Помощь в написании студенческих работ
Антистрессовый сервис

Ингибиторы протеиназ из клубней картофеля и их роль в защитной системе растения

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

К настоящему времени проведено много исследований и накоплено достаточное количество данных о белках-ингибиторах, присутствующих в клубнях картофеля {Solanum tuberosum L.), который является одной из важнейших мировых сельскохозяйственных культур. Часть этих белков объединяют в отдельное подсемейство и обозначают PKPI (potato Kunitz-type proteinase inhibitors). Установлено, что белки PKPI… Читать ещё >

Ингибиторы протеиназ из клубней картофеля и их роль в защитной системе растения (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ВВЕДЕНИЕ
  • 2. СЕРИНОВЫЕ ПРОТЕИНАЗЫ И ИХ ПРИРОДНЫЕ ИНГИБИТОРЫ (ОБЗОР ЛИТЕРАТУРЫ)
    • 2. 1. СТРУКТУРА СЕРИНОВЫХ ПРОТЕИНАЗ И МЕХАНИЗМ ИХ ДЕЙСТВИЯ
    • 2. 2. БЕЛКОВЫЕ ИНГИБИТОРЫ ПРОТЕИНАЗ
      • 2. 2. 1. Классификация и распространение
      • 2. 2. 2. Молекулярная структура ингибиторов протеиназ
      • 2. 2. 3. Механизм действия ингибиторов протеиназ
      • 2. 2. 4. Ингибиторы сериновых протеиназ
      • 2. 2. 5. Геномная организация генов, кодирующих ингибиторы протеиназ в растениях
      • 2. 2. 6. Семейство соевого ингибитора трипсина Кунитца (8КТ1)
      • 2. 2. 7. Ингибиторы протеиназ из картофеля
      • 2. 2. 8. Функции ингибиторов протеиназ в растениях
        • 2. 2. 8. 1. Запасные белки растений
        • 2. 2. 8. 2. Участие в контроле эндогенных ферментов
        • 2. 2. 8. 3. Участие в защитных механизмах

Актуальность темы

Протеолитические ферменты (протеиназы, протеазы или пептидазы) — это группа ферментов, которые катализируют гидролиз пептидных связей в белках и пептидах. Они необходимы для жизнедеятельности всех организмов [58]. Очевидно, что регулирование активности протеиназ имеет решающее значение в обмене веществ животных и растений. Один из путей регуляции протеолитических ферментов включает присутствие в клетках животных, растений и микроорганизмов специфических молекул, подавляющих их активность, в том числе и белковой природы. Белки-ингибиторы протеиназ представлены во всех типах живых организмов, число видов которых составляет около двух тысяч [148, 176].

Белковые ингибиторы протеиназ представляют собой большую и разнообразную в структурном отношении группу белков, способных образовывать стехиометрические комплексы с протеолитическими ферментами, в результате чего последние утрачивают ферментативную активность. Многочисленные исследования свидетельствуют о том, что структуры молекул белковых ингибиторов протеиназ, механизм ингибирования и природа их комплексов с ферментами крайне разнообразна [6, 50]. В связи с этим, изучение новых белковых ингибиторов представляет особый интерес.

В настоящее время известно несколько тысяч аминокислотных последовательностей белков, обладающих способностью ингибировать протеиназы [176]. Несмотря на то, что установлена структура большого числа ингибиторов и механизмы их взаимодействия с протеиназами, для большинства из них точная физиологическая функция не установлена или является малоизученной. Считается, что ингибиторы протеиназ принимают непосредственное участие в регуляции многих биохимических процессов [222]. Так, в растениях они могут обладать несколькими функциями: выступать в роли запасных белков, контролировать активность эндогенных протеиназ, а также участвовать в защитных реакциях растений. Показано, что белки-ингибиторы растений способны in vivo подавлять активность экстрацеллюлярных протеиназ патогенных микроорганизмов и протеиназы желудочно-кишечного тракта насекомых-вредителей [15, 134, 153, 214]. В связи с развитием современных методов молекулярной биологии и генной инженерии по созданию растений, устойчивых к действию патогенов, изучение белков ингибиторов имеет важное не только теоретическое, но и практическое значение для сельского хозяйства.

К настоящему времени проведено много исследований и накоплено достаточное количество данных о белках-ингибиторах, присутствующих в клубнях картофеля {Solanum tuberosum L.), который является одной из важнейших мировых сельскохозяйственных культур [32]. Часть этих белков объединяют в отдельное подсемейство и обозначают PKPI (potato Kunitz-type proteinase inhibitors). Установлено, что белки PKPI представлены многочисленными изоформами, среди которых на основании сходства Nи Сконцевых аминокислотных последовательностей выделяют, по крайней мере, пять структурных групп, три из которых — PKPI-A, PKPI-B и PKPI-C относительно хорошо изучены [19, 32, 94, 107]. Однако структурные особенности белков PKPI, определяющие специфичность их взаимодействия с различными ферментами остаются малоизученными. Несмотря на то, что накоплено достаточное количество данных о свойствах белков PKPI, выделенных из клубней различных сортов картофеля, их первичная структура, как правило, неизвестна. С другой стороны, значительное количество полных аминокислотных последовательностей белков PKPI восстановлено по кодирующим их нуклеотидным последовательностям, но практически отсутствуют данные об их свойствах. Таким образом, исследование взаимосвязи структуры и свойств новых белков PKPI является актуальной задачей современной биохимии. Кроме того, информация о структуре и 8 функциях ранее не изученных белков, принадлежащих к данному семейству, а также генов, кодирующих их, представляет значительный интерес, поскольку позволит судить о процессах их формирования и образования новых форм in vivo.

Цели и задачи работы. Целью работы являлось выделение из клубней картофеля сорта Юбилей Жукова и характеристика новых белков, действующих как высокоэффективные ингибиторы сериновых протеиназ, и кодирующих их генов, а также исследование взаимосвязи структуры и специфичности действия продуктов клонированных генов. Были сформулированы следующие экспериментальные задачи.

1. Провести скрининг белков, обладающих способностью ингибировать сериновые протеиназы, в клубнях картофеля нового сорта Юбилей Жукова, созданного российскими селекционерами. Исходя из полученных данных, идентифицировать белки, относящиеся к подсемейству PKPI.

2. Выделить высокоэффективный ингибитор сериновых протеиназ подсемейства PKPI, охарактеризовать специфичность его действия на протеолитические ферменты: а-химотрипсин, трипсин, субтилизин и папаин. Установить N-концевую последовательность нового белка, изучить его физико-химические свойства и возможное участие в защитной системе картофеля.

3. Выделить и охарактеризовать кДНК, кодирующую новый белок, выделенный из клубней картофеля. Для этого синтезировать олиго-праймеры для амплификации кДНК из генома картофеля.

4. Разработать метод ускоренной гетерологичной экспрессии выделенной кДНК в Escherichia coli. Получить рекомбинантный белок, кодируемый новой, ранее неизвестной кДНК, и охарактеризовать специфичность его действия на протеиназы.

Научная новизна и практическая значимость работыИз картофеля сорта Юбилей Жукова впервые был выделен и охарактеризован белок, 9 обозначенный PKCI, который одинаково эффективно действовал на а-химотрипсин и трипсин и обладал способностью одновременно связывать оба фермента, образуя с ними тройные комплексы.

Установлена N-концевая последовательность белка PKCI, что позволило отнести его к структурной группе PKPI-B. Исследованы физико-химические свойства белка PKCI и показано, что он обладает высокой термои рН-стабильностью. Показано, что белок PKCI угнетает рост и развитие фитопатогенных микроорганизмов F. culmorum и P. infestans (Mont.) de Вагу, поражающих растения картофеля. Это свидетельствует о возможном его участии в защитной системе растения.

