Помощь в написании студенческих работ
Антистрессовый сервис

Клонирование генов синтеза пролина proB и proA термофильной бактерии Thermus ruber, их характеристика и анализ кодируемых ими белков

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Температурный оптимум ферментативной активности у — глутамилкиназы и у — глутамилфосфатредуктазы бактерии Thermus ruber находится в области 55 — 65 °C. Ферменты могут быть рекомендованы для использования в научных исследованиях с целью изучения термостабильности белков, для мониторинга трансгенных бактерий и растений, повышения засухоустойчивости хозяйственно полезных бактерий и растений… Читать ещё >

Клонирование генов синтеза пролина proB и proA термофильной бактерии Thermus ruber, их характеристика и анализ кодируемых ими белков (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБЗОР ЛИТЕРАТУРЫ
  • ГЛАВА 1. ХАРАКТЕРИСТИКА ТЕРМОФИЛОВ
    • 1. 1. Понятие термофила и общая характеристика
    • 1. 2. Молекулярные особенности термофилов. И
      • 1. 2. 1. Структура плазматической мембраны
      • 1. 2. 2. Структура ДНК генов термофилов. И
      • 1. 2. 3. Особенности белков термофилов
      • 1. 2. 4. Небелковые стабилизирующие факторы
  • ГЛАВА 2. МОЛЕКУЛЯРНЫЕ ОСНОВЫ ТЕРМОСТАБИЛЬНОСТИ БЕЛКОВ
  • ГЛАВА 3. ХАРАКТЕРИСТИКА БАКТЕРИЙ РОДА THERMUS
    • 3. 1. Экология бактерий рода Thermus
    • 3. 2. Идентификация бактерий рода Thermus
    • 3. 3. Морфология и клеточный состав бактерий рода Thermus
    • 3. 4. Физиология и метаболизм бактерий рода Thermus
    • 3. 5. Биотехнологическое применение термофильных микроорганизмов и бактерий рода Thermus
  • -33. 6. Использование различных генов в качестве маркеров для генной инженерии растений и бактерий
  • ГЛАВА 4. БИОСИНТЕЗ ПРОЛИНА И ЕГО РЕГУЛЯЦИЯ В КЛЕТКАХ БАКТЕРИ
    • 4. 1. Биосинтез пролина и его регуляция в клетках бактерий
    • 4. 2. Картирование генов биосинтеза пролинаргоВ, ргоА иргоС эубактерий и их регуляция экспрессии
    • 4. 3. Использование генов биосинтеза пролина в промышленной и научной практике

Термофильные бактерии адаптировались к существованию в среде с высокой температурой. Температура среды их обитания составляет 50−100° С. Большинство известных термофильных бактерий имеют морское происхождение, некоторые обнаруживаются в континентальных гейзерах и горячих источниках. Белки и ферменты термофильных микроорганизмов функционируют в этих условиях оптимально и с большой эффективностью.

Термофильные микроорганизмы представляют большой интерес как с точки зрения фундаментальной науки, так и прикладных исследований. Фундаментальные исследования термофилов привели к открытию целого ряда новых закономерностей в формировании структуры биомолекул, позволяющей им существовать в условиях экстремальных температур. В связи с этим в молекулярно-биологических исследованиях некоторые белки термофилов выбраны в качестве модельных из-за их высокой стабильностью и удобством работы.

С позиций биотехнологии термофилы вызывают интерес в связи с тем, что они являются источниками уникальных ферментов, обладающих чрезвычайно высокой термостабильностью. Это свойство данных ферментов позволяет решать ряд биотехнологических задач, где использование ферментов мезофильных организмов весьма затруднено или практически невозможно. Так представляется перспективным их использовать для высокотемпературных ферментаций, а также для переработки промышленных отходов, минералообразования, получения суперпродуцентов целого ряда ценных биологических продуктов (аминокислот, жирных кислот, белков и т. д.).

Широкое распространение получили ферменты термофилов в исследовательской практике и медицинской диагностике (ДНК-полимеразы, ДНКлигазы, некоторые рестриктазы). На основе необычных свойств этих ферментов разработаны новые методы исследований (полимеразная цепная реакция).

Сравнительно недавно ферменты термофилов стали использовать в качестве маркеров в исследовательской работе по генной инженерии микроорганизмов и растений. Простота тестирования ферментов термофилов в мезофильном организме позволяет надеяться, что белки термофилов будут широко использоваться в мониторинге трансгенных микроогранизмов и растений при переносе их в окружающую среду. Так, простой прогрев экстракта клеток мезофила позволяет инактивировать практически все ферменты, не затрагивая активность и стабильность фермента термофила. Для решения этой и целого ряда других задач было проведено данное исследование.

