Использование бета-спирального домена и пептидил-пролил изомеразы для получения фибриллярного адгезина бактериофага Т4
Диссертация
В рамках данной работы нами впервые была показана возможность использования тримерного бета-спирального С-концевого домена белка базальной пластинки бактериофага Т4 — gp5 для управления сворачиванием и олигомеризацией фибриллярных белков. Таким образом, нами был обнаружен и описан новый эффективный белковый домен — ассистент фолдинга. В литературе описано множество подходов к получению… Читать ещё >
Список литературы
- Sorensen, H.P. and K.K. Mortensen, Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 2005. 115(2): p. 113−128.
- Baneyx, F. and M. Mujacic, Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol, 2004. 22(11): p. 1399−408.
- Eiteman, M.A. and E. Altman, Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends in Biotechnology, 2006. 24(11): p. 530−536.
- De Bernardez Clark, E., et al., Oxidative renaturation of hen egg-white lysozyme. Folding vs aggregation. Biotechnol Prog, 1998. 14(1): p. 47−54.
- Schmid, F.X., Prolyl isomerases. Advan. Protein Chem., 2002. 59: p. 243−282.
- Schmid, F.X., et al., Prolyl isomerases: role in protein folding. Advan. Protein Chem., 1993.44: p. 25−66.
- Young, J.C., et al., Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol, 2004. 5(10): p. 781−91.
- Schein, C.H., Production of soluble recombinant proteins in bacteria. Nature Biotechnology, 1989. 7(11): p. 1141−1149.
- Vasina, J.A. and F. Baneyx, Expression of Aggregation-Prone Recombinant Proteins at Low Temperatures: A Comparative Study of theEscherichia coli cspAandtacPromoter Systems. Protein Expression and Purification, 1997. 9(2): p. 211−218.
- Kiefhaber, T., et al., Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Nature Biotechnology, 1991. 9(9): p. 825−829.
- Chesshyre, J.A. and A.R. Hipkiss, Low temperatures stabilize interferon a-2 against proteolysis in Methylophilus methylotrophus and Escherichia coli. Applied microbiology and biotechnology, 1989.31(2): p. 158−162.
- Mogk, A., M.P. Mayer, and E. Deuerling, Mechanisms of protein folding: molecular chaperones and their application in biotechnology. Chembiochem, 2002. 3(9): p. 807 814.
- Ferrer, M., et al., Chaperonins govern growth of Escherichia coli at low temperatures. Nature Biotechnology, 2003. 21(11): p. 1266.
- Ferrer, M., et al., Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Applied and environmental microbiology, 2004. 70(8): p. 4499−4504.
- Miroux, B. and J.E. Walker, Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. Journal of molecular biology, 1996. 260(3): p. 289−298.
- Steinfels, E., et al., Highly efficient over-production in E. coli ofYvcC, a multidrug-like ATP-binding cassette transporter from Bacillus subtilis. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2002.1565(1): p. 1−5.
- Smith, V.R. and J.E. Walker, Purification and folding of recombinant bovine oxoglutarate/malate carrier by immobilized metal-ion affinity chromatography. Protein Expression and Purification, 2003. 29(2): p. 209−216.
- Arechaga, I., et al., Over-expression of Escherichia coli FIFo-ATPase subunit a is inhibited by instability of the uncB gene transcript. FEBS Letters, 2003. 547(1−3): p. 97 100.
- Lehmann, K., et al., High-yield expression in Escherichia coli, purification, and characterization of properly folded major peanut allergen Ara h 2. Protein Expression and Purification, 2003. 31(2): p. 250−259.
- Premkumar, L., et al., An unusual halotolerant a-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli. Protein Expression and Purification, 2003. 28(1): p. 151−157.
- Bessette, P.H., et al., Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proceedings of the National Academy of Sciences, 1999. 96(24): p. 13 703.
