Гидродинамика и массообмен при хемосорбции диоксида углерода в мембранном микробарботажном аппарате
Диссертация
В последнее время в литературе появился ряд публикаций, сообщающих о том, что при диспергировании газа через пористые мембраны образуются микропузырьки, имеющие размеры от 0.5 до 150 мкм. Благодаря столь малым размерам микропузырьки обладают рядом уникальных свойств и могут найти широкое применение в химической, пищевой, фармацевтической промышленности, а так же в области биотехнологии… Читать ещё >
Список литературы
- Kukizaki M., Goto M. Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes. // Journal of membrane science. 2006. V. 281. p. 386.
- Kukizaki M. Microbubble formation using asymmetric Shirasu-porous-glass (SPG) membranes and porous ceramic membranes — A comparative study. // Colloids and surfaces A: Physicochem. Eng. Aspects. 2009. V. 340. p. 20.
- Kukizaki M., Goto M. Spontaneous formation behavior of uniform-sized microbubbles from Shirasu-porous-glass (SPG) membranes in the absence of water-phase flow. // Colloids and surfaces A: Physicochem. Eng. Aspects. 2006. V. 296. p. 174.
- Tasaki T., Wada T., Fujimoto K., Kai S., Ohe K., Oshima T., Baba Y., Kukizaki M. Degradation of methyl orange using short-wavelength UV irradiation with oxygen microbubbles. // Journal of hazardous materials. 2009. V. 162. № 2. p. 1103.
- Ganan-Calvo A.M., Gordillo J.M. Perfectly monodisperse microbubbling by capillary flow focusing. // Phys. review letters. 2001. V. 87. p. 274.
- Shafi M.A., Lee J.G., Fulmerfalt R.W. Prediction of cellular structure in free expansion polymer foam processing. // Polym. Eng. Sci. 1996. V. 36. p.950.
- Rodrigues R.T., Rubio J. New basis for measuring bubbles size distribution. // Minerals Eng. 2003. V. 16. № 8. p. 757.
- Ahmed N., Jameson G.J. The effect of bubble size on the rate of flotation of fine particle. // International journal of mineral processing. 1985. V. 14. № 3. p. 195.
- Yoon R.-H. Microbubble flotation. // Minerals Eng. 1993. V.6. № 6. p. 619.
- Yoon R.-H., Lutterell G.H. A hydrodynamic model for bubble particle attachment. // Journal of Colloid and interface science. 1992. V. 154. № 1. p. 129.
- Kukizaki M., Nakashima T. Acid leaching process in the preparation of porousglass membranes from phase separated glass in the Na20-Ca0-Mg0-Al203-B203
- Si02 system. // Membrane. 2004. V. 29. p.301.160
- Kukizaki M., Nakashima T., Song G., Kohama Y. Monodispersed nanobubbles generated from porous glass membrane and bubble size control. // Kagaku Kogaku Ronbun. 2004. V. 30. p. 654.
- Xu N.P., Xing W.H., Zhao Y.J. Separation technology and application of inorganic membrane. Beijing.: Chemical industrial press. 2003.
- Tsuru T. Inorganic porous membranes for liquid phase separation. // Sep. Purif. Meth. 2001. V.30. p.191.
- Dong Y., Liu X., Ma Q., Meng G. Preparation of cordierite-based porous ceramic microfiltration membranes using waste fly ash as the main raw materials. // Journal of membrane science. 2006. V. 285. p. 173.
- Almandoza M.C., Marchese J., Pradanos P., Palacio L., Hernandez A. Preparation and characterization of non-supported microfiltration membranes from aluminosilicates. // Journal of membrane science. 2004. V. 241. p. 95.
- Kukizaki M., Goto M. Preparation and characterization of new asymmetric type of Shirasu porous glass (SPG) membrane used for membrane emulsification. // Journal of membrane science. 2007. V. 299. p. 190.
- Kukizaki M., Wada T. Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu porous glass (SPG) membrane. // Colloids and surfaces A: Physicochem. Eng. Aspects. 2008. V. 317. p. 146.
- Yasuda H.K., Lin J.N. Small bubble oxygenation membrane. // J. Appl. Polym. Sci. 2003. V. 90. p. 387.