За последнее десятилетие клонированы более сотни генов термофилов и охарактеризовано множество кодируемых ими ферментов. В настоящее время завершено секвенирование генома гипертермофильной бактерии Aquifex aeolicus и ряда термофильных архебактерий. Продолжается определение нуклеотидной последовательности генома гипертермофила Termatoga martima.

В данной работе мы клонировали и секвенировали оперон ргоВА биосинтеза пролина термофильной бактерии Thermus ruber. Пролин является осмопротектором в клетках бактерий и растений. Он повышает устойчивость клетки к различным стрессовым воздействиям окружающей среды. У бактерий в биосинтезе пролина участвуют продукты трех генов: ргоВ, ргоА и ргоС. Продукт гена ргоВ (у-фосфоглутамилкиназа) (ГК) — АТФ:-Ь-глутамат-5-фосфотрансфераза, ЕС 2.7.2.11) является ключевым ферментом пути биосинтеза пролина. ГК взаимодействует с пролином и регулирует его биосинтез по принципу обратной связи. ГК действует в комплексе с белком РгоА (у-глутамилфосфатредуктаза- (ГФР) Ь-глутамат-5-полуальдегид: NADPH+ оксидоредуктаза, ЕС 1.2.1.41). Оба гена в хромосоме бактерий организованы в единый оперон.). У растений эти оба гена встречаются в 2х различных формах. У таких растений как томат, (Fujita et al., 1998) обнаружены оба гена ргоВ и ргоА, объединенные в один оперон, но и имеется и другая форма, представляющая собой единый ген, кодирующий бифункциональный фермент Д1-пирролин-5-карбоксилатсинтетазу (П5КС). Этот белок содержит N-концевую часть белка РгоВ и С-концевую часть белка РгоА. Показано, что гены бактерий могут экспрессироваться в растительной клетке У растений Vigna aconitifolia и Arabidopsis thaliana два гены слиты и кодируют П5КС.

В настоящее время гены синтеза пролина привлекают большое внимание генных инженеров, так как их клонирование в растениях и бактериях может дать большой хозяйственный эффект, выражающийся в повышении осмоустойчивости хозяйственно полезных бактерий и растений, улучшения их приспособленности к стрессовым условиям обитания, увеличения урожайности растений.

Цель и задачи исследования

.

Целью настоящей работы было выделение генов бисинтеза пролина ргоВА термофильной бактерии Thermus ruber и изучение некоторых свойств ферментов, кодируемых генами данного оперона. Исходя из поставленной цели, быгш определены следующие задачи работы:

1. Клонирование оперона ргоВА биосинтеза пролина Thermus ruber.

2. Определение нуклеотидной последовательности оперона и соответствующей аминокислотной последовательности кодируемых им белков.

3. Анализ особенностей нуклеотидной последовательности генов ргоВА Thermus ruber и первичной структуры продуктов генов.

4. Изучение некоторых физико-химических свойств термостабильных ферментов у-глутамилкиназы и у-глутамилфосфатредуктазы.

Научная значимость и новизна работы.

В настоящей работе впервые был клонирован оперон ргоВА биосинтеза пролина термофильной бактерии Thermus ruber. Определена нуклеотидная последовательность оперона. Проведен анализ нуклеотидной последовательности оперона и аминокислотной последовательности кодируемых генами ргоВА углутамилкиназы и углутамилфосфатредуктазы (ГК, ГФР). Изучены такие свойства ГК и ГФР как термостабильность, температурный оптимум активности, оптимум рН, а также влияние концентрации различных ионов в среде инкубации на активность фермента.

ОБЗОР ЛИТЕРАТУРЫ Глава I.

выводы.

1. Клонирован фрагмент хромосомной ДНК термофильной бактерии Thermus ruber, комплементирующий proBAмутацию в клетках Escherichia coli и содержащий две открытые рамки считывания, кодирующие ферменты биосинтеза пролина у — глутамилкиназу и у — глутамилфосфатредуктазу.

2. Нуклеотидная последовательность клонированных генов ргоВА имеет повышенное содержание GC, а аминокислотная последовательность белков РгоА и РгоВ содержит большое количество Glu, Arg, Leu, Pro, что характерно для аналогичных белков термофилов. По своей вторичной структуре белки РгоВ и РгоА относятся к типичным а,? — белкам.

