Помощь в написании студенческих работ
Антистрессовый сервис

Исследования из первых принципов, влияния релаксации на образование упорядоченных растворов замещения в системе алюминий — переходные металлы

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Прогнозирование межатомных расстояний и параметров решетки для твердых растворов является наиболее актуальной задачей исследований в области теоретического и практического материаловедения. Кроме структурных изменений, происходящих при образовании упорядоченных растворов замещения, существует проблема качественного описания поведения энергии химической связи (энергии когезии в формулировке… Читать ещё >

Исследования из первых принципов, влияния релаксации на образование упорядоченных растворов замещения в системе алюминий — переходные металлы (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. Аналитический обзор литературы
    • 1. 1. Теории сплавообразования
    • 1. 2. Сплавообразование в системе алюминий — переходные металлы
    • 1. 3. Экспериментальные исследования в области сплавов на основе алюминия
  • 2. Теоретическое введение
    • 2. 1. Теория функционала электронной плотности
      • 2. 1. 1. Плотность, как основная переменная
      • 2. 1. 2. Самосогласованные уравнения
    • 2. 2. Обменно-корреляционный вклад в энергию атома
    • 2. 3. Приближение локальной плотности — ЫЭА
    • 2. 4. Обобщенное градиентное приближение — ОСА
    • 2. 5. Метод точных МТ-орбиталей или ЕМТО
      • 2. 5. 1. Одноэлектронные уравнения
      • 2. 5. 2. Полная зарядовая плотность (РСБ)
      • 2. 5. 3. Одноэлектронный потенциал
      • 2. 5. 4. Полный функционал энергии
      • 2. 5. 5. ЕМТО-структурная матрица
      • 2. 5. 6. Оптимизированные перекрывающиеся МТ-ямы
      • 2. 5. 7. Энергетический член Ехсп
    • 2. 6. Метод псевдопотенциала
    • 2. 7. Метод РА"№ (ППВ) потенциала
    • 2. 8. Разбиение зоны Брилюэна
  • 3. Методика вычислений
    • 3. 1. Основные параметры вычислений
    • 3. 2. Энергия релаксации
    • 3. 3. Энергия растворения
    • 3. 4. Энергия когезии и парциальная мольная энергия когезии
    • 3. 5. Химический вклад в энергию растворения
    • 3. 6. Вычисление структурных изменений в упорядоченном растворе замещения
    • 3. 7. Трактовка энергии Ферми и её изменений
  • 4. Результаты вычислений
    • 4. 1. Энергия релаксации
    • 4. 2. Структурные изменения в результате релаксации
    • 4. 3. Энергия растворения
    • 4. 4. Парциальная мольная энергия когезии
    • 4. 5. Влияние релаксации на электронную структуру
    • 4. 6. Химический вклад в энергию растворения и изменение энергии Ферми

Актуальность работы.

Прогнозирование межатомных расстояний и параметров решетки для твердых растворов является наиболее актуальной задачей исследований в области теоретического и практического материаловедения. Кроме структурных изменений, происходящих при образовании упорядоченных растворов замещения, существует проблема качественного описания поведения энергии химической связи (энергии когезии в формулировке Кителя), а также энергии растворения и детализации этапов растворения, для дальнейшего изучения точечных дефектов. Все описанные параметры необходимо рассматривать в пределе при абсолютной температуре, стремящейся к нулю, так как только в этом случае можно установить максимальную энергию химической связи, реализующуюся электронной подсистемой компонентов входящих в твердый раствор. Для этих целей требуется применение вычислительных методов на базе электронной теории металлов. Так как их наибольшим достоинством является хорошее описание зонной структуры металлов и энергий химического взаимодействия атомов. Используя при этом минимальное количество входных параметров, таких как атомный номер химического элемента, в периодической таблице и кристаллическую структуру твердого тела и позволяют определить параметры кристаллической решётки, межатомные расстояния и основные закономерности изменения полной энергии системы, обусловленные релаксационными процессами. Что способствует дальнейшему переходу к полуэмпирическим методам для количественной оценки большинства термодинамических величин.

Цель работы.

Методами электронной теории металлов из первых принципов установить влияние релаксации на образование упорядоченных растворов замещения на примере систем «А1 -переходные металлы».

Задачи, решаемые в рамках поставленной цели.