- Katoh R., Asano Y., Furuya A., Sotoyama K., Tomita M. Preparation of food emulsions using a membrane emulsification system. // Journal of membrane science. 1996. V. 113. p. 131.
- Scherze I., Marzilger K., Muschiolik J. Emulsification using micro porous glass membrane (MPG): surface behavior of milk proteins. // Colloids Surf. B. 1999. V. 12. p. 213.
- Yasuno M., Nakajima M., Iwamoto S., Maruyama T., Sugiura S., Kobayashi I., Shono A., Satoh K. Visualization and characterization of SPG membrane emulsification. // Journal of membrane science. 2002. V. 210. p. 29.
- Vladislavljevic G.T., Schubert H. Influence of process parameters on droplet size distribution in SPG membrane emulsification and stability of prepared emulsion droplets. // Journal of membrane science. 2003. V. 225. p. 15.
- Anagbo P.E., Brimacombe J.K. Plume characteristics and liquid circulation in gas injection through a porous plug. // Metall. Mater. Trans. B. 1990. V. 2IB. p.637.
- Iguchi M., Kaji M., Morita Z. Effects of pore diameter, bath surface pressure, and nozzle diameter on the bubble formation from a porous nozzle. // Metall. Mater. Trans. B. 1998. V. 29B. p.1209.
- Vladislavljevic G.T., Shimizu M., Nakashima T. Permeability of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its microstructure. // Journal of membrane science. 2005. V. 250. p. 69.
- Vladislavljevic G.T., Schubert H. Preparation and analysis of oil-in-water emulsions with a narrow droplet size distribution using Shirasu-porous-glass (SPG) membranes. // Desalination. 2002. V. 144. p. 167.
- Kukizaki M., Baba Y. Effect of surfactant type on microbubble formation behavior using Shirasu-porous-glass (SPG) membranes. // Colloids and surfaces A: Physicochem. Eng. Aspects. 2008. V. 326. p. 129.
- Painmanakul P., Loubiere K., Hebrard G., Mietton-Peuchot M., RoustanM. Effect of surfactants on liquid-side mass transfer coefficients. // Chem. Eng. Sci. 2005. V. 60. p. 6480.
- Sardeing R., Painmanakul P., Hebrard G. Effect of surfactants on liquid-side mass transfer coefficients in gas-liquid systems: A first step to modeling. // Chem. Eng. Sci. 2006. V. 61. p. 6249.
- Cuenot В., Magnaudet J., Spennato B. The effect of slightly soluble surfactants on the flow around a spherical bubble. // J. Fluid. Mech. 1997. V. 339. p. 25.
- Calderbank P.H., Moo-Young M.B. The continous phase heat and masstransfer properties of dispersions. // Chem. Eng. Sci. 1961. V. 16. p. 39.
- Takemura F., Yage A. Rising speed and dissolution rate of carbon dioxide bubble in slightly contaminated water. // Journal of Fluid Dynamics. 1999. V. 378. p. 319.
- Whitman W.G. Two-film theory of absorption. // Chem. and Met. Eng. 1923. V. 29. p. 147.
- Рамм B.M. Абсорбция газов. Москва: Химия. 1976.
- Франк-Каменецкий Д. А. Диффузия и теплопередача в химической кинетике. Изд. 2-ое. Москва: Наука. 1967.
- Higbie R. The rate of absorption of pure gas into a still liquid during short periods of exposure. // Trans. Am. Inst. Chem. Eng. 1935. V. 31. p. 365.
- Danckwerts P.V. Significance of liquid films coefficients in gas absorption. // Ind. Eng. Chem. 1951. V. 43. p. 1460.
- Richardson J.F. Coulson J.M. Chemical Engineering, sixth edition. V. 1. Oxford: Butterworth-Heinemann. 1999.
- Toor H.L., Marchello J.M. Film-penetration model for mass and heat transfer. // AIChE Journal. 1958 V. 4. p. 97.
- Valentine F.H.H. Absorption in gas-liquid dispersions: Some aspects of bubble technology. London: E.& F. Spon. ltd. 1967.
- Дильман B.B. К теории тепло- и массообмена при турбулентном течении. // ТОХТ. 1967. т.1. № 4. с. 438.