3. Молекулярная масса белков РгоВ и РгоА, рассчитанная на основе нуклеотидной последовательности, составляет 41 984 Да и 44 419 Да, соответственно. Эти данные подтверждаются результатом синтеза данных белков в системе in vitro и определения их молекулярного веса с помощью электрофореза.

4. Температурный оптимум ферментативной активности у — глутамилкиназы и у — глутамилфосфатредуктазы бактерии Thermus ruber находится в области 55 — 65 °C. Ферменты могут быть рекомендованы для использования в научных исследованиях с целью изучения термостабильности белков, для мониторинга трансгенных бактерий и растений, повышения засухоустойчивости хозяйственно полезных бактерий и растений, а так же и в промышленной практике для получения суперпродуцента пролина.

Показать весь текст

Список литературы

  1. Л. Г., Богданова Т. И., Серегина Л. М. Развитие облигатно-термофильных бактерий на среде с парафином. Микробиология, 1981., т. 50, н. 1, стр. 49 54.
  2. Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование. 1984, М., Мир.
  3. А. А., Федорова Ю. А., Хургес Е. М. Клонирование генов биосинтеза пролина Escherichia coli .- Генетика, 1986, т. XXII, с. 2713−2731.
  4. Л. В. Добец Н.С., Пирузян Э. С. Получение мутанта Eschericha coli, суперпродуцирующего пролин и устойчивого к повьппенной концентрации NaCl. Генетика, 1990. т. 26, с. 1370−1379.
  5. А., Неумывакин Л. В., Мосейко Н. А., Пирузян Э. С. Перенос бактериальных генов синтеза пролина в растения и экспрессия под контролем растительных промоторов. Генетика. 1997, т. 1997, с. 913−917.
  6. Р. Что можно узнать о стабилизации ультростабильных глобулярных белков. Биохимия, 1998, т.63, с 370−380.
  7. Alfredsson, G. A., S. Baldursson, and J. K. Kristjansson. Nutritional diversity among Thermus spp, isolated from Icelandic hot springs. Syst. Appl. Microbiology, 1985, v. 6. p. 308−311.
  8. Altschul, Stephen F., Thomas L. Madden, Alejandro А. БсЬдйег, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. -Nucleic Acids Res. 1997.v. 25. p.3389−3402.
  9. Bachmann B. J. Linkage map of Escherichia coli K 12. -Microbiological Rev., 1989, v. 47, p. 180−230.
  10. Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ Three-dimensional structure of calmodulin. J Biol Chem 1973 May 10−248(9):3313−26.
  11. Baich A. Proline synthesis in E. coli. A proline inhibitable glutamic acid kinase. -BBA, 1969, v. 192, p. 462- 467.
  12. Baich A. The biosynthesis of proline in Escherichia coli, phosphate-dependent glutamate y-semialdehyde dehydrogenase (NADPH) the second enzyme in the pathway. BBA, 1971, v. 244, p. 129−134.
  13. Baetents M, Legrain C, Boyen A and Glansdorff N. Gene and enzymes of the acetyl cycle of arginine biosynthesis in the exteme thermophilic bacterium Thermus thermophilus HB27. -Microbiolgy, 1998, v. 144, p. 479−492.
  14. Becker, R. J. and M. J. Starzyk. Morphology and rotund body formation in Thermus aquaticus. -Microbios., 1984, v. 41. p. 115−129.
  15. Berenguer, J., M., Faraldo L. M., and de Pedro, M. A. Ca2+ -stabilized oligomeric protein complexes are major components of the cell envelope of Thermus thermophilus HB-8. -J. Bacteriol. 1988. V.170. P. 2441−2447.
  16. Bevan M. W., Flavell R. B., Chilton M. D. A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. -Nature, 1983, v. 304, p. 184−187
  17. Brady R. A., Csonka L. N. Transcriptional regulation of the proC gene of Salmonella typhimurium. -J. Bacteriol., 1988, v. 1970, p. 2379−2382.
  18. Brock, T. D. Life at High Temperatures. -Science, 1969, v. 158, p. 1012−1019.
  19. Brock, T. D. Life at High Temperatures. -Science, 1985, v. 230, p. 132−138.
  20. Brock, T. D. Thermophiles. 1986, A wiley-interscience publiction. John Wiley&Sons.-8326. Brock, T. D. Thermophilic microorganisms and life at high temperatures. SpringerVerland, Heidberg.