1. Установить влияние релаксации на изменение межатомного расстояния в первой координационной сфере и изменение суперячейки в системах А1-с1 переходные металлы.

2. Установить влияние релаксации на энергию растворения и парциальную мольную энергию когезии.

3. Выявить тип релаксации, дающий максимальный вклад в энергию растворения и парциальную мольную энергию когезии (энергию химической связи).

4. Выявить закономерности влияния легирующих элементов на энергию релаксации и энергию растворения.

5. Установить влияние атомов переходных ё металлов на энергию когезии (химической связи) в алюминии.

6. Установить перечень легирующих элементов наиболее активно влияющих на энергию релаксации, энергию растворения и энергию когезии.

Научная новизна.

В качестве характеристик определяющих сплавообразование предложено использовать такие термодинамические величины как:

1. Энергия релаксации.

2. Энергия растворения.

3. Парциальная мольная энергия когезии.

4. Энергия Ферми — Химический потенциал.

5. Плотность состояний на уровне Ферми.

В работе впервые введена систематизация понятия релаксации и предложен способ вычисления энергии релаксации на основе известных полных энергий (как функций состояния системы). Выделен тип релаксации, дающий максимальный вклад в полную энергию системы. На основании предложенной систематизации выделены элементы, максимально влияющие на изменение плотности состояний на уровне Ферми, в сплавах на основе алюминия и предложена стадийность процесса растворения. Дальнейший анализ на основе парциальной мольной энергии когезии в зависимости от типа легирующего элемента и типа релаксации позволяет выделить группу элементов максимально влияющих на энергию когезии (энергию химической связи) сплавов и установить влияние релаксации на парциальную мольную энергию когезии. Анализ 2 изменения энергии Ферми в зависимости от типа релаксации в сочетании с трактовкой энергии Ферми, как химического потенциала системы при абсолютной температуре системы стремящейся к нулю позволил выделить ряд элементов способствующих низкотемпературной стабильности сплавов. Анализ изменений плотности состояний на уровне Ферми в зависимости от примесного элемента и типа релаксации позволил установить наличие корреляции между энергией химической связи (энергией когезии), энергией релаксации и энергией растворения за счет перераспределения электронной плотности и сдвига уровня Ферми.

Практическая значимость работы.

1. Применение вычислений из первых принципов с введением систематизации релаксации позволило напрямую предсказывать межатомные расстояния и изменение параметров решетки для твердых растворов, не прибегая к полуэмпирическим поправкам.

2. Комплексный анализ поведения межатомного расстояния, параметров решетки, энергии релаксации и энергии растворения позволяет напрямую прогнозировать образование твердых растворов замещения алюминия с переходными металлами. Данные прогнозы хорошо согласуются с ранее существовавшими эмпирическими правилами образования твердых растворов замещения, но являются более информативными.

3. Исследования по поведению энергии Ферми и поведению плотности электронных состояний позволило установить дополнительный механизм накопления энергии при механохимической активации.

4. Совмещенный анализ парциальной мольной энергии когезии и энергии релаксации позволил сформулировать концепцию легирования алюминия в процессе высокоэнергетической обработки, а выделение стадий процесса растворения позволило оптимизировать процесс энергонакопления в ходе механоактивации сплавов на основе алюминия.

Основные положения, выносимые на защиту.

1. Основным вкладом за счет, которого повышается стабильность упорядоченных растворов замещения, является локальная атомная релаксация при замещении 3 атома матрицы атомом примеси. Это приводит к выводу, что наличие примеси в матрице способствует повышению стабильности матрицы за счет внесения примесью дополнительной энергии химического взаимодействия. Вычисленные из первых принципов значения межатомных расстояний в первой координационной сфере и параметры решетки в системах алюминий переходные ё металлы находятся в хорошем согласии с экспериментальными значениями.

2. Рассмотрение поведения энергии Ферми и плотности состояний на уровне Ферми позволяют установить причины изменения межатомного расстояния и повышения стабильности сплавов. А применение вычислений из первых принципов при абсолютной температуре равной нулю, позволяют снять влияние энтропийного фактора и рассматривать причины связанные только с электронной подсистемой упорядоченных растворов замещения представленных в работе.