- Weickert, M.J., et al., A mutation that improves soluble recombinant hemoglobin accumulation in Escherichia coli in heme excess. Applied and environmental microbiology, 1999. 65(2): p. 640−647.
- Deucrling, E., et al., Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Molecular microbiology, 2003. 47(5): p. 1317−1328.
- Schlieker, C., B. Bukau, and A. Mogk, Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. Journal of Biotechnology, 2002. 96(1): p. 13−21.
- Kuczynska-Wisnik, D., et al., The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology, 2002. 148(6): p. 1757−1765.
- Kitagawa, M., et al., Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. European Journal of Biochemistry, 2002. 269(12): p. 2907−2917.
- Ikura, K., et al., Co-overexpression of folding modulators improves the solubility of the recombinant guinea pig liver transglutaminase expressed in Escherichia coli. Preparative Biochemistry and Biotechnology, 2002. 32(2): p. 189−205.
- Nishihara, K., et al., Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Applied and environmental microbiology, 2000. 66(3): p. 884−889.
- Sorensen, H.P. and K.K. Mortensen, Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial cell factories, 2005. 4(1): p. 1.
- Dale, G.E., et al., Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type SI dihydrofolate reductase. Protein engineering, 1994. 7(7): p. 933−939.
- Farinas, E.T., T. Bulter, and F.H. Arnold, Directed enzyme evolution. Current Opinion in Biotechnology, 2001. 12(6): p. 545−551.
- Jacquet, A., et al., Expression of a Recombinant Toxoplasma gondii ROP2 Fragment as a Fusion Protein in Bacteria Circumvents Insolubility and Proteolytic Degradation. Protein Expression and Purification, 1999.17(3): p. 392−400.
- Davis, G.D., et al., New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng, 1999. 65(4): p. 382−8.
- Kapust, R.B. and D.S. Waugh, Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility ofpolypeptides to which it is fused. Protein Sei, 1999. 8(8): p. 1668−74.
- Sorensen, H.P., H.U. Sperling-Petersen, and K.K. Mortensen, A favorable solubility partner for the recombinant expression of streptavidin. Protein Expression and Purification, 2003. 32(2): p. 252−259.
- Waldo, G.S., et al., Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol, 1999. 17(7): p. 691−5.
- Baneyx, F., Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 1999.10(5): p. 411−421.
- Stevens, R.C., Design of high-throughput methods of protein production for structural biology. Structure, 2000. 8(9): p. R177-R185.
- Smith, D.B. and K.S. Johnson, Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene, 1988. 67(1): p. 31−40.
- LaVallie, E.R., et al., A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y), 1993. 11(2): p. 187−193.
- Eliseev, R., A. Alexandrov, and T. Gunter, High-yield expression and purification of p!8 form of Bax as an MBP-fusion protein. Protein Expression and Purification, 2004. 35(2): p. 206−209.
- Smyth, D.R., et al., Crystal structures offusion proteins with large-affinity tags. Protein science, 2003.12(7): p. 1313−1322.
- Goh, L.L., et al., Soluble expression of a functionally active Plasmodium falciparum falcipain-2 fused to maltose-binding protein in Escherichia coll Protein Expression and Purification, 2003. 32(2): p. 194−201.
- Pedelacq, J.D., et al., Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol, 2006. 24(1): p. 79−88.
- Tdcno, A., et al., Expression of foreign proteins in Escherichia coli by fusing with an archaeal FK506 binding protein. Applied microbiology and biotechnology, 2004. 64(1): p. 99−105.
- Scholz, С., et al., Functional Solubilization of Aggregation-prone HIV Envelope Proteins by Covalent Fusion with Chaperone Modules. Journal of Molecular Biology, 2005. 345(5): p. 1229−1241.
- Han, K.Y., et al., Solubilization of aggregation-prone heterologous proteins by covalent fusion of stress-responsive Escherichia coli protein, SlyD. Protein Eng Des Sei, 2007. 20(11): p. 543−9.