Определена нуклеотидная последовательность кДНК, кодирующей белок PKCI в геноме картофеля. Сравнительный анализ нуклеотидных последовательностей, кодирующих белки структурной группы PKPI-B в картофеле различных сортов, показал, что наиболее вариабельные фрагменты последовательностей расположены в 5'-концевой части молекул и локализуются в одних и тех же участках. Весьма вероятно, что в этих участках и происходили рекомбинации.

Разработан метод экспрессии кДНК PKPIJ-B в Е. coli и очистки рекомбинантных продуктов. Выделен, очищен и охарактеризован рекомбинантный белок PKPIJ-B, кодируемый в геноме картофеля сорта Юбилей Жукова кДНК PKPIJ-B. Показано, что рекомбинантный белок одинаково эффективно подавляет активность химотрипсина и трипсина и так же, как и белок PKCI, обладает способностью образовывать с этими ферментами тройные комплексы. Сделано заключение, что белок PKPIJ-B идентичен белку PKCI, который кодируется в геноме картофеля кДНК PKPIJ-В. Это открывает возможности использования выделенной кДНК для создания трансгенных растений, устойчивых к действию фитопатогенных микроорганизмов.

Сравнение аминокислотных последовательностей белков группы РКР1-В позволило высказать достаточно обоснованное заключение о природе и локализации реактивного центра связывания а-химотрипсина в С-концевой части молекулы белка РКС1, расположенной между остатками Суз147 и Суз 164. Таким образом, выделенный белок РКС1, является «двуглавым» ингибитором трипсина и а-химотрипсина, который содержит два независимых и одновременно действующих реактивных центра. В состав первого реактивного центра, расположенного в Ы-концевой части молекулы ингибитора и ответственного за связывание трипсина, входит А68-РЬе69, во втором, локализованном в ее С-концевой части и ответственном за связывание химотрипсина, содержится МеИ53−8ег154. Полученные данные позволяют сделать заключение, что отсутствие или присутствие определенных аминокислотных остатков в первичной структуре ингибиторов РКР1 определяет специфичность их действия.

Апробация работы и публикации: Основные результаты работы были представлены на Международной научной конференции по биоорганической химии, биотехнологии и бионанотехнологии, приуроченной к 75-летию со дня рождения академика Ю. А. Овчинникова (Москва, 2009) — XXII и XXIII Зимних молодежных научных школах «Перспективные направления физико-химической биологии и биотехнологии». (Москва, 2010, 2011) — Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2010» (Москва, 2010) — Всероссийской молодежной научной конференции с международным участием «Биология будущего: традиции и инновации» (Екатеринбург, 2010) — I Всероссийской виртуальной интернет — конференции «Актуальные проблемы биохимии и бионанотехнологий» (Казань, 2010) — V Российском симпозиуме «Белки и пептиды» (г. Петрозаводск, 2011) — Научной конференции по биоорганической химии и биотехнологии «X чтения памяти академика Юрия Анатольевича Овчинникова» (Москва, 2011).

6. ВЫВОДЫ:

1. Из картофеля сорта Юбилей Жукова выделен и охарактеризован новый белок, обозначенный как PKCI, эффективно подавляющий активность а-химотрипсина и трипсина. Белок PKCI содержал два независимо действующих реактивных центра и был способен одновременно связать оба фермента. Установлена N-концевая аминокислотная последовательность белка PKCI, позволившая отнести его к группе белков-ингибиторов PKPI-B.

2. Установлена нуклеотидная последовательность кДНК, обозначенной как PKPIJ-B. Полученный рекомбинантный белок PKPIJ-B действует на протеиназы аналогично белку PKCI. Это с большой степенью вероятности свидетельствует о том, что при развитии клубней картофеля белок PKCI кодируется кДНК PKPIJ-B.

3. Сравнительный анализ нуклеотидных последовательностей, кодирующих белки семейства PKPI-B в картофеле различных сортов, показал, что наиболее вариабельные фрагменты последовательностей расположены в 5'-концевой части молекул и локализуются в одних и тех же участках. Весьма вероятно, что в этих участках и происходили рекомбинации.

4. Восстановлена полная аминокислотная последовательность белка PKCI. Показано, что остаток Metl53 входит в состав реактивного центра связывания химотрипсина, который локализован в С-концевом участке между остатками Cysl47 и Cysl64.

5. Показано, что белок PKCI угнетает рост и развитие фитопатогенных микроорганизмов F. culmorum и P. infestans (Mont.) de Вагу, поражающих растение картофеля, что свидетельствует об его участии в защитной системе растения при поражении этими патогенами.

7. СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ.

1. Ревина ТА., Парфенов И. А., Гвоздева E. JL, Герасимова Н. Г., Валуева Т. А. Ингибитор химотрипсина и трипсина из клубней картофеля // Прикладная биохимия и микробиология. 2011. Т. 47. № 3. С. 265−272.

2. Парфенов И. А., Ревина Т. А., Пашковский П. П., Радюкина H. JL, Валуева Т. А. Фрагмент гена, кодирующего белок-ингибитор химотрипсина и трипсина в картофеле // Прикладная биохимия и микробиология. 2011. Т. 47. № 4. С. 402−407.

3. Valueva Т.A., Parfenov I.A., Revina Т.А., Morozkina E.V., Benevolensky S.V. Structure and properties of the potato chymotrypsin inhibitor // Plant Physiology and Biochemistry. 2012. V. 52. P. 83−90.

4. Ревина T.A., Кладницкая Г. В., Гвоздева E.JI., Парфенов И. А., Валуева Т. А. Специфические ингибиторы протеиназ из клубней картофеля и кодирующие их гены / Международная научная конференция по биоорганической химии, биотехнологии и бионанотехнологии, приуроченная к 75-летию со дня рождения академика Ю. А. Овчинникова. Москва. 2009. Т. 1. С. 335.

5. Парфенов И. А., Ревина Т. А. Белок-ингибитор трипсина и химотрипсина из клубней картофеля / Тез. XXII зимней молодежной научной школы «Перспективные направления физико-химической биологии и биотехнологии». Москва. 2010. С. 48.

6. Парфенов И. А. Новый белок-ингибитор сериновых протеиназ из клубней картофеля / Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2010». Москва. 2010. С. 60.

7. Парфенов И. А., Ревина Т. А., Валуева Т. А. Фрагмент гена, кодирующий белок ингибитор химотрипсина и трипсина в картофеле / Всероссийская молодежная научная конференция с международным участием «Биология будущего: традиции и инновации». Екатеринбург. 2010. С. 97.

8. Парфенов И. А., Ревина Т. А., Валуева Т. А. Ингибитор химотрипсина из клубней картофеля и кодирующий его ген / I Всероссийская виртуальная интернет — конференция «Актуальные проблемы биохимии и бионанотехнологий». Казань. 2010. С. 124.

9. Парфенов И. А. Молекулярное клонирование генов, кодирующих белки-ингибиторы сериновых протеиназ в картофеле / Тез. XXIII зимней молодежной научной школы «Перспективные направления физико-химической биологии и биотехнологии». Москва. 2011. С. 52.

10. Парфенов И. А., Валуева Т. А. Новый ингибитор химотрипсина из клубней картофеля. Выделение, очистка и характеристика природного и рекомбинантного белков / V Российский симпозиум «Белки и пептиды». Петрозаводск. 2011. С. 289.

11. Парфенов И. А., Валуева Т. А. Исследование свойств нового ингибитора химотрипсина из клубней картофеля Solanum tuberosum L. / Научная конференция по биоорганической химии и биотехнологии «X чтения памяти академика Юрия Анатольевича Овчинникова». Москва. 2011. Т. 2. С. 52.

5.

ЗАКЛЮЧЕНИЕ

.