3. Полученные в результате зависимости поведения изменений межатомных расстояний в первой координационной сфере, параметра решетки, энергии релаксации, энергии растворения, парциальной мольной энергии когезии и химического потенциала (энергии Ферми) в зависимости от типа примеси позволяют выделить элементы, наиболее значимо влияющие на перечисленные величины.

4. Рассмотрение этапов растворения примеси приводит к установлению механизма повышения стабильности системы за счет введения примесей <1 металлов в матрицу алюминия.

Апробация результатов.

Основные результаты диссертационной работы представлены на:

1. Третья Всероссийская молодежная конференция «Функциональные материалы и высокочистые вещества», 29 мая-1 июня, г. Москва, ИМЕТ РАН, 2012 г.

2. 19th International Symposium on Metastable Amorphous and Nanostructured Materials, 18−22 June, Moscow, NUST «MISIS», 2012.

Общее количество опубликованных работ.

1. D. К. Belashchenko, N. Yu. Nikitin, Computer simulation of liquid cesium using embedded atom model, LAM-13 (2007).

2. D. К. Belashchenko and N. Yu. Nikitin, The Embedded Atom Model of Liquid Cesium // Rus. Jor. of Phys. Chem. A, Vol. 82, № 8, pp. 1283−1289, (2008).

3. D. K. Belashchenko, N. Yu. Nikitin, Computer simulation of liquid cesium using embedded atom model // Journal of Physics: Conference Series V. 98, pp. 42 020, (2008).

4. N. Yu. Nikitin, N. G. Bondarenko, E. I. Isaev, Yu. Kh. Vekilov, B. Johansson, I. A. Abrikosov, Electronic, Magnetic and Lattice Dynamic properties of C03AI phases I I Book Abstracts, Moscow international symposium of Magnetism, pp. 23po-12−18, 2008.

5. N. Yu. Nikitin, N. G. Bondarenko, First principles investigation nanostructure high-temperature alloys on the base Co, Rusnanotech-2009,(2009).

6. IO. А. Абузин, С. С. Горячева, Н. Ю. Никитин, Саморазогрев механоактивированных гранул системы Ni-Al-NiO при отжиге // Металлургия, № 1, сс. 41−46, 2012.

7. Ю. А. Абузин, Н. Ю. Никитин, Определение перспективных направлений исследований в области сплавов на основе алюминия с использованием электронной теории металлов // Цветные Металлы, № 4, сс. 74−77.

8. N. Yu. Nikitin, The first-principles investigations of the effect of relaxation on the alloy formation in the aluminum — 3d — transition-metal system // The Physics of metals and Metallography, V. 113, № 5, pp. 427−437, 2012.

9. H. Ю. Никитин, Влияние релаксации на когезионную прочность наноструктурированных сплавов на основе алюминия с примесями переходных металлов // Сборник работ 3-й всероссийской молодежной конференции «Функциональные наноматериалы и высокочистые вещества», ИМЕТ РАН, РХТУ им. Менделеева, Москва 2012, сс. 446−447.

10. N. Yu. Nikitin, First-principle studies influence relaxation on the formation of ordered substitutional solutions of aluminum with transition metals. // Book Abstracts, ISMANAM-2012, Moscow, 2012.

Работы опубликованные по теме диссертации.

1. Ю. А. Абузин, С. С. Горячева, Н. Ю. Никитин, Саморазогрев механоактивированных гранул системы Ni-Al-NiO при отжиге // Металлургия, № 1, сс. 41−46, 2012.(из списка ВАК).

2. Ю. А. Абузин, Н. Ю. Никитин, Определение перспективных направлений исследований в области сплавов на основе алюминия с использованием электронной теории металлов // Цветные Металлы, № 4, сс. 74−77, 2012(из списка ВАК).

3. N. Yu. Nikitin, The first-principles investigations of the effect of relaxation on the alloy formation in the aluminum — 3d — transition-metal system // The Physics of metals and Metallography, V. 113, № 5, pp. 427−437, 2012 (из списка ВАК).

4. H. Ю. Никитин, Влияние релаксации на когезионную прочность наноструктурированных сплавов на основе алюминия с примесями переходных металлов // Сборник работ 3-й всероссийской молодежной конференции «Функциональные наноматериалы и высокочистые вещества», ИМЕТ РАН, РХТУ им. Менделеева, Москва 2012, сс. 446−447.