- Scholz, С., et al., SlyD proteins from different species exhibit high prolyl isomerase and chaperone activities. Biochemistry, 2006. 45(1): p. 20−33.
- Bhardwaj, A., et al., Foldon-guided self-assembly of ultra-stable protein fibers. Protein Sei, 2008. 17(9): p. 1475−85.
- Tao, Y., et al., Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Structure, 1997. 5(6): p. 789−98.
- Летаров, A.B., et al., Карбоксиконцевой домен инициирует тримеризацию и фолдинг фибритина бактериофага Т4. Биохимия, 1999. 64: р. 817−823.
- Boudko, S.P., et al., Domain organization, folding and stability of bacteriophage T4 fibritin, a segmented coiled-coilprotein. Eur J Biochem, 2002. 269(3): p. 833−41.
- Miroshnikov, K.A., et al., Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins. Protein Eng, 1998. 11(4): p. 329−32.
- Мирошников, K.A., et al., Трансформация beta-структурного фрагмента адгезина бактериофага Т4 в а1рНа-спиральный стабильный /пример. Биохимия, 2000. 65: р. 1600−1606.
- Frank, S., et al., Stabilization of short collagen-like triple helices by protein engineering. Journal of Molecular Biology, 2001. 308(5): p. 1081−1089.
- Stetefeld, J., et al., Collagen stabilization at atomic level: crystal structure of designed (GlyProPro) 1 Ofoldon. Structure, 2003. 11(3): p. 339−46.
- Yang, X., et al., Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. J Virol, 2002. 76(9): p. 4634−42.
- Sissoeff, L., et al., Stable trimerization of recombinant rabies virus glycoprotein ectodomain is required for interaction with the p75NTR receptor. J Gen Virol, 2005. 86(Pt 9): p. 2543−52.
- Papanikolopoulou, K., et al., Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage t4 fibritin. J Biol Chem, 2004. 279(10): p. 8991−8.
- Papanikolopoulou, K., et al., Adenovirus Fibre Shaft Sequences Fold into the Native Triple Beta-Spiral Fold when N-terminally Fused to the Bacteriophage T4 Fibritin Foldon Trimerisation Motif. Journal of Molecular Biology, 2004. 342(1): p. 219−227.
- Papanikolopoulou, K., M.J. Raaij, and A. Mitraki, Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif2008. p. 15−33.
- Seo, H.-S., et al., Functional fusion mutant of Candida antarctica lipase B (CalB) expressed in Escherichia coli. Biochimica et Biophysica Acta (BBA) Proteins & Proteomics, 2009. 1794(3): p. 519−525.
- Weininger, U., et al., NMR Solution Structure of SlyD from Escherichia coli: Spatial Separation of Prolyl Isomerase and Chaperone Function. Journal of Molecular Biology, 2009. 387(2): p. 295−305.
- Roof, W.D. and R. Young, Phi XI74 lysis requires slyD, a host gene which is related to the FKBP family of peptidyl-prolyl cis-trans isomerases. FEMS Microbiol Rev, 1995. 17(1−2): p. 213−8.
- Roof, W.D., et al., Mutational analysis of slyD, an Escherichia coli gene encoding a protein of the FKBP immunophilin family. Mol Microbiol, 1997. 25(6): p. 1031−46.
- Bernhardt, T.G., W.D. Roof, and R. Young, The Escherichia coli FKBP-type PPIase SlyD is required for the stabilization of the E lysis protein of bacteriophage phi XI74. Mol Microbiol, 2002. 45(1): p. 99−108.
- Mendel, S., et al., Interaction of the transmembrane domain of lysis protein E from bacteriophage phiXl 74 with bacterial translocase MraY and peptidyl-prolyl isomerase SlyD. Microbiology, 2006. 152(Pt 10): p. 2959−67.
- Roof, W.D., et al., slyD, a host gene required for phi X174 lysis, is related to the FK506-binding protein family of peptidyl-prolyl cis-trans-isomerases. J Biol Chem, 1994. 269(4): p. 2902−10.