Анализ литературных данных свидетельствует о том, что для различных сортов картофеля характерен свой индивидуальный набор белковых ингибиторов протеиназ, обусловливающих, в частности, степень их адаптации к условиям выращивания. В данной работе проведен скрининг белков, подавляющих активность протеиназ, в картофеле нового сорта Юбилей Жукова, устойчивого к действию фитопатогенных микроорганизмов. Был выделен и детально охарактеризован высокоэффективный ингибитор химотрипсина и трипсина PKCI, обладающий способностью связывать одновременно оба фермента. Выделена кДНК PKPIJ-B и установлена ее нуклеотидная последовательность. Методом гетерологичной экспрессии этой кДНК в клетки Е. coli получен рекомбинантный белок, который был очищен до гомогенного состояния. Изучено его действие на химотрипсин и трипсин. Показано, что рекомбинантный белок идентичен белку PKCI. Это позволило сделать заключение, что в клубнях картофеля сорта Юбилей Жукова белок PKCI кодируется кДНК PKPIJ-B.

Сравнительное исследование последовательностей генов, кодирующих белки семейства PKPI-B в различных сортах картофеля, и кДНК PKPIJ-B показало высокую степень их полиморфизма. Установлено, что наиболее вариабельным является С-концевой участок молекул, расположенный между остатками Cysl47 и Cysl64. Вполне вероятно, что полиморфизм генов PKPI-B является результатом межгенной рекомбинации, направленной на создание новых ингибиторов, которые могли бы участвовать в защите растения от действия фитопатогенных микроорганизмов и насекомых-вредителей. Можно предположить, что эволюция белков PKPI-B в картофеле обусловлена адаптацией растений к новым формам патогенных организмов. При этом наряду с обменом участками между генами PKPI, относящимися к одной структурной группе, вероятно, существует также обмен участками между генами различных групп [51]. Полиморфизм генов, кодирующих белки-ингибиторы PKPI в картофеле, по-видимому, связан с одной стороны, с гибридным происхождением многих сортов, а с другой — с высокой скоростью их модификаций в процессе эволюции.

Сравнение аминокислотных последовательностей белков группы PKPI-В позволило высказать достаточно обоснованное заключение о природе и локализации в их молекулах второго реактивного центра связывания а-химотрипсина. Наличие первого реактивного центра, ответственного за взаимодействие с трипсином и находящегося в N-концевой части молекулы PKCI, а второго — в ее С-концевой, создает условия, обеспечивающие возможность одновременного связывания с одной молекулой ингибитора двух различных протеиназ.

Экспериментальные данные, полученные в последние годы, позволяют предположить, что ингибиторы протеолитических ферментов относятся к белкам, участвующим в защитных реакциях растений в ответ на воздействие на них различных видов стрессов. Показано, что белки-ингибиторы PKPI картофеля способны ш vivo подавлять активность экстрацеллюлярных протеиназ патогенных микроорганизмов и протеиназы желудочно-кишечного тракта насекомых-вредителей [4, 5, 17, 18, 84, 94, 107, 214]. В ответ на различные повреждения, в том числе и на внедрение фитопатогенов, в растениях индуцируется синтез ингибиторов протеиназ [190]. Модификация ингибиторов протеиназ в тканях является, по-видимому, частью неспецифических реакций растений в ответ на действие фитопатогенов. Об этом свидетельствует и тот факт, что накопление ингибиторов протеиназ в тканях индуцируется элиситорами, в роли которых могут выступать фрагменты клеточных стенок растений и грибов, а также некоторые фитогормоны [80, 124, 189].

Известно, что патогенность микроорганизмов в значительной мере обусловлена активностью внеклеточных протеиназ [12]. В работах нашей.

104 лаборатории было показано, что оомицет P. infestans (Mont.) de Вагу при выращивании на среде, содержащей белки из клубней картофеля, продуцирует комплекс сериновых протеиназ с трипсинои субтилизиноподобной активностью [10]. В то же время в клубнях картофеля в ответ на поражение Р. infestans накапливались белки с молекулярной массой около 20−24 кДа [8, 266]. Токсичность белка-ингибитора PKCI, исследованного в настоящей работе, по отношению к фитопатогенному грибу F. culmorum и оомицету Р. infestans свидетельствует в пользу предположения об его участии в защите картофеля от вредителей.