5. N. Yu. Nikitin, First-principle studies influence relaxation on the formation of ordered substitutional solutions of aluminum with transition metals. // Book Abstracts, ISMANAM-2012, Moscow, 2012.

Структура и объем диссертации

.

Материалы диссертации изложены на 162 страницах машинного текста, содержат 50 рисунков, 19 таблиц, библиографический список содержит 109 наименований. Диссертация состоит из введения, четырех глав, выводов и списка литературы.

Выводы.

В результате анализа влияния релаксации на сплавообразование в системе алюминий переходные металлы было выделено несколько основополагающих результатов:

1. В процессе учета локальной атомной релаксации происходит уменьшение межатомного расстояния, рассмотрение объемной релаксации, также приводит к уменьшению объема суперячейки, при наличии примесей <1 металлов в алюминии. Исключения составляют сплавы с такими легирующими элементами, как Бс, У, Ъх, Ag, Сё, Щ Аи, Щ. Сопоставление межатомных расстояний в первой координационной сфере и параметра решетки твердых растворов замещения с экспериментальными данными показывает хорошую согласованность результатов вычислений и эксперимента.

2. Выявлено, что при учете локальной атомной и смешанной релаксации происходит понижение энергии растворения для всех сплавов алюминия с переходными ё металлами. В случае учета смешанной релаксации исключением является сплав алюминия с иттрием, наблюдается повышение энергии растворения. Данные результаты свидетельствуют о том, что присутствие примесей переходных металлов повышают стабильность матрицы алюминия, через процесс локальной атомной релаксации. Кроме того при учете различных типов релаксации происходит увеличение парциальной мольной энергии когезии в алюминии с примесями переходных металлов, т. е. увеличивается химическая связь между матрицей и примесью, наибольшее увеличение наблюдается у элементов обладающих наименьшей энергией релаксации.

3.

Введение

понятия энергии релаксации и систематизация типов релаксаций позволили установить, что определяющим поведение полной энергии упорядоченного раствора замещения является вклад, вносимый за счет учета локальной атомной релаксации, а наибольший вклад вносится за счет смешанной релаксации. Эти результаты в сочетании с изменениями межатомного расстояния в первой координационной сфере и изменением объема суперячейки приводят к заключению о наследовании локальных свойств объемными при замещении атомов алюминиевой матрицы примесью. Кроме того совокупный анализ результатов вычислений структурных изменений и энергии релаксации позволяет предложить метод выбора оптимальных элементов замещения хорошо согласующихся с ранее существовавшими эмпирическими правилами.

4. В процессе исследований было выявлено, что минимумом энергии релаксации обладают сплавы с такими легирующими элементами, как Ре, У и Об. При учете локальной атомной релаксации происходит значительное понижение энергии растворения у данных элементов, а также значительно увеличивается парциальная мольная энергия когезии, что говорит о повышении химической связи между атомами примесей и алюминием.

5. Поведение парциальной мольной энергии когезии в рядах ё металлов соответствует поведению данной величены в полуэмпирической модели прямоугольной ё зоны (модели Фриделя). Максимальное влияние на когезию оказывают такие элементы, как Сг, Мо и Так же незначительно меньшим, по сравнению с Сг и Мо, значением парциальной мольной энергией когезии обладают такие элементы, как V иЫЬ.

6. Анализ по изменению энергии Ферми позволил выделить ряд элементов способствующих низкотемпературной стабильности алюминия, это такие элементы как 8с, У, Ъх, Сё, НТ и кристаллическая.

4.7 Заключение.

Совокупный анализ всех результатов приведенных в работе позволяет выделить группы элементов легирования алюминия изменяя концентрации, которых можно добиться заданных свойств сплавов на основе алюминия. Так присутствие примесей Бе, Яи и Об обеспечивают максимальный диапазон изменения когезионной прочности при изменении упругих напряжений в сплаве. Присутствие примесей Сг, Мо и XV обеспечивают максимальную когезионную прочность материалов, а такие примеси, как Бс, У, Ъс и Ш напрямую отвечают за низкотемпературную термодинамическую стабильность сплава. Наличие корреляции между электронными свойствами, энергией релаксации, структурными изменениями, энергией растворения и парциальной мольной энергией когезии позволяет проводить анализ по качественному соотношению легирующих элементов в сплаве в зависимости от необходимых свойств сплава. На рисунке 50 представлен пример анализа по парциальной мольной энергии когезии всех выделенных элементов. Мо Об Ъх Ки Сг Ш У Ре Бс Примесные элементы.