- Martino, L., et al., The interaction of the Escherichia coli protein SlyD with nickel ions illuminates the mechanism of regulation of its peptidyl-prolyl isomerase activity. FEBS J, 2009.276(16): p. 4529−44.
- Mitterauer, T., et al., Metal-dependent nucleotide binding to the Escherichia coli rotamase SlyD. Biochem J, 1999. 342 (Pt 1): p. 33−9.
- Hottenrott, S., et al., The Escherichia coli SlyD is a metal ion-regulated peptidyl-prolyl cis/trans-isomerase. J Biol Chem, 1997. 272(25): p. 15 697−701.
- Zhang, J.W., et al., A role for SlyD in the Escherichia coli hydrogenase biosynthetic pathway. J Biol Chem, 2005. 280(6): p. 4360−6.
- Hesterkamp, T., et al., Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sei USA, 1996. 93(9): p. 4437−41.
- Patzelt, H., et al., Binding specificity of Escherichia coli trigger factor. Proc Natl Acad Sei U S A, 2001. 98(25): p. 14 244−9.
- Leach, M.R., J.W. Zhang, and D.B. Zamble, The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD. J Biol Chem, 2007. 282(22): p. 16 177−86.
- Mukherjee, S., A. Shukla, and P. Guptasarma, Single-step purification of a protein-folding catalyst, the SlyD peptidyl prolyl isomerase (PPI), from cytoplasmic extracts of Escherichia coli. Biotechnol Appl Biochem, 2003. 37(Pt 2): p. 183−6.
- Wulfing, C., J. Lombardero, and A. Pluckthun, An Escherichia coli protein consisting of a domain homologous to FK506-binding proteins (FKBP) and a new metal binding motif. J Biol Chem, 1994. 269(4): p. 2895−901.
- Knappe, T.A., et al., Insertion of a Chaperone Domain Converts FKBP12 into a Powerful Catalyst of Protein Folding. Journal of Molecular Biology, 2007. 368(5): p. 1458−1468.
- Graubner, W., A. Schierhorn, and T. Bruser, DnaKplays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone. J Biol Chem, 2007. 282(10): p. 7116−24.
- Kanamaru, S., et al., Structure of the cell-puncturing device of bacteriophage T4. Nature, 2002. 415(6871): p. 553−7.
- Nakagawa, II., F. Arisaka, and S. Ishii, Isolation and characterization of the bacteriophage T4 tail-associated lysozyme. J Virol, 1985. 54(2): p. 460−6.
- Rossmann, M.G., et al., The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol, 2004.14(2): p. 171−80.
- Leiman, P.G., et al., Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell, 2004. 118(4): p. 419−29.
- Wood, W.B., Undelivered summary remarks for the 1974 Squaw Valley meeting on assembly mechanisms. J Supramol Struct, 1974. 2(2−4): p. 512−4.
- Hohn, B., et al., Phage lambda DNA packaging, in vitro. J Supramol Struct, 1974. 2(2−4): p. 302−17.
- Kaiser, D., M. Syvanen, and T. Masuda, Processing and assembly of the head of bacteriophage lambda. J Supramol Struct, 1974. 2(2−4): p. 318−28.
- Kikuchi, Y. and J. King, Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequental assambly of the major precursor, in vivo and in vitro. J. Mol. Biol., 1975. 99: p. 645−672.
- Eisrling, F.A. and L.W. Black, Pathway in T4 morphogenesis in Molecular biology of bacteriophage T4 (eel. J. Karam). American Society for Microbiology. Washington, D.C., 1994: p. 209−212.
- Kutter, E., G. Mosig, and. Genomic maps of bacteriophage T4 in Genetic Maps. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1993: p. 1−27.
- Bradley, D.E., The structure ofcoliphages. J. Gen. Microbiol., 1963. 31: p. 435−445.