Показать весь текст

Список литературы

  1. Т.В., Федуркина Н. В., Мосолов В. В. Ингибитор протеиназы 1, ответственной за инактивацию нитратредуктазы в корнях кукурузы // Физиология растений. 1987. Т. 34. № 1. С. 114 -120.
  2. И. В. Мартинек К. Основы физической химии ферментативного катализа. М.: Высшая Школа. 1977. С. 279.
  3. Т.А., Мосолов В. В. Белки — ингибиторы протеиназ в семенах. Классификация, распространение, структура и свойства // Физиология растений. 1999. Т. 46. № 3. С. 362−387.
  4. Т.А., Мосолов В. В. Роль ингибиторов протеолитических ферментов в защите растений // Успехи биологической химии. 2002. Т. 42. С. 193−216.
  5. Т.А., Мосолов В. В. Роль ингибиторов протеолитических ферментов в защите растений от патогенных микроорганизмов // Биохимия. 2004. Т. 69. № 11. С. 1600−1606.
  6. Т.А., Ревина Т. А., Кладницкая Г. В., Мосолов В. В., Ментеле Р. Первичная структура 21 кДа-белка из клубней картофеля // Биохимия.1999. Т. 64. № п. с. 1489−1498.
  7. Т.А., Ревина Т. А., Кладницкая Г. В., Мосолов В. В. Реактивные центры 21 кДа-белка-ингибитора сериновых протеиназ из клубней картофеля //Биохимия. 1999. Т. 64. № 9. С. 1274−1279.
  8. Т.А., Ревина Т. А., Гвоздева Е. Л., Герасимова Н. Г., Озерецковская О. Л. Роль ингибиторов протеиназ в защите картофеля. // Биоорган, химия. 2003. Т. 29. № 5. С. 499−504.
  9. С.Д., Пожитков А. Е. Активные центры гидролаз: основные типы структур и механизм катализа // Вестн. Моск. Ун-та. Сер. 2. Химия.2000. Т. 41. № 3. С. 147−156.
  10. Гвоздева E. JI, Иевлева Е. В., Герасимова Н. Г., Озерецковская O. JL, Валуева Т. А. Экзопротеиназы оомицета Phytohpthora infestans II Прикладная биохимия и микробиология. 2004. Т. 40. № 2. С. 194−200.
  11. В.И., Шарпио Т. П., Забрейко С. А., Сосновская Т. Ф. Протеолитические ферменты и ингибиторы трипсина высших растений в условиях стресса//Биоорганическая химия. 2008. Т. 34. № 3. С. 353−357.
  12. Е.В., Ревина Т. А., Кудрявцева H.H., Софьин A.B., Валуева Т. А. Внеклеточные протеиназы фитопатогенного гриба Fusarium culmorum П Прикладная биохимия и микробиология. 2006. Т. 42. № 3. С. 338−344.
  13. Н.Б., Слепак В. З., Киселев О. Г., Шемякин В. В., Хохлачев A.A. Применение электроблоттинга в качестве метода получения образцов белков и их фрагментов для микросеквенирования // Биоорганическая химия. 1989. Т. 15. № 1. с. 24−31.
  14. Л.А., Якушева Л. Д., Степанов В. М. Синтез пептидных субстратов субтилизина и их аналогов // Биоорганическая химия. 1977. Т. 3. № 2. С. 273−279.
  15. В.В., Валуева Т. А. Ингибиторы протеиназ и их функции у растений // Прикладная биохимия и микробиология. 2005. Т. 41. № 3. С. 261−282.
  16. В. В., Валуева Т. А. Ингибиторы протеолитических ферментов при абиотических стрессах у растений // Прикладная биохимия и микробиология. 2011. Т. 47. № 5. с. 501−507.
  17. Т.А., Сперанская A.C., Кладницкая Г. В., Шевелев А. Б., Валуева Т. А. Белок-ингибитор субтилизина из клубней картофеля // Биохимия. 2004. Т. 69. № 10. С. 1345−1352.
  18. Т.А., Кладницкая Г. В., Герасимова Н. Г., Гвоздева Е. Л., Валуева Т. А. Белок-ингибитор трипсина из клубней картофеля. // Биохимия. 2010. Т. 75. № 1.С. 46−51.
  19. А.С., Криницына А. А., Полтрониери П., Фазано П., Сантино А., Шевелев А. Б., Валуева Т. А. Ингибиторы протеиназ типа Кунитца группы В из картофеля: молекулярное клонирование генов // Биохимия. 2005. Т. 70. № 3. С. 360−369.
  20. Abdeen A., Virgos A., Olivella Е., Villanueva J., Aviles X., Gabarra R., Prat S. Multiple insect resistance in transgenic tomato plants overexpressing two families of plant proteinase inhibitors // Plant Mol. Biol. 2005. V. 57. № 2. P. 189−202.
  21. Amirhusin В., Shade R.E., Koiwa H., Hasegawa P.M., Bressan R.A., Murdock L.L., Zhu-Salzman K. Protease inhibitors from several classes work synergistically against Callosobruchus maculates II J. Insect Physiol. 2007. V. 53. № 7. P. 734−740.
  22. Appenroth K.J., Augsten H. An improvement of the protein determination in plant tissues with the dye-binding method according to BRADFORD // Biochim. Physiol Pflanzen. 1987. V. 182. № 1. P. 85−89.
  23. Apostoluk W., Otlewski J. Variability of the canonical loop conformations in serine proteinases inhibitors and other proteins // Proteins-structure function and genetics. 1998. V. 32. № 4. P. 459−474.
  24. Arnone M. L, Davidson E.H. The hardwiring of development: organization and function of genomic regulatory systems // Development. 1997. V. 124. № 10. P. 1851−1864.
  25. Ashida Y., Matsushima A., Tsuru Y., Hirota T., Hirata T. Isolation and sequencing of a cDNA clone encoding a 20-kDa protein with trypsin inhibitory activity // Biosci. Biotechnol. Biochem. 2000. V. 64. № 6. P. 1305−1309.
  26. Baek K-H., Choi D. Roles of plant proteases in pathogen defense // Plant Pathol. J. 2008. V. 24. № 4. P. 367−374.
  27. Baumgartner B., Chrispeels M. Partial characterization of a protease inhibitor which inhibits the major endopeptidase present in the cotyledons of mung beans //Plant Physiol. 1976. V. 58. № 1. P. 1−6.
  28. Bauw G., Nielsen H.V., Emmersen J., Nielsen K.L., Jorgensen M., Welinder K.G. Patatins, Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras // FEBS J. 2006. V. 73. № 15. P. 3569−3584.
  29. Beekwilder J., Schipper B., Bakker P., Bosch D., Jongsma M. Characterization of potato proteinase II reactive site mutants // Eur. J. Biochem. 2000. V. 267. № l.p. l-ll.
  30. Benarafa C., Remold-O'Donnell E. The ovalbumin serpins revisited: perspective from the chicken genome of clade B serpin evolution in vertebrates // Proc. Natl. Acad. Sci. U.S.A. 2005. V. 102. № 32. P. 11 367−11 372.
  31. Beuning L.L., Spriggs T.W., Christeller J.T. Evolution of the proteinase inhibitor I family and apparent lack of hypervariability in the proteinase contact loop // J. Mol. Evol. 1994. V. 39. № 6. P. 644−654.
  32. Bieth J., Wermuth C.G. The action of elastase on p-nitroanilide substrates // ' Biochem. Biophys. Res. Commun. 1973. V. 53. № 2. P. 383−390.
  33. Blow D.M. Structure and mechanism of chymotrypsin // Acc. Chem. Res. 1976. V. 9. № 4. P. 145−152.
  34. Bode W, Huber R. Natural protein proteinase inhibitors and their interaction with proteinases // Eur. J. Biochem. 1992. V. 204. № 2. P. 433−451.
  35. Bode W., Huger R. Structural basis of the endoproteinase-protein inhibitor interaction // Biochim. Biophys. Acta-Protein structure and molecular enzymology. 2000. V. 1477. № 1−2. P. 241−252.
  36. Boisen S. Comparative physico-chemical studies on purified trypsin inhibitors from the endosperm of barley, rye, and wheat // Z. Lebensm. Unters Forsch. 1983. V. 176. № 6. P. 434−439.
  37. Boulter D. Insect pest control by copying nature using genetically engineered crops // Phytochemistry. 1993. V. 34. № 6. p. 1453−1466.
  38. Broadway R.M. Dietary proteinase inhibitors alter complement of midgut proteases // Arch. Insect Biochem. Physiol. 1996. V. 32. № 1. P. 39−53.
  39. Brzin J., Popovic T., Drobnic-Kosorok M., Kotnik M., Turk V. Inhibitors of cysteine proteinases from potato // Biol. Chem. Hoppe. Seyler. 1988. V. 369. P. 233−238.