Рисунок 50 — Изменение парциальной мольной энергии когезии в зависимости от примесного элемента в алюминии.

Из анализа приведенной на гистограмме зависимости (см. рис. 50) следует, что наиболее оптимальными для легирования алюминия будут такие элементы, как XV, Мо, Об и Zr. При необходимости получения оптимальных жаропрочных свойств соотношение этих элементов в сплаве должно подчиняться правилу ДУ>Мо>Оз>2г. При необходимости получения оптимальных термомеханических свойств количество Об должно возрасти по сравнению с молибденом и вольфрамом и оптимальным соотношением в этом случае будет Об>2г>У>Мо. А в случае оптимизации низкотемпературных свойств 2г>Мо>У>С)8. Фактически, учет релаксации при сплавообразовании дает возможность проведения прямого комплексного анализа по всем элементам.

Показать весь текст

Список литературы

  1. Я.С., Скаков Ю. А., Физика металлов. Атомное строение металлов и сплавов. М.: Атомиздат, 1978. 352 с.
  2. Н. П., Растаргуев Л. Н., Скаков Ю. А., Кристаллография, Рентгенография, Электронная микроскопия и Физика металлов. Учебное пособие. М.: МИСиС, 1988. 168 с.
  3. А. А., Теория сплавов внедрения: Размещение и подвижность внедренных атомов в металлах и сплавах. М.: Наука, 1979. 365 с.
  4. Yurenev P. V, Scherbinin A. V, Pupyshev V. I., Shifts of the Hydrogen Atom in a Cylindrical Cavity // International Journal of Quantum Chemistry, Vol 108, pp. 2666−2677 (2008)
  5. Pupyshev V. I., Scherbinin A. V, The Lenz vector in the confined hydrogen atom problem // Chemical Physics Letters 295, pp. 217−222 (1998).
  6. Kretov M K, Scherbinin A V and Pupyshev VI, States of a hydrogen atom in an impenetrable cubic cavity // Phys. Scr. 80 (2009) 48 125
  7. В. Ф., Химическая локализация // УФН., т. 172, № 11, сс. 12 832 002)
  8. Miedema A. R., Boom R., De Boer F. R., On the heat of formation of solid alloys // J. Less-Common Metals, V. 41, pp. 283−298 (1975)
  9. Д. К, Компьютерное моделирование жидких и аморфных веществ: Научное издание. М.: МИСиС, 2005 г. 408 с.
  10. Д. К., Никитин Н. Ю., The Eambedded Atom Model of Liquid Cesium // Rus. J. of Phys. Chem. A, v. 82, № 8, pp. 1283−1289 (2008)
  11. Pettifor D. G., Theoretical predictions of structure and related properties of intermetallics // Mater. Scien. and Tech., V. 8, pp. 345, (1992)
  12. Cawkwell M. J., Nguyen-Manh D., Pettifor D. G., Vitek V., Construction, assessment, and application of a bond-order potential for iridium // Phys. Rev. В, V. 73, pp. 64 104 (2006)
  13. Nguyen-Manh D., PettiforD. G., Znam S., Vitek V, Negative Cauchy pressure within the tight-binding approximation // Mat. Res. Soc. Symp. Proc., V. 491, pp. 353 (1998)
  14. Pettifor D. G., Bonding and Structure of Molecules and Solids. Oxford.: Claredon press, 1995. 259 p.
  15. Marcel H F Sluiter, Kawazoe Y., Prediction of solution enthalpies of substitutional impurities in aluminum // Modelling Simul. Mater. Sci. Eng., V. 8, pp. 221−232 (2000)
  16. Wolverton С., Ozolins V., First-principles aluminum database: Energetics of binary A1 alloys and compounds // Phys. Rev. В, V. 73, pp. 144 104 (2006)
  17. У. Пирсон, Кристаллохимия и физика металлов и сплавов, М.: Мир, Часть 1,1977
  18. Диаграммы состояния двойных металлических систем: Справочник в 3 Т: Т. 1 // под общей ред. Академика РАН Лякишева Н. П., М.: Машиностроение, 1996. 992 с.