- Edgar, R.S. and I. Liclausis, Temperature-sensitive mutants of bacteriophage T4D: their isoltion and genetic characterization. Genetics, 1964. 52: p. 649−660.
- Epstein, R.H., et al., Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harbor Symp. Quant. Biol., 1964. 28: p. 375−392.
- Kellenberger, E., et al., Functiones and properties related to the tail fibers of bacteriophage T4. Virology, 1965. 26: p. 419−440.
- Yanagida, M. and C. Ahmad-Zadeh, Determination of gene product positions in bacteriophage T4 by specific antibody association. J Mol Biol., 1970. 51: p. 411−21.
- Cummins, D.J., V.A. Chapman, and S.S. De Long, Disruption ofT-even bacteripohage by dimeilsulfoxid. J. Virol., 1968. 2: p. 610−617.
- Van Vunakis, II., W.K. Baker, and K. Brown, Structural studies on the protein of bacteriophages. I. Alkaline dissociation of the protein coat «ghost» of bacteriophage T2. Virology, 1958: p. 327−332.
- Williams, R.C. and D. Fraser, Structural and functional differentiation in T2 bacteripohage. Virology, 1956. 2: p. 289−297.
- Edgar, R.S. and W.B. Wood, Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells. Proc. Nat. Acad. Sci. USA, 1966. 55: p. 498−505.
- Wood, W.B., Bacteriophage T4 morphogenesis as a model for assembly of subcellular structure. Q. Rev. Biol., 1980. 55: p. 353−367.
- Edgar, R.S. and I. Lielausis, Some steps in the assambly of bacteriophage T4. J. Mol. Biol., 1968. 32: p. 263−271.
- King, J., Bacteriophage T4 tail assembly: four steps in core formation. J. Mol. Biol., 1971. 58: p. 693−709.
- Wood, W.B., Bacteriophage T4 assambly and the morphogenesis of subcellular structure. Harvey Lect., 1979. 73: p. 203−223.
- Laemmli, U.K., J.R. Paulson, and J. Hitchins, Maturation of the head of bacteriophage T4. J. Supramol. Struct, 1974. 2: p. 276−301.
- Black, L.W., M.K. Shovve, and A.C. Steven, Morphogenesis of the T4 head in Molecular biology of bacteriophage T4 (ed. J. Karam). American Society for Microbiology. Washington, D.C., 1994: p. 218−258.
- Kellenberger, E., Studies on the morphogenesis of the head of phage T-even. V. The components of the T4 capsid and of other, capsid-related structures. Virology, 1968. 34: p. 549−61.
- Kikuchi, Y. and J. King, Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. J. Mol. Biol., 1975. 99: p. 673−694.
- Kikuchi, Y. and J. King, Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J. Mol. Biol., 1975.99: p. 695−716.
- Meezan, E. and W.B. Wood, The sequence of gene product interaction in bacteriophage T4 tail core assembly. J. Mol. Biol., 1971. 58: p. 685−692.
- King, J., Assembly of the tail of bacteriophage T4. J. Mol. Biol., 1968. 32: p. 231−262.
- King, J. and N. Mykolajewycz, Bacteriophage T4 tail assembly: proteins of the sheath, core and baseplate. J. Mol. Biol., 1973. 75: p. 339−358.
- Kostyuchenko, V.A., et al., Three-dimensional structure of bacteriophage T4 baseplate. Nat Struct Biol, 2003. 10(9): p. 688−93.
- Crowther, R.A., et al., Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. J Mol Biol, 1977. 116(3): p. 489−523.
- Liljas, L., Virus assembly. Curr Opin Struct Biol, 1999. 9(1): p. 129−34.
- Thomassen, E., et al., The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold. J Mol Biol, 2003.331(2): p. 361−73.
- Crowther, R.A., Mutants of bacteriophage T4 that produce infective fibreless particles. J Mol Biol, 1980.137(2): p. 159−74.