  40. Cannon S.B., Young N.D. OrthoParaMap: Distinguishing orthologs from paralogs by integrating comparative genome data and gene phylogenies // BMC Bioinformatics. 2003. V. 4. № 35. P. 15.
  41. Cannon S.B., Mitra A., Baumgarten A., Yang N.D., May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana II PMC Plant Biology. 2004. V. 4. № 10. P. 21.
  42. Cater S.A., Lees W.E., Hill J., Brzin J., Kay J., Phylip L.H. Aspartic proteinase inhibitors from tomato and potato are more potent against yeast proteinase A than cathepsin D // Biochim. Biophys. Acta. 2002. V. 1596. № 1. P. 76−82.
  43. Chase T. Jr., Shaw E. p-Nitrophenyl-p'-guanidinobenzoate HC1: a new active site titrant for trypsin // Biochem. Biophys. Res. Commun. 1967. V. 29. № 4. P. 508−514.
  44. Christensen S., Sottrup-Jensen L. Characterization of two serpins from bovine plasma and milk // Biochem. J. 1994. V. 303. № 2. P. 383−390.
  45. Christeller J.T. Evolutionary mechanisms acting on proteinase inhibitor variability // FEBS J. 2005. V. 272. № 22. P. 5710−5722.
  46. Conconi A, Smerdon M.J., Howe G.A., Ryan C.A. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation // Nature. 1996. V. 383. № 6603. P. 826−829.
  47. Cornwall G.A., Cameron A., Lindberg I., Hardy D.M., Cormier N., Hsia N.
  48. The cystatin-related epididymal spermatogenic protein inhibits the serine114protease prohormone convertase 2 // Endocrinology. 2003. V. 144. № 3. P. 901−908.
  49. Dattagupta J.K., Podder A., Chakrabarti C., Sen U., Dutta S.K., Singh M. Structure of a Kunitz-type chymotrypsin from winged bean seeds at 2.95 A resolution // Acta Crystallogr. D. Biol. Crystallogr. 1996. V. 52. № 3. P. 521 528.
  50. Deshimaru M., Hanamoto R., Kusano C., Yoshimi S., Terada S. Purification and characterization of proteinase inhibitors from wild soja (Glycine soja) seeds // Biosci. Biotechnol. Biochem. 2002. V. 66. № 9. p. 1897−1903.
  51. Di Cera E. Serine proteases // IUBMB Life. 2009. V. 61 №. 5. P. 510−515.
  52. Dunsea K.M., Stevensa J.A., Laya F.T., Gasparb Y.M., Heathb R.L., Anderson M.A. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field // PNAS. 2010. V. 107. № 34. P. 15 011−15 015.
  53. Engh R.A., Huber R., Bode W., Schulze A.J. Divining the serpin inhibition mechanism: a suicide substrate springe? // Trends Biotechnol. 1995. V. 13. № 12. P. 503−510.
  54. Evans R.J., Pusztai A., Watt W.B., Bauer D.H. Isolation and properties of protein fractions from navy beans (Phaseolus vulgaris) which inhibit growth of rats //Biochim. Biophys. Acta. 1973. V. 303. № 1. P. 175−184.
  55. Felizmenio-Quimio M.E., Daly N.L., Craik D.J. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis II J. Biol. Chem. 2001. V. 276. № 25. P. 22 875−22 882.
  56. Fernie A.R., Willmitzer L. Molecular and biochemical triggers of potato tuber development//Plant Physiol. 2001. V. 127. № 4. P. 1459−1465.
  57. Filippova I.Ju., Lysogorskaya E.N., Oksenoit E.S., Rudenskaya G.N., Stepanov V.M. L-Pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide a chromogenic substrate for thiol proteinase assay // Anal. Biochem. 1984. V. 143. № 2. P. 203−297.
  58. Force A., Lynch M., Pickett F.B., Amores A., Yan Y., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations // Genetics. 1999. V. 151. № 4. P. 1531−1545.
  59. Franco O.L., Rigden D.J., Melo F.R., Grossi-de-Sa M.F. Plant a-amylase inhibitors and their interaction with insect a-amylases. Structure, function and potential for crop protection // Eur. J. Biochem. 2002. V. 269. № 2. P. 397−412.
  60. Gebhardt C., Valkonen J.P.T. Organisation of genes controlling disease resistant in the Potato genome // Annu. Rev. Phytopathol. 2001. V. 39. P. 79 102.
  61. Gettins P.G. Serpin structure, mechanism, and function // Chem. Rev. 2002 V. 102. № 12. P. 4751−4804.
  62. Giri A.P., Harsulkar A.M., Deshpande V.V., Sainani M.N., Guptam V.S., Ranjekar P.K. Chickpea defensive proteinase inhibitors can be inactivated by podborer gut proteinases // Plant Physiol. 1998. V. 116. № 1. P. 393−401.
  63. Glaczinski H., Heibges A., Salamini F., Gebhardt K. Members of the Kunitztype protease inhibitor gene family of potato inhibit soluble tuber invertase in vitro II Potato Res. 2002. V. 45. № 2−4. P. 163−176.
  64. Goodwin R.L., Baumann H., Berger F.G. Patterns of divergence during evolution of alpha-1-proteinase inhibitors in mammals // Mol. Biol. Evol. 1996. V. 13. № 2. P. 346−358.
  65. Goodwin R.L., Barbour K.W., Berger F.G. Expression of the alpha 1-proteinase inhibitor gene family during evolution of the genus Mus // Mol. Biol. Evol. 1997. V. 14. № 4. P. 420−427.
  66. Gosti F., Bertauche N., Vartanian N., Giraudat J. Abscisic acid-dependent and independent regulation of gene expression by progressive drought in Arabidopsis thaliana //Mol. Gen. Genet. 1995. V. 246. № 1. P. 10−18.
  67. Graham J.S., Pearce G., Merryweatherg J., Titanili K., Ericssonli L.H., Ryan C.A. Wound-induced proteinase inhibitors from tomato leaves II. The cDNA-deduced primary structure of pre-inhibitor II // J. Biol. Chem. 1985. V. 260. № 11. P. 6561−6564.
  68. Green T.R., Ryan C.A. Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects // Science. 1972. V. 175. № 4023. P. 776−777.
  69. Grudkowska M., Zagdanska B. Multifunctional role of plant cysteine proteinases // Acta Biochim. Polonica. 2004. V. 51. № 38. P. 609−624.
  70. Gruen L.C., Tao Z.J., Kortt A.A. Stability and physicochemical properties of a trypsin inhibitor from winged bean seed (Psophocarpus tetragonolobus (L)DC) // Biochim. Biophys. Acta. 1984. V. 791. № 3. P. 285−293.
  71. Grutter M.G., Priestle J.P., Rahuel J., Grossenbacher H., Bode W., Hofsteenge J., Stone S.R. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition // EMBO J. 1990. V. 9. № 8. P. 2361−2365.
  72. Habu Y., Peyachoknagul S., Umemoto K., Sakata Y., Ohno T. Structure and regulated expression of Kunitz chymotrypsin inhibitor genes in winged bean {Psophocarpus tetragonolobus (L.) DC.) // J. Biochem. 1992. V. 111. № 2. P. 249−258.
  73. Hansen D., Macedo-Ribeiro S., Verissimo P., Yoo Im.S., Sampaio M.U., Oliva M.L. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor // Biochem. Biophys. Res. Commun. 2007. V. 360. № 4. P. 735−740.
  74. Hartley B.S., Kilby B.A. The reaction of p-nitrophenyl esters with chymotrypsin and insulin // Biochem. J. 1954. V. 56. № 2. P. 288−297.
  75. He X., Zhang J. Rapid subfiinctionalisation accompanied by prolonged and substantial neofimctionalisation in duplicate genome evolution // Genetics. 2005. V. 169. № 2. P. 1157−1164.
  76. Hedstrom L. Serine protease mechanism and specificity // Chem. Rev. 2002. V. 102. № 12. P. 4501−4524.
  77. Heibges A., Salamini F., Gebhardt C. Functional comparison of homologous members of three groups of Kunitz-type enzyme inhibitors from potato tubers {Solanum tuberosum L.) // Mol. Gen. Genomics. 2003. V. 269. № 4. P. 535 541.