  19. Raghavan Srinivasan et. all, Continuous Severe Plastic Deformation Processing of Aluminum Alloys, Ohio: Wright State University, 2006 pp. 59
  20. Hoshino Т., Asato M, Zeller R. and Dederichas P.H. Full-potential KKR calculations for vacancies in Al: Screening effect and many-body interactions // Phys. Rev. В 2004, V. 70, № 9, p. 94 118
  21. Hoshino Т., Fujima N., Asato M., Tamura R. Proceedings of the 12th International Symposium on Metastable and Nano-Materials (ISMANAM-2005) // J. Alloys and Compounds, 2007, V. 434−435, p. 572−576
  22. Marcel H F Sluiter, Kawazoe Y., Prediction of solution enthalpies of substitutional impurities in aluminum // Modelling Simul. Mater. Sci. Eng., V. 8, pp. 221−232 (2000)
  23. Wolverton C., Ozolins V., First-principles aluminum database: Energetics of binary Al alloys and compounds // Phys. Rev. В, V. 73, pp. 144 104 (2006)
  24. Simanek E. and Yoksan S. Anomalous specific heat and nuclear spin relaxation in Al-transition metal alloys // Phys. Let., 1979 V. 70A, № 2, p. 122
  25. Hoshino Т., Zeller R. and Dederichas P.H., Local-density-functional calculations for defect interactions in Al // Phys. Rev. В, V. 53, pp. 8971 (1996)
  26. Benedek R., Yang L.H., Woodward C., Min B.I. Formation energy and latticerelaxation for point defects in Li and Al // Phys. Rev. В 1992, V. 45, № 6, p. 2607
  27. De Vita A. and Gillant M.J. The ab initio calculation of defect energetics in aluminium // J. Phys. Condens. Matter. 1991, V. 3, № 33, p. 6225−6237
  28. Guenzburger D., Ellis D.E. Fe impurity in Al: Magnetic or nonmagnetic? // Phys. Rev. Lett. 1991, V. 67, № 27, pp. 3832−3835
  29. Guenzburger D., Ellis D.E. Lattice-distortion effects on the magnetism of Mn impurities in A1 and Cu // Phys. Rev. В 1994, V. 49, № 9, p. 6004−6011
  30. Papanikolau N., Zeller R., Dederichs P. H., Stefanau N., Ab initio study of structural distortion and its influence on the magnetic properties of metallic dilute alloys // Сотр. Matter. Sci., V. 8, pp. 131 (1997)
  31. Bagayoko D., Pui-man Lam, Brener N. Callaway J. 3d transition-metal impurities in aluminum // Phys. Rev. B, 1996, V. 54, № 17, p. 12 184
  32. M. А., Прочность сплавов. Часть II. Деформация: Учебник для вузов., М.: МИСИС, 1997, 525 с.
  33. Ч., Введение в физику твердого тела. М.: Наука, 1978. 789 с.
  34. Blanter В. Ye., Blanter М. S. The interaction of impurity atoms with dislocations in iron // NASA TECHNICAL TRANSLATION, NASA TT F-14, 298, June 1972
  35. Дж. E. Хэтч, Алюминий. Свойства и физическое металловедение. М.: Металлургия, 1989.-422 с.
  36. Металловедение: Учебник. В 2-х т. Т. II. Коллектив авторов // Под общ. ред. B.C. Золоторевского. М.: Издательский Дом МИСиС, 2009. — 528 с.
  37. B.C., Белов Н. А. Металловедение литейных алюминиевых сплавов,— М.: МИСиС, 2005. 376 с.
  38. В.И., Махов С. В. Легирование и модифицирование алюминия и магния. М.: МИСиС, 2002. — 376 с.
  39. B.C., Подергин В. А., Речкин В. Н. Алюминиды. Киев: Наук, думка, 1965.
  40. Ю. А. Абузин, С. С. Еорячева, Н. Ю. Никитин, Саморазогрев механоактивированных гранул системы Ni-Al-NiO при отжиге // Металлургия, № 1, сс. 4146, 2012
  41. Tcherdyntsev V. V., Kaloshkin S. D. et. all, Phase composition and microhardness of rapidly quenched Al-Fe alloys after high pressure torsion deformation // Materials Science and Engineering A 375−377, pp. 888−893, (2004)