- Kostyuchenko, V.A., et al., The structure of bacteriophage T4 gene product 9: the trigger for tail contraction. Structure, 1999. 7(10): p. 1213−22.
- Yamamoto, M. and H. Uchida, Organizaton and function of the tail of bacteriophage T4. Structural control of the tail contraction. J. Mol. Biol., 1973. 92: p. 207 223.
- Yamamoto, M. and H. Uchida, Organization and function of bacteriophage T4 tail. Isolation of heat-sensitive mutations. Virology 1973. 52: p. 234−245.
- Simon, L.D., J.G. Swan, and J.E. Flatgaart, Functional defects in T4 bacteriophage lacking the gene 11 and 12 products. Virology, 1970. 41: p. 77−90.
- Crawford, J.T. and E.B. Goldberg, The effect of baseplate mutation on the requirement for tail-fiber binding for irreversible adsorption on bacteriophage T4. J. Mol. Biol., 1977. Ill: p. 305 -313.
- Beckendorf, S.K., Structure of bacteriophage T4 genes 37 and 38. J.Mol.Biol., 1973. 73: p. 17−35.
- Dawes, J., Characterization of bacteriophage T4 receptor site. Nature, 1975. 256: p. 332−338.
- Brenner, F., G. Stuisiunger, and R.W. Hoene, Structural components of bacteriophage T4. J.Mol.Biol., 1959. 1: p. 281−292.
- Голицына, H.JI., et al., Выделение биологически активных половинок длинных хвостовых фибрилл и бакенбард бактериофага Т4. Биол. Науки, 1983. 114: р. 2732.
- Селиванов, Н.А., et al., Структура и регуляция сборки фибриллярных белков бактериофага Т4. Выделение и спектральные свойства длинных хвостовых фибрил. Молек. биология, 1987. 21: р. 1258 1267.
- Wood, W.B., F.A. Eiserling, and R.A. Crowther, Long tail fibers: genes, proteins, structure, and assembly" in Bacteriophage T4 (Karam J.D., ed.). American society for microbiology, Washington D.C., 1994: p. 282−290.
- Earnshaw, W.G., E.B. Goldberg, and E.A. Crowther, The distal half of the tail fiber of the bacteriophage T4. Rigidly linked domains and cross b — structure. J. Mol. Biol., 1979. 132: p. 101−131.
- Oliver, D.B. and R.A. Crowther, DNA sequence of the tail fibre genes 36 and 37 of bacteriophage T4. J. Mol. Biol., 1989. 153: p. 545 568.
- Dickson, R.C., Assembly of bacteriophage T4. J.Mol. Biol., 1970. 53: p. 633−647.
- Laemmli, U.K., Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature, 1970. 227: p. 680 685.
- King, J. and U.K. Laemmli, Polypeptide of the tail fibres of bacteriophage T4. J. Mol. Biol., 1971. 62: p. 465−477.
- Cerritelli, M.E., et al., Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: a hinged viral adhes in. J. Mol. Biol., 1996. 260: p. 767−780.
- Ward, S. and R.C. Dickson, Assembly of bacteriophage T4 tail fibers. Genetic control of the major tail fiber polypeptides. J. Mol. Biol., 1971. 62: p. 479 492.
- Makhov, A.M., et al., Filamentous hemagluttinin of Bordetella pertussis: A bacterial adhesin formed as a 50-nm monomeric rigid rod based on a 19-residue repeat motif rich in beta-strands and turns. J.Mol.Biol., 1994. 241: p. 110−124.
- Steinbacher, S., et al., Crystal structure ofP22 tailspike protein: inter digitated subunits in a thermostable trimer. Science, 1994. 265: p. 383−386.
- Stouten, P.F.W., et al., New triple-helical model for the shaft of the adenovirus fibre. J. Mol. Biol., 1992. 226: p. 1073−1084.
- Makhov, A.M., et al., The short tail fiber of bacteriophage T4: Molecular structure and a mechanism for its conformational transition. Virology, 1993. 194: p. 117- 127.