  78. Herbers K., Prat S., Willmitzer L. Cloning and characterization of a cathepsin D inhibitor gene from Solanum tuberosum L. // Plant Mol. Biol. 1994. V. 26. № 1. P. 73−83.
  79. Hilder V.A., Gatehouse A.M.R., Sherman S.E., Barker R.F., Boulter D. A novel mechanism for insect resistance engineered into tobacco // Nature. 1987. V. 330. № 6144. P. 160−163.
  80. Hiraga K., Suzuki T., Oda K. A novel double-headed proteinaceous inhibitor for metalloproteinase and serine proteinase // J. Biol. Chem. 2000. V. 275. № 33.25 173−25 179.
  81. Horiguchi T., Kitagishi K. Studies on rice seed protease. V. Protease inhibitors in rice seed // Plant Cell Physiol. 1971. V.12. № 6. P. 907−915.
  82. Horisberger M., Tacchini-Vonlanthen M. Ultrastructural localization of Kunitz inhibitor on thin sections of Glycine max (soybean) cv. Maple Arrow by the gold method // Histochemistry. 1983. V. 77. № 1. P. 37−50.
  83. Huang H., Qi S.-D., Qi F., Wu C.-A, Yang G.-D., Zheng C.-C. NtKTIl, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco’s defense response // FEBS J. 2010. V. 277. № 19. P. 4076−4088.
  84. Huang Y., Xiao B., Xiong L. Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice // Planta. 2007. V. 226. № 1. P. 73−85.
  85. Huntington J. A. Serpin structure, function and dysfunction // J. Thromb. Haemost. 2011. V. 9. № 1. P. 26−34.
  86. Innan H. The coalescent and infinite-site model of a small multigene family // Genetics. 2003. V. 163. № 2. P. 803−810.
  87. Im H., Ahn H.Y., Yu M.H. Bypassing the kinetic trap of serpin protein folding by loop extension // Protein Sci. 2000. V. 9. № 8. P. 1497−1502.
  88. Ishikawa A., Ohta S., Matsuoka K., Hattori T., Nakamura K. A family ofpotato genes that encode Kunitz-type proteinase inhibitors: structural120comparisons and differential expression // Plant Cell Physiol. 1994. V. 35. № 2. P. 303−312.
  89. Jofuku K. D, Goldberg R.B. Kunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants // Plant Cell. 1989. V. 1. № 11. P. 1079−1093.
  90. Johnson P.H. Hirudin: clinical potential of a thrombin inhibitor // Annu. Rev. Med. 1994. V. 45. P. 165−177.
  91. Kakade M.L., Rackis J.J., McGhee J.E., Puski G. Determination of trypsin inhibitor activity of soy products- a collaborative analysis of an improved procedure // Cereal Chem. 1974. V. 51. № 3. P. 376−382.
  92. Kang S.G., Lee H.J., Park E.H., Suh S.G. Molecular cloning and characterization of cDNAs encoding heterotrimeric G protein alpha and beta subunits from potato (Solatium tuberosum L.) // Mol. Cells. 2002. V. 13. № 1. P. 99−106.
  93. Kato I., Schrode J., Kohr W.J., Laskowski M. Jr. Chicken ovomucoid: determination of its amino acid sequence, determination of the trypsin reactive site, and preparation of all three of its domains // Biochemistry. 1987. V. 26. № l.P. 193−201.
  94. Khamrui S., Dasgupta J., Dattagupta J.K., Sen U. Single mutation at PI of a chymotrypsin inhibitor changes it to a trypsin inhibitor: X-ray structural (2.15
  95. A) and biochemical basis // Biochim. Biophys. Acta. 2005. V. 1752. № l.P. 65−72.
  96. Kim S., Hong Y.-N., An C.S., Lee K.-W. Expression characteristics of serine proteinase inhibitor II under variable environmental stresses in hot pepper (iCapsicum annuum L.) // Plant Sci. 2001. V. 161. № 1. P. 27−33.
  97. Kirchhamer C.V., Bogarad L.D., Davidson E.H. Developmental expression of synthetic cis-regulatory systems composed of spatial control elements from two different genes // Proc. Natl. Acad. Sci. U.S.A. 1996. V. 93. № 24. P. 13 849−13 854.
  98. Knight C.G. The characterization of enzyme inhibition. (Barrett A.J., Salvesen G., eds.). Proteinase inhibitors. Elsevier, Amsterdam, The Netherlands. 1986. p. 23−51.
  99. Koiwa H., Bressan R.A., Hasegawa P.M. Regulation of protease inhibitors and plant defense // Trends Plant Science. 1997. V. 2. № 10. P. 379−384.
  100. Kong L., Ranganathan S. Tandem duplication, circular permutation, molecular adaptation: how Solanaceae resist pests via inhibitors // BMC Bioinformatics. 2008. V. 9. № l.P. 22.
  101. Korsinczky M.L.J., Schirra H.J., Rosengren K.J., West J., Condie B.A., Otvos1., Anderson M.A., Craik D.J. Solution structures by 1H NMR of the novelcyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant
  102. J. Mol. Biol. 2001. V. 311. № 3. P. 579−591.122
  103. Korth K.L., Stermer B.A., Bhattacharyya M.K., Dixon R.A. HMG-CoA reductase gene families that differentially accumulate transcripts in potato tubers are developmentally expressed in floral tissues // Plant Mol. Biol. 1997. V. 33. № 3. P. 545−551.
  104. Kramell R., Miersch O., Hause B., Ortel B., Parthier B., Wasternack C. Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley {Hordeum vulgare L.) leaves // FEBS Lett. 1997. V. 414. № 2. P. 197−202.
  105. Krapp A., Hoffman B., Schafer C., Stitt M. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism of the sink regulation of photosynthesis // Plant J. 1993. V. 3. № 6. P. 817−828.
  106. Krauchenco S., Pando S.C., Marangoni S., Polikarpov I. Crystal structure of the Kunitz (STI)-type inhibitor from Delonix regia seeds // Biochem. Biophys. Res. Commun. 2003. V. 312. № 4. P. 1303−1308.
  107. Krizaj I., Drobnic-Kosorok M., Brzin J., Jerala R., Turk V. The primary structure of inhibitor of cysteine proteinases from potato // FEBS Lett. 1993. V. 333. № 1−2. P. 15−20.
  108. Krowarsch D., Cierpicki T., Jelen F., Otlewski J. Canonical protein inhibitors of serine proteases // Cell. Mol. Life Science. 2003. V. 60. № 11. P. 24 272 444.
  109. Kunitz M., Northrop J. Isolation from beef pancrease of crystalline trypsinogen, trypsin, a trypsin inhibitor and an inhibitor- trypsin compound // J. Gen. Physiol. 1936. V. 19. № 6. P. 991−1007.
  110. Kunitz M. Crystallisation of a trypsin inhibitor from soybean // Science. 1945. V. 101. № 2635. P. 668−669.
  111. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 //Nature. 1970. V. 227. № 5259. P. 680−685.
  112. Laskowski M. Jr., Kato I. Protein inhibitors of proteinases // Ann. Rev. Biochem. 1980. V. 49. P. 593−626.
  113. Lawrence P.K., Koundal K.R. Plant protease inhibitors in control of phytophagous insects // EJB. 2002. V. 5. № 1. P. 93−109.
  114. Ledoigt G., Griffaut B., Debiton E., Vian C., Mustel A., Evray G., Maurizis J.-C., Madelmont J.-C. Analysis of secreted protease inhibitors after water stress in potato tubers // Int. J. Biol. Macromol. 2006. V. 38. № 3−5. P. 268−271.
  115. Lievens S., Goormachtig S., Holsters M. Nodule-enhanced protease inhibitor gene: emerging patterns of gene expression in nodule development on Sesbania rostrata II J. Exp. Bot. 2004. V. 55. № 394. P. 89−97.
  116. Lipke H., Fraenkel G. The toxicity of corn germ to the meal worm Tenebrio molitor II J. Nutr. 1955. V. 55. № 1. P. 165−178.
  117. Lison P., Rodrigo I., Conejero V. A novel function for the cathepsin D inhibitor in tomato // Plant Physiol. 2006. V. 142. № 3. P. 1329−1339.