  42. Kita K., Sasaki H, Nagahora J., Inoue A., Funita oyobi Funmatsu Yakin (J. Jpn Soc. Powder Powder Metall.) 47 (2000) 406.
  43. Kumagai N., Sasaki H., Kita K., Nagahora J., Inoue A., Nippon Kizoku Gakkaishi (J. Jpn Inst Metal.) 65 (2001) 366
  44. Yuntian T. Zhu, Varyukhin V., Nanostructured Materials by High-Pressure Severe Plastic Deformation. NATO Science Series // Springer, Netherland, 2006 p. 311
  45. Ortiz A. L., Shaw L, X-ray diffraction analysis of a severely plastically deformedaluminum alloy // Acta Materialia, V. 52, pp.2185−2197 (2004)49. http://www.netzsch-thermal-analysis.com/data/uploads/Article%207.pdf
  46. Lewandowska M., Garbacz H., Pachla W., Mazur A., Kurzydlowski J. K., Grain refinement in aluminium and the aluminium Al-Cu-Mg-Mn alloy by hydrostatic extrusion // Materials Science-Poland, Vol. 23, No. 1, pp. 279 (2005)
  47. Valiev R. Z., Murashkin M. Yu., BobrukE. V., Raab G. I., Grain Refinement and Mechanical Behavior of the A1 Alloy, Subjected to the New SPD Technique // Materials Transactions, Vol. 50, No. 1, pp. 87−91(2009)
  48. Masaki S., Makoto M. et. all, EXAFS and SAXS analysis for nano-structural origin of high strength for supersaturated Alioo-*Fex (x = 1, 2.5) alloys // Materials Science and Engineering A 375−377, pp. 1224−1227 (2004)
  49. Алюминиевые сплавы при низких температурах. Под ред. И. Н. Фридляндера. М.: Металлургия, 1967. 296 с.
  50. U. Scheuer, В. Lengeler, Lattice distortion of solute atoms in metals studied by x-ray-absorption fine structure // Phys. Rev. В 44 (1991) 9883.
  51. H. J. Axon and W. Hume-Rothery, The Lattice Spacings of Solid Solution of Different Elements in Aluminum//Proc. R. Soc. Lond. A, V. 193, pp. 1−24, 1948
  52. Алюминиевые сплавы. Выпуск 3. Деформируемые сплавы. Под ред. И. Н. Фридляндера. М.: Машиностроение, 1964.
  53. Дж. Е. Хэтч, Алюминий. Свойства и Физическое Металловедение, М.: Металлургия, 1989. -442.
  54. Hultgren R., Orr R., Anderson P., Kellsy K. Selected values of thermodynamic properties of metals and alloys. N.Y.: London, 1963
  55. ПоплД. А., Квантово-химические модели//УФН-2002, т. 172, № 3, cc. 349
  56. Кон В., Электронная структура вещества волновые функции и функционалы плотности//УФН — 2002, т. 172, № 3, сс. 336
  57. Hohenberg P., Kohn W., Inhomogeneous Electron Gas // Phys. Rev. B 1964, v. 136, № 3, pp. 864
  58. Kohn W., Sham J. L., Self-Consistent Equations Including Exchange and Correlation Effects // Phys. Rev. A, v. 140, № 4, pp. 1133
  59. Brooks M. S. S., Johanson B, Exchange integral matrices and cohesive energies of transition metal atoms // J. Phys. F: Met. Phys 1983, v. 13, pp. L197-L202
  60. V von Barth, Hedlin L., A local exchange-correlation potential for the spin polarized // J. Phys. C.: Solid State Phys. 1972, v. 5, pp. 1629
  61. Martin R. M., Electronic structure: Basic Theory and Practical Method. Cambridge: Cambridge university press, 2004, pp. 642
  62. Harris J- Jones R. O. II J. Phys. F 1974, v. 4, pp. 1170
  63. Langreth D. C., Perdew J. P. II Solid State Commun. 1975, v. 17, pp. 1425
  64. Gunnarson O., Lundqvist B. I. II Phys. Rev. B. 1976, v. 13, pp. 4274
  65. Kohn W" Mattsson A. E. II Phys. Rev. Lett. 1998, v. 81, pp. 3487
  66. Vitos L, Skriver H. L., Johansson BJI Computational Mat. Seien. 2000, v. 18, pp. 24−38
  67. Vitos L. II Phys. Rev. B, v. 64, pp. 14 107
  68. Singh P., Planewaves, pseudopotentials and the LAPW method // Klunver Academic Publishers: Boston/Dordrecht/London 1994
