Y. Bleaching of the red anthocyanin induced by superoxide radical //Archives Biochem. Biophys. 1996. V. 332. P. 183−186.
  299. Ю.А., Сластья E.A. Антоцианы в составе полифенолов винограда пищевого концентрата «Эноант» // Магарач. виноградарство и виноделие. 2003. № 1. С. 25−26.
  300. Rein M.J. The author’s abstract of academic dissertation. Helsinki: Univ. of Helsinki, 2005. 87 p.
  301. Abyari M., Heidari R., Jamei R. The effect of heating, UV irradiation and pH on stability of the anthocyanin-copigment complex//J. Biol .Sci. 2006. V.6: P.638—645.
  302. Misra H.P., Fridovich I. Role of superoxide anion in autoxidation of epinephrine and a simple assay for superoxide dismutase II J. Biol. Chem. 1972. V. 247. P. 3170−3175.
  303. Bors W., Michel C., Saran M., Lengfelder E. Involvement of oxygen radicals during autoxidation of adrenalin // Biochim. Biophys. Acta. 1978. V. 540. P. 162 172.
  304. Bindoli A., Rigobello M.P., Galzigna L. Toxicity of aminochromes II Toxicol. Lett. 1989. V.48. P. 3−20.
  305. Т.В. Новый подход в исследовании процесса аутоокисления адреналина и использование его для измерения активности супероксиддисмутазы // Вопросы мед. химии. 1999. Т. 45. № 3. С. 263−272.
Заполнить форму текущей работой