  118. Lynch M., Force A. The probability of duplicate gene preservation by subfunctionalisation // Genetics. 2000. V. 154. № 1. P. 459−473.
  119. Lynch M., O’Hely M., Walsh B., Force A. The probability of preservation of a newly arisen gene duplicate // Genetics. 2001. V. 159. № 4. P. 1789−1804.
  120. Makhatadze G.I., Kim K.S., Woodward C., Privalov P.L. Thermodynamics of BPTI folding // Protein Science. 1993. V. 2. № 12. P. 2028−2036.
  121. Mares M., Meloun B., Pavlik M., Kostka Vol., Baudys M. Primary structure of cathepsin D inhibitor from potatoes and its structure relationship to soybeantrypsin inhibitor family // FEBS Lett. 1989. V. 251. № 1−2. P. 94−98.124
  122. Martinez M., Abraham Z., Carbonero P., Diaz I. Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley // Mol. Genet. Genomics. 2005. V. 273. № 5. P. 423−432.
  123. McManus M.T., White D.W.R., McGregor P.G. Accumulation of the chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests // Transgenic Res. 1994. V. 3. № 1. P. 50−58.
  124. MEROPS DATABASE http://merops.sanger.ac.uk
  125. Michelmore R.W., Meyers B.C. Clusters of resistance genes in plants evolve by divergent selection and a Birth-and-Death process // Genome Res. 1998. V. 8. № 11. P. 1113−1130.
  126. Mikola J., Suolinna E.M. Purification and properties of an inhibitor of microbial alkaline proteinases from barley // Arch. Biochem. Biophys. 1971. V. 144. № 2. P. 566−575.
  127. Miller E.A., Lee M.C.S., Atkinson A.H.O., Anderson M.A. Identification of a novel four-domain member of the proteinase inhibitor II family from the stigmas of Nicotiana alata II // Plant Mol. Biol. 2000. V. 42. № 2. P. 329−333.
  128. Mitsumori C., Yamagishi K., Fujino K., Kikuta Y. Detection of immunologically related Kunitz and Bowman-Birk proteinase inhibitors expressed during potato tuber development // Plant Mol. Biol. 1994. V. 26. № 3.P. 961−969.
  129. Mosolov V.V., Loginova M.D., Fedurkina N.V., Benken I.I. The biological significance of proteinase inhibitors in plants // Plant Sci. Lett. 1976. V. 7. № 2. P. 77−80.
  130. Moura D.S., Ryan C.A. Wound-inducible proteinase inhibitors in pepper. Differential regulation upon wounding, systemin, and methyl jasmonate // Plant Phys. 2001. V. 126. № 1. P. 289−298.
  131. Ochieng J., Chaudhuri G. Cystatin superfamily // J. Health Care Poor Underserved. 2010. V. 21. № 1. P. 51−70.
  132. Otlewski J., Jelen F., Zakrzewska M., Oleksy A. The many faces of protease-protein inhibitor interaction //EMBO J. 2005. V. 24. № 7. P. 1303−1310.
  133. Page M.J., Di Cera E. Serine peptidases: classification, structure and function // Cell Mol. Life. Sci. 2008. V. 65 № 7−8. p. 1220−1236.
  134. Pando S.C., Oliva M.L.V., Sampaio C.A.V., Di Ciero L., Novello J.C., Marangoni S. Primary sequence determination of a Kunitz inhibitor isolated from Delonix regia seed//Phytochemistry. 2001. V. 57. № 5. P. 625−631.
  135. Pernas M., Sanchez-Monge R., Salcedo G. Biotic and abiotic stress can induce cystatin expression in chestnut // FEBS Lett. 2000. V. 467. № 2−3. P. 206−210.
  136. Pompe-Novak M., Polsak-Prijatelj M., Popovic T., Strucelj B., Ravnikar M. Impact of potato cysteine proteinases in plant growth and development // Phys. Mol. Plant Pathol. 2002. V. 60. № 2. P. 71−78.
  137. Popovic T., Brzin J. Purification and characterization of two cysteine proteinases from potato leaves and the mode of their inhibition with endogenous inhibitors // Croatica Chemica Acta. 2007. V. 80. № 1. P. 45−52.
  138. Pouvreau L., Gruppen H., Piersma S.R., Van Den Broek L.A., Van Koningsveld G.A., Voragen A.G. Relative abundance and inhibitory distribution of protease inhibitors in potato juice from cv. Elkana // J. Agric. Food Chem. 2001. V. 49. № 6. P. 2864−2874.
  139. Pouvreau L., Gruppen H., Van Koningsveld G.A., van den Broek L.A.M., Voragen A.G.J. Conformational stability of the potato serine protease inhibitor group. J. Agric. Food Chem. 2005. V. 53. № 8. P. 3191−3196.
  140. Polgar L. The catalytic triad of serine peptidases // Cell Mol. Life Sci. 2005. V. 62. № 19−20. P. 2161−2172.
  141. Piatigorsky J., Wistow G. The recruitment of crystallins: new functions precede gene duplication // Science. 1991. V. 252. № 5009. P. 1078−1079.
  142. Qi R.-F., Song Z.-W., Chi C.-W. Structural features and molecular evolution of Bowman-Birk protease inhibitors and their potential application //Acta Biochim. Biophys. Sin. 2005. V. 37. № 5. P. 283−292.
  143. Quillien L., Ferrasson E., Molle D., Gueguen J. Trypsin inhibitor polymorphism: multigene family expression and posttranslational modification // J. Protein Chem. 1997. V. 16. № 3. P. 195−203.
  144. Rancour J.M., Ryan C.A. Isolation of a carboxypeptidase B inhibitor from potatoes // Arch. Biochem. Biophys. 1968. V. 125. № 1. P. 380−383.
  145. Rawlings N.D., Barrett A.J. Evolutionary families of peptidases // Biochem. J. 1993. V. 290. № 1. p. 205−218.
  146. Rawlings N.D., Tolle D.P., Barrett A.J. Evolutionary families of peptidase inhibitors // Biochem. J. 2004. V. 15. № 378. P. 705−716.
  147. Reviron M.P., Vartanian N., Sallantin M., Huet J.C., Pernollet J.C., de Vienne D. Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves // Plant Physiol. 1992. V. 100. № 3. P. 1486−1493.
  148. Ribeiro J.K., Cunha D.D., Fook J.M., Sales M.P. New properties of the soybean trypsin inhibitor: inhibition of human neutrophil elastase and its effect on acute pulmonary injury // Eur. J. Pharmacol. 2010. V. 644. № 1−3. P. 238 244.
  149. Richardson M., Cossins L. Chymotrypsic inhibitor I from potatoes: The amino acid sequences of subunits B, C and D // FEBS Lett. 1974. V. 45. № 1. P. IIIS.
  150. Richardson M. Seed storage proteins: the enzyme inhibitors // Methods in Plant Biochemistry. 1991. V. 5. P. 259−305.
  151. Richardson J.L., Kroger B., Hoeffken W., Sadler J.E., Pereira P., Huber R., Bode W., Fuentes-Prior P. Crystal structure of the human alpha-thrombinhaemadin complex: an exosite II-binding inhibitor // EMBO J. 2000. V. 19. № 21. P. 5650−5660.
  152. Richardson J.L., Fuentes-Prior P., Sadler J.E., Huber R, Bode W. Characterization of the residues involved in the human alpha-thrombin-haemadin complex: an exosite II-binding inhibitor // Biochemistry. 2002. V. 41. № 8. P. 2535−2542.
  153. Rickauer M., Fournier J., Esquerre-Tugaye M.T. Induction of proteinase inhibitors in tobacco cell suspension culture by elicitors of Phytophthora parasitica var. nicotianae // Plant Physiol. 1989. V. 90. № 3. P. 1065−1070.
  154. Ritonja A., Krizaj I., Mesko P., Kopitar M., Lucovnik P., Strukelj B., Pungercar J., Buttle D. J., Barrett A. J., Turk V. The amino acid sequence of a novel inhibitor of cathepsin D from potato // FEBS Lett. 1990. V. 267. № 1. P. 13−15.
  155. Roychaudhuri R., Sarath G., Zeece M., Markwell J. Reversible denaturation of the soybean Kunitz trypsin inhibitor // Arch. Biochem. Biophys. 2003. V. 412. № l.P. 20−26.
  156. Rudolph R., Lilie H. In vitro folding of inclusion body proteins // FASEB J. 1996. V. 10. № l.P. 49−56.