- Левич В.Г. Физико-химическая гидродинамика. Изд. 2-ое. Москва: Физматгиз. 1959.
- Еленков Д. Влияние добавок поверхностноактивных веществ на массопередачу в системах газ-жидкость и жидкость-жидкость. // ТОХТ. 1967. т.1. № 2. с. 158.
- Демченко Б.И. Исследование влияния поверхностного натяжения и некоторых других факторов на массопередачу в жидкой фазе при абсорбции газов. Диссертация к.т.н. Москва: МХТИ им. Д. И. Менделеева. 1971.
- Scriven L.E., Sterhling C.V. On cellular convection driven by surface tension gradients: effects of mean surface tension and surface viscosity. // Journal of Fluid Mech. 1964. V. 19. № 3. p. 321.
- Фурмер Ю.В., Аксельрод Ю. В., Дильман B.B. Лашаков A.JL Экспериментальное исследование межфазной турбулентности при абсорбции осложненной химической реакцией. // ТОХТ. 1971. т.5 № 1. с. 134.
- Madhavi Т., Golder А.К., Samanta A.N., Ray S. Studies on bubble dynamics with mass transfer. // Chem. Eng. Journal. 2007. V. 128. p. 95.
- Fukunaka Y., Jiang Y., Yamamoto Т., Asaki Z., Kondo Y. Nonuniformity of NaOH concentration and effective bubble diameter in ССЬ injection into aqueous NaOH solution. //Metal Transact. B. 1989. V. 20B. p. 5.
- Brian P.L.T., Hurley J.F., Hasseltine E.H. Penetration theory for gas absorption accompanied by a second order chemical reaction. // AIChE Journal. 1961 V. 7. p. 226.
- Heit G., Braun A.M. Spatial resolution of oxygen measurements during VUV-photolysis of aqueous systems. // Journal Inf. Record. 1996. V.22. p. 543.
- Han W., Zhang P., Zhu W., Yin J., Li L. Photocatalysis of p chlorobenzoic acid in aqueous solution under irradiation of 254 nm and 185 nm UV lights. I I Water Res. 2004. V.38. p. 4197.
- Wang C., Wang X., XU B., Zhao J., Mai B., Peng P., Sheng G., Fu J. Enhanced photocatalytic performance of nanosized coupled ZnO/SnC>2 photocatalysts for methyl orange degradation. // Journal Photochem. Photobiol. A: Chem. 2004. V. 168. p. 47.
- Cui Z.F., Chang S., Fane A.G. The use of gas bubbling to enhance membrane process. // Journal of membrane science. 2003. V. 221. p. 1.
- Cui Z.F. Experimental investigation on enhancement of cross-flow ultrafiltration with air sparging, in: R. Paterson (Ed.), Effective membrane processes New Respectives. London: Mechanical Eng. Publications ltd. 1993. p. 237.
- Cui Z.F., Wright K.L.T. Gas-liquid two-phase cross-flow ultrafiltration of dextrans and BSA solution. // Journal of membrane science. 1994. V. 90. p. 183.
- Cui Z.F., Wright K.L.T. Flux enhancements with gas sparging in downward ultrafiltration: performance and mechanism. // Journal of membrane science. 1996. V. 117. p. 109.
- Bellara S.R., Cui Z.F., Pepper D.S. Gas sparging to enhance permeate flux in ultrafiltration using hollow fibers membranes. // Journal of membrane science. 1996. V. 121. p. 175.
- Cui Z.F., Bellara S.R., Homewood P. Airlift cross-flow membrane filtration — feasibility study dextrane ultrafiltration. // Journal of membrane science. 1997. V. 128. p. 83.
- Li Q.Y., Cui Z.F., Pepper D.S. Effect of bubble size and frequency on permeate of gas sparged ultrafiltration with tubular membranes. // Chem. Eng. Journal. 1997. V. 67. № 1. p. 71.
- Ghosh R., Cui Z.F. Mass transfer in gas sparged ultrafiltration: upward slug-flow in tubular membranes. // Journal of membrane science. 1999. V. 162. p. 91.