  69. Hamann D. R., Schluter M. and Chaing C. II Phys. Rev. Lett. 1979, v. 43, pp.1494
  70. Bachelet G. B., Hamann D. R., Schuter M. II Phys. Rev. B 1982, v. 26, pp. 4199
  71. Kerker G. P. II J. of Phys. C 1980, v. 13, L189
  72. Kleiman L., Bylander D. M. II Phys. Rev. Lett. 1982, v. 48, pp. 1425
  73. Vanderbilt D. II Phys. Rev. B. 1990, v. 41, pp.7892
  74. Laasonen K, Pasquarello A. et. all II Phys. Rev. B 1981, v. 47, pp. 10 142
  75. Blocht P. E. Projector augmented-wave method // Phys. Rev. B 1994, v. 50, pp.17 953
  76. Louie S. G. et. all II Phys. Rev. B 1982, v. 26, pp. 1738
  77. Winner E. et. all II Phys. Rev. B 1981, v. 24, pp. 864
  78. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method // Phys. Rev. B 1999, v. 59, pp. 1758
  79. Kresse G., Hafner J., Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements // J Phys. Cond. Mat. 1994, v. 6, pp. 8245
  80. Monkhorst H. J., Pack. D. J. Special points for Brillouin-zone integrations // Phys. Rev. В- 1976, v. 13, pp. 5188
  81. Kress G. and Hafner J. Ab initio molecular dynamics for liquid metals // Phys. Rev. B, 1993, V. 47, № l, p. 558
  82. Kress G. and Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium // Phys. Rev. B, 1994, V. 49, № 20, p. 14 251
  83. Kress G. and Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set // Comput. Mat. Sci., 1996, V. 6, № 1, p. 15
  84. Kress G. and Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B, 1996, V. 54, № 6, p. 11 169
  85. Perdew J.P. and Zunger A. Self-interaction correction to density-functional approximations for many-electron systems // Phys. Rev. B, 1981, V. 23, № 10, p. 504 892. http://cst-www.nrl.navy.mil/lattice/
  86. К. Дж., Металлы. М.: Металлургия, 1980. 446 с.
  87. Papanikolau N., Zeller R., Dederichs P. H., Stefanou N. Lattice distortion in Cu-based dilute alloys: A first-principles study by the KKR Green-function method // Phys. Rev. В 1997, V. 55, № 7, p. 4157
  88. Ruban A. V. and Skriver H.L. Ab initio calculations of partial molar properties in the single-site approximation // Phys. Rev. B, 1997, V. 55, № 14, p. 8801
  89. Brooks M.S. and Johansson В., Exchange integral matrices and cohesive energies of transition metal atoms // J. Phys. Met. Phys. 1983, V. 13, № 10, p. L197
  90. Ю. А., Никитин Н. Ю., Определение перспективных направлений исследований в области сплавов на основе алюминия с использованием электронной теории металлов // Цветные металлы, № 4, 2012
  91. А. А., Шварцман Л. А., Физическая химия., М.: Металлургия, 1987
  92. А., Уонг К, Поверхность Ферми., М.: Атомиздат, 1978 г.
  93. Н. У., Мермин Н. Д., Физика твердого тела т. 1, М.: Мир, 1979 г.
  94. Н. У., Мермин Н. Д., Физика твердого тела т. 2, М.: Мир, 1979 г.
  95. J. С. Atomic Radii in Crystals // J. Chem. Phys. 1964, V. 41, № 10, p. 3199
  96. Н.Ю. Исследование из первых принципов влияния релаксации на сплавообразование в системе алюминий 3d переходные металлы // Физика Металлов и Материаловедение № 5, (2012).
  97. J. Friedel, On some electrical and magnetic properties of metallic solid solutions // Canad. J. Phys. V. 34, № 12A, pp. 1190−1211
  98. Bleskov I. D., Smirnova Е. A. et. all, Ab initio calculations of elastic properties of Rul-xNixAl superalloys // Applied Physics Letters V. 94, pp. 161 901 (2009)
Заполнить форму текущей работой