  157. Ryan C.A., Hass G.M., Kuhn R.W. Purification and properties of a carboxypeptidase inhibitor from potatoes // J. Biol. Chem. 1974. V. 249. № 17. P. 5495−5499.
  158. Ryan C.A., Bishop P., Pearce G. A sycamore cell wall polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities // Plant Physiol. 1981. V. 68. № 3. P. 616−618.
  159. Ryan C.A. Protease Inhibitors in plants: genes for Improving defenses against insects and pathogens // Ann. Rev. Phytopathol. 1990. V. 28. P. 425−449.
  160. Rydel T.J., Tulinsky A., Bode W., Huber R. Refined structure of the hirudin-thrombin complex // J. Mol. Biol. 1991. V. 221. № 2. P. 583−601.
  161. Sambrook J., Fritch E., Maniatis T. Molecular cloning: a laboratory manual / Cold Spring Harbor, New-York.: Cold Spring Harbor Laboratory Press, 1982. V. 3.P. 507−520.
  162. Sanchez-Serrano J.J., Keil M., O’Connor A., Schell J., Willmitzer L. Wound expression of a potato proteinase inhibitor II gene in transgenic tobacco plants // EMBO J. 1987. V. 6. № 2. P. 303−306.
  163. Shain Y., Mayer A. Activation of enzymes during germination by trypsin-like enzyme lettuce //Phytochemistry. 1968. V. 7. № 9. P. 1491−1498.
  164. Shan L., Li C., Chen F., Zhao S., Xia G. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat // Plant Cell Environ. 2008. V. 31. № 8. P. 1128−1237.
  165. Shonbaum G.R., Zerner B., Bender M.L. The spectrophotometric determination of the operational normality of an alpha-chymotrypsin solution //J. Biol. Chem. 1961. V. 236. P. 2930−2935.
  166. Simillion C., Vandepoele K., Van Montagu M.C.E., Zabeau M., Van de Peer Y. The hidden duplication past of Arabidopsis thaliana II PNAS. 2002. V. 99. № 21. P. 13 627−13 632.
  167. Song H.K., Kim Y.S., Yang J.K., Moon J., Lee J.Y., Suh S.W. Crystal structure of a 16 kDa double-headed Bowman-Birk trypsin inhibitor from barley seeds at 1.9 A resolution // J. Mol. Biol. 1999. V. 293. № 5. V. 11 331 144.
  168. Stiekema W.J., Heidekamp F., Dirkse W.G., van Beckum J., Haan P., ten Bosch C., Louwerse J.D. Molecular cloning and analysis of four potato tuber mRNAs // Plant Mol. Biol. 1988. V. 11. № 3. P. 255−269.
  169. Strukelj B., Pungercar J., Mesko P., Barlic-Maganja D., Gubensek F., Kregar I., Turk V. Characterization of aspartic proteinase inhibitors from potato at the gene, cDNA and protein levels // Biol. Chem. Hoppe. Seyler. 1992. V. 373. № 7. P. 477−482.
  170. Suh S.G., Peterson J.E., Stiekema W.J., Hannapel D.J. Purification and characterization of the 22-kilodalton potato tuber proteins // Plant Physiol. 1990. V. 94. № l.P. 40−45.
  171. Sumikawa J.T., Nakahata A.M., Fritz H., Mentele R., Sampaio M.U., Oliva M.L. A Kunitz-type glycosylated elastase inhibitor with one disulfide bridge // Planta Med. 2006. V. 72. № 5. P. 393−397.
  172. Sweet R.M., Wright H.T., Janin J., Chothia C.H., Blow D.M. Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at2.6-A resolution // Biochem. 1974. V. 13. № 20. P. 4212−4228.131
  173. Takahashi N., Terakado K., Nakamura G., Soekmadji C., Masuoka T., Yamasaki M., Hirose M. Dynamic mechanism for the serpin loop insertion as revealed by quantitative kinetics // J. Mol. Biol. 2005. V. 348. № 2. P. 409−418.
  174. Teichmann S.A., Babu M.M. Gene regulatory network growth by duplication // Nat. Genet. 2004. V. 36. № 5. P. 492−496.
  175. Trexler M., Banyai L., Patthy L. A human protein containing multiple types of protease-inhibitory modules // Proc. Natl. Acad. Sci. U.S.A. 2001. V. 98. № 7. P. 3705−3709.
  176. Valente R.H., Dragulev B., Perales J., Fox J.W., Domont G.B. BJ46a, a snake venom metalloproteinase inhibitor. Isolation, characterization, cloning and insights into its mechanism of action // EJB. 2001. V. 268. № 10. P. 30 423 052.
  177. Valueva T.A., Revina T.A., Kladnitskaya G.V., Mosolov V.V. Kunitz-type proteinase inhibitors from intact and Phytophtora-infected potato tubers // FEBS L. 1998. V. 426. № 1. P. 131−134.
  178. Valueva T.A., Revina T.A., Mosolov V.V., Mentele R. Primary structure of potato Kunitz-type serine proteinase inhibitor // Biol. Chem. 2000. V. 381. № 12. P. 1215−1221.
  179. Van der Hoorn R.A.L. Plant proteases: From pheotypes to molecular mechanisms // Annu. Rev. Plant Biol. 2008. V. 59. P. 191−223.
  180. Van de Locht A. V., Stubbs M. T., Bode W., Friedrich T., Bollschweiler C., Hoffken W., Huber R. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? // The EMBO Journal. 1996. V. 15 № 22. P.6011−6017.
  181. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry // Circ. Res. 2003. V. 92. № 8. P. 827−839.
  182. Wang Y., Chen X., Qiu L. Novel alleles among soybean Bowman-Birk proteinase inhibitor gene families // Sci. China C. Life Sci. 2008. V. 51. № 8. P. 687−692.
  183. Walsh T. A., Twitchell W. P. Two Kunitz-type proteinase inhibitors from potato tubers // Plant Physiol. 1991. V. 97. № 1. P. 15−18.
  184. Waxman L., Smith D.E., Arcuri K.E., Vlasuk G.P. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa // Science. 1990. V. 248. № 4955. P. 593−596.
  185. Wei Z., Yan Y., Carrell R.W., Zhou A. Crystal structure of protein Z-dependent inhibitor complex shows how protein Z functions as a cofactor in the membrane inhibition of factor X // Blood. 2009. V. 114. № 17. P. 36 623 667.
  186. Williamson V. M., Hussey R. S. Nematode pathogenesis and resistance in plants // Plant Cell. 1996. V. 8. № 10. P. 1735−1745.
  187. Woloshuk C.P., Meulenhoff J.S., Sela-Buurlage M., van den Elzen P.J., Cornelissen B.J. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans II Plant Cell. 1991. V. 3. № 6. P. 619−628.
  188. Wong P.P., Kuo T., Ryan C.A. Growth-dependent accumulation and utilization of proteinase inhibitor I in tobacco callus tissues // Biochem. Biophys. Res. Commun. 1975. V. 63. № 1. P. 121−125.
  189. Wright H.T., Scarsdale J.N. Structural basis for serpin inhibitor activity // Prot. Struct. Function and Genetics. 1995. V. 22. № 3. P. 210−225.
  190. Wu Y., Llewellyn D., Mathews A., Dennis E.S. Adaptation of Helicoverpa armigera (Lepidoptera: Noctuidae) to a proteinase inhibitor expressed in transgenic tobacco // Mol. Breed. 1997. V. 3. № 5. P. 371−380.
  191. Yamagishi K., Mitsumori C., Kikuta Y. Nucleotide sequence of a cDNA encoding the putative trypsin inhibitor in potato tuber // Plant Mol. Biol. 1991. V. 17. № 2. P. 287−288.
  192. Yang L., Fang Z., Dicke M., van Loon J.J., Jongsma M.A. The diamondback moth, Plutella xylostella, specifically inactivates mustard trypsin inhibitor 2 (MTI2) to overcome host plant defense // Insect Biochem. Mol. Biol. 2009. V. 39. № 1. P. 55−61.
  193. Yeh K.W., Chen J.C., Lin M.I., Chen Y.M., Lin C.Y. Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity // Plant Mol. Biol. 1997. V. 33. № 3. P. 565 570.
  194. Zeng X.-H., Wei Y.-M, Jiang Q.-T., Qi P.-F., Zheng Y.-L. SNP analysis and haplotype identification in chymotrypsin inhibitor-2 (CI-2) // Gene of Barley Agricultural Sciences in China. 2009. V. 8. № 1. P. 8−14.
Заполнить форму текущей работой