- Hosney A.Y., O’Keefe T.J., Johnson J.W., James W.I. Effect of gas sparging on mass transfer zinc electrolytes. // Journal Appl. Electrochem. 1992. V.22. p. 596.
- Imasaka T., Kanekuni N., So H., Yoshini S. Cross-flow filtration of membrane fermentation broth by ceramic membranes. // Journal Ferment. Bioeng. 1989. V. 68. p.200.
- Imasaka T., So H., Matsushita K., Kurukawa T., Kanekuni N. Application of gas-liquid two-phase cross-flow filtration to pilot-scale methane fermentation. // Drying Technol. 1993. V. 11. p. 769.
- Cui Z.F., Wright K.I.T. Enhancement of microfiltration of yeast solution, in: Proceedings of the Engineering in membrane processes II Environmental Applications, II Ciocco. Italy. 1994. p. 26.
- Sur H.W., Cui Z.F. Experimental study on the enhancement of yeast microfiltration with gas sparging. // Journal Chem. Technol. Biotechnol. 2001. V.76. p. 477.
- Unger E., Matsunaga T.O., Schumann P.A., Zutshi R. Microbubbles in molecular imaging and therapy. // Medicamundi. 2003. V. 47. № 1. p. 58.
- Meng J.C.S., Uhlman J.S. Microbubble formation and splitting in a turbulent boundary layer for turbulence reduction, in: Proceedings of the international symposium on seawater drag reduction. 1998. p.341.
- Fujikawa S., Zhang R. Hayama S., Peng J. The control of micro-air-bubble generation by a rotational porous plate. // Journal Multiphase Flow. 2003. V. 29. p. 1221.
- Sullivan S.L., Hardy B.W., Holland C.D. Formation air bubbles at orifices submerged beneath liquids. // AIChE J. 1964. V. 10. № 6. p. 848.
- Marshall S.H., Chudacek M.W., Bagster D.F. A model for bubble formation from an orifice with liquid cross-flow. // Chem. Eng. Sci. 1993. V. 48. p. 2049.
- Terasaka K., Murata S., Tsutsumino K. Bubble distribution in shear flow of highly viscous liquids. // Can. J. Chem. Eng. 2003. V. 81. p. 470.
- Schroder V., Behrend O., Schubert H. Production of emulsions using microporous ceramic membranes. // Colloids and surfaces A. 1999. V. 152. p. 103.
- Kobayashi I., Yasuno M., Iwamoto S., Shono A., Satoh K., Nakajima M. Microscopic observation of emulsion droplet formation from a polycarbonate membrane. // Colloids and surfaces A. 2002. V. 207. p. 185.
- Abrahamse A.J., Van Lierop R., Van der Sman R.G.M., Van der Padt A., Boom R.M. Analysis of droplet formation and interactions during cross-flow membrane emulsification. // Journal of membrane science. 2002. V. 204. p. 125.
- Joscelyne S.M., Tragardh G. Membrane emulsification a literature review. // Journal of membrane science. 2000. V. 169. p. 107.
- Ролдугин В.И. Физикохимия поверхности. Долгопрудный: Интеллект. 2008.
- Альтшуль А.Д. Гидравлические сопротивления. М.: Недра. 1982.
- Skudarnov P.V., Lin С.Х. Drag reduction by gas injection into turbulent boundary layer: density ratio effect. // International Journal of Heat and fluid flow. 2006. V. 27. p. 436.
- Cui Z., Fan J.M., Park A.-H. Drag coefficients for a settling sphere with microbubble drag reduction effects. // Powder technology. 2003. V. 138. p.132.
- Астарита Д. Массопередача с химической реакцией. Москва: Химия. 1971.
- Hatta S. On the absorption velocity of gases by liquids. // Tech. Repts. Tohoku Imp. Univ. 1932. V. 10. p. 119.
- Van Krevelen D.W., Hoftijzer P.J. Kinetics of gas-liquids reactions. Part I. General theory. // Rec. Trav. Chim. 1948. V. 67. p. 563.
- Van Krevelen D.W., Hoftijzer P.J. Graphical design of gas-liquid reactors. // Chem. Eng. Sci. 1953. V. 2. № 4. p. 145.