- Michel, C.J., et al., A remarkable amino acid sequence homology between a phage T4 tail fibre protein and ORF314 of phage lambda located in the tail operon. Genetics, 1986. 44: p. 147- 150.
- Bartual, S.G., et al., Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc Natl Acad Sei USA, 2010.107(47): p. 20 287−92.
- Montag, D., H. Schwarz, and U. Henning, Receptor-recognizing proteins T-even type bacteriophages. Constant and hypervariable regions and an unusual case of evolution. J. Mol. Biol., 1987.196: p. 165 174.
- Tetart, F., et al., Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J. Mol. Biol., 1996. 258: p. 726 731.
- Trojet, S.N., et al., The gp38 Adhesins of the T4 Superfamily: A Complex Modular Determinant of the Phage’s Host Specificity. Genome biology and evolution, 2011. 3: p. 674.
- Sambrook, R. and D.W. Russel, Molecular Cloning: A Laboratory Manual 3d ed. Cold Spring Harbor, N.Y., Cold Spring Harbor Lab. Press, 2001.
- Maniatis, T., Molecular cloning: a laboratory manual/J. Sambrook, EF Fritsch, T. Maniatis 1989: New York: Cold Spring Harbor Laboratory Press.
- William Studier, F., et al., 6. Use of T7 RNA polymerase to direct expression of cloned genes. Methods in enzymology, 1990. 185: p. 60−89.
- Cleveland, D.W., et al., Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. Journal of Biological Chemistry, 1977. 252(3): p. 1102.
- Provencher, S.W. and J. Glockner, Estimation of globular protein secondary structure from circular dichroism. Biochemistry, 1981. 20(1): p. 33−7.
- Venyaminov, S.Y., et al., Circular dichroic analysis of denatured proteins: inclusion of denatured proteins in the reference set. Analytical biochemistry, 1993. 214(1): p. 1724.
- Sreerama, N. and R.W. Woody, A self-consistent method for the analysis of protein secondary structure from circular dichroism. Analytical biochemistry, 1993. 209(1): p. 32−44.
- Lebowitz, J., M.S. Lewis, and P. Schuck, Modem analytical ultracentrifugation in protein science: a tutorial review. Protein science, 2002. 11(9): p. 2067−2079.
- Timofeev, V., et al., X-ray investigation of gene-engineered human insulin crystallized from a solution containing polysialic acid. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 2010. 66(3): p. 259−263.
- Svergun, D., A. Semenyuk, and L. Feigin, Small-angle-scattering-data treatment by the regularization method. Acta Crystallographica Section A: Foundations of Crystallography, 1988. 44(3): p. 244−250.
- Chertkov, O., et al., Properties of the peptidoglycan-degrading enzyme of the Pseudomonas aeruginosa UPMG1 bacteriophage. Russian Journal of Bioorganic Chemistry, 2011. 37(6): p. 732−738.
- Kelley, L.A., R.M. MacCallum, and M.J.E. Sternberg, Enhanced genome annotation using structural profiles in the program 3D-PSSM. Journal of molecular biology, 2000. 299(2): p. 501−522.
- Амарантов, С.В., Восстановление формы наночастгщы по решению прямой и обратной задач малоуглового рассеяния для единичного потенциала ограниченного в объеме тора. Журнал экспериментальной и теоретической физики, 2009. 135(4): р. 721−737.
- Svergun, D.I., et al., New developments in direct shape determination from small-angle scattering 2. Uniqueness. Acta Crystallogr., 1996. 52: p. 419−426.
- Svergun, D.I., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J, 1999. 76(6): p. 2879−86.
- Petoukhov, M.V. and D.I. Svergun, New methods for domain structure determination ofproteins from solution scattering data. Journal of applied crystallography, 2003. 36(3): p. 540−544.
- Wriggers, W., Using Situs for the integration of multi-resolution structures. Biophysical reviews, 2010. 2(1): p. 21−27.