- Van Krevelen D.W., Hoftijzer P.J. Micro- and macro- kinetics: general introduction to the symposium. // Chem. Eng. Sci. 1958. V. 8. № 1−2. p. 5.
- Danckwerts P.V. Absorption by simultaneous diffusion and chemical reactions. // Trans. Faraday Soc. 1950. V. 46. p. 300.
- Данквертс П.В. Газо-жидкостные реакции. Москва: Химия. 1973.
- Хоблер Т. Массопередача и абсорбция. Москва: Химия. 1964.167
- Yoshida F., Miura Y. Gas absorption in agitated gas-liquid contactors. // Ind. Eng. Chem. 1963. V. 2. № 4. p. 263.
- Yoshida F., Miura Y. Effective interfacial area in packed columns for absorption with chemical reaction. // AIChE J. 1963. V. 9. № 3. p. 331.
- Chem-Jung II., Chiang-Hai K. General mathematical model for mass transfer accompanied by chemical reaction. // AIChE J. 1963. Y. 9. № 2. p. 161.
- Фролов Ю.Г. Коллоидная химия. Москва: Химия. 1989.
- Цюрупа Н.Н. Распределение диспергированной фазы по размеру частиц. // Коллоидный журнал. 1964. т. 24. № 1. с. 117.
- Sharma М.М., Danckwerts P.V. Chemical methods of measuring interfacial area and mass transfer coefficients in two-fluids system. // British Chem. Eng. 1970. V. 15. № 4. p. 522.
- Винтер A.A. Определение поверхности контакта фаз на барботажных тарелках. Диссертация к.т.н. Москва: МХТИ им. Д. И. Менделеева. 1966.
- Pohorecki R., Moniuk W. Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solution. // Chem. Eng. Sci. 1988. V. 43. p. 1677.
- Pohorecki R., Moniuk W., Zdrojkowski A. Hydrodynamics of bubble, column under elevated pressure. // Chem. Eng. Sci. 1999. V. 54. p. 5187.
- Maalej S., Benadda В., Otterbein M. Interfacial area and volumetric mass transfer coefficient in a bubble reactor at elevated pressure. // Chem. Eng. Sci. 2003. V. 58. p. 2365.
- Бобылев B.H. Физические свойства наиболее известных химических веществ. Москва: РХТУ им Д. И. Менделеева. 2003.
- Versteeg G.F., Van Swaaij W.P.M. Solubility and diffusivity of acid gases (C02 and N20) in aqueous alkaloamin solutions. // Journal of Chem. Eng. Data. 1988. V.33.p. 29.
- Очистка технологических газов. // под ред. Семеновой Т. А., Лейтеса И. Л. изд. 2-ое пер. и доп. Москва: Химия. 1977.
- Atchariyawut S., Jiraraton R., Wang R. Separation of C02 from CH4 by using gas-liquid membrane contacting process. // Journal of membrane science. 2007. V. 304. p. 163.
- Al-Marzouqi M.H., El-Naas M.H., Marzouk S.A.M, Al-Zarooni M.A., Abdullatif N., Faiz R. Modeling of CO? absorption in membrane contactors. // Sep. and Purif. Tech. 2008. V. 59. № 3. p. 286.
- Yan S.-P., Fang M.-X., Zhang W.-F., Wang S.-Y., Xu Z.-K., Luo Z.-Y., Cen K.-F. Experimental study on the separation of C02 from flue gas using hollow fiber membrane contactors without wetting. // Fuel Processing Tech. 2007. V. 88. p. 501.
- Zhang H.V., Wang R., Liang D.T., Тау J.H. Modeling and experimental study of CO? absorption in a hollow fiber membrane contactors. // Journal of membrane science. 2006. V. 279. p. 301.
- Jing-Liang Li, Bing-Hung Chen. Review of C02 absorption using chemical solvents in hollow fibers membrane contactors.// Separation Purification Tech. 2005. V. 41. p. 109.
- Mansourizadeh A., Ismail A.F. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.// Journal of Hazardous Materials. 2009. V.171. p.38.
- Koonaphapdeelert S., Zhentao W., Li K. Carbon dioxide stripping in ceramic hollow fiber membrane contactors.// Chem. Eng. Sci. 2009. V.64. p.l.