  21. Brock T. D. and L. K. Boylen. Presence of thermophilic bacteria in laundry and hot-water heaters. -Appl. Microbiol, v. 25. p. 72−76.
  22. Brock, T.D. and M. R. Edwards. Fine structure of Thermus aquaticus, an extreme thermophile. J. Bacterid. 1970. V. 104, P. 509−517.
  23. Brock, T. D. and H. Freeze, Thermus aquaticus gen. n. and sp. n., a non sporulating extreme thermophile. -J. Bacteriology, 1969, v. 98, p. 289−297.
  24. Brock, T.D. and I. Yoder. Thermal pollution of a small river by a large university: bacteriological studies. -Proc. Indiana Acad. Sei., 1971, v. 80, p. 183−188.
  25. Burley SK, Petsko GA Amino-aromatic interactions in proteins. Nature 1985 May 2−8-315(6014):37−40.
  26. Bullock W.O. et al., -BioThechniques, 1987, V. 5, p. 376−378.
  27. Chein, A., D. B. Edgar, and J. M. Trela. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. -J. Bacteriol., 1976, v. 127, p. 1550−1557.
  28. Cohen, S. N., Chang, A. C. Y., Hsu, L. Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. -Proc. Natl. Acad. Sei., 1972, v. 69, p. 2110.
  29. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. -Nature, 1998, v. 393, p. 537−544
  30. Collins, M. D. and D. Jones, Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. -Microbiol. Revs., 1981, v. 45, p. 316−354.
  31. Condamine H. Sur la regulation de la prodution de proline chez E. col K12. Ann. Institute Pasteur (Paris), 1971, v. 120, p. 126−143.
  32. Cometta, S., B. Sonnleitner, and A. Feicheer. The growth behavior of Thermus aquaticus in continuous cultivation. -Eur. J. Appl. Microbiol. Biotechnol., v. 15. p. 6974. «
  33. Hawkes R., Grutter M.G., Schellman J. Thermodynamic stability and point mutations of bacteriophage T4 lysozyme. -J. Mol Biol., 1984, v. 175(2), p. 195−212.
  34. Heringa J, Argos P., Egmond M., Vielg J. Increasing thermal stability of subtilisin from mutations suggested by strongly interacting side-chain clusters. -Protein Eng., 1995, v.8(l), p.21−30.
  35. Helmer G, Casadaban M, Bevan M, Kayes L, Chilton M. D. A new chimeric gene as a marker for plant transformation: The expression of Escherichia coli (3-galactosidase in sunflower and tobacco cells. -Bio/Technology, 1984, v. 2, p. 520−527
  36. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J. Expression of chimeric genes transformed into plant cells using a Ti-plasmid-derived vector. -Nature, 1983, v.303, p. 209−213
  37. Hecht MH, Sturtevant JM, Sauer RT Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage lambda repressor. Biochemistry 1987 Jan 13−26(1): 178−82.
  38. Hocking, J. D., and J. I. Harris. Purification by affintity chromatography of thermostable glyceraldhyde-3-phosphate dehydrogenase from Thermus aquaticus. -FEBS Lett., 1973, v. 34, p. 280−284.
  39. Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR Alber T Mutational effects on protein stability. Annu Rev Biochem. 1989−58:765−98.
  40. Hu CQ, Sturtevant JM. Thermodynamic study of yeast phosphoglycerate kinase. FEBS Lett 1986 Jul 28−203(2): 139−43.
  41. Hudson, J. A., H. W. Morgan, and R. M. Danniel. A numerical classification of some Thermus isolates. -J. Gen. Microbiol. 1986, v. 132. p. 532−540.
  42. Hudson, J. A., H. W. Morgan, and R. M. Daniel. Thermus filiformis sp. nov., a filamentous caldoactive bacterium. -Int. Syst. Bacteriol., 1987, v. 37. p. 431−436.
  43. Hudson, J. A., H. W. Morgan, and R. M. Daniel. Numerical classification of Thermus isolates from globally distributed hot springs. -Sys. Appl. Microbiol., 1989. v. 11. p. 250 256.
  44. Hunter I. S. Cloning of the genes in Streptomyces. In: Glover D. M. (ed). DNA cloning. A practical approach., 1985, v. 12, IRL Press Oxford Washington DC, p. 267.
  45. Hurley JH, Baase WA, Matthews BW. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J Mol Biol 1990 Dec 20−216(4): 1031−44.
  46. Jaenicke, R. Protein stability and molecular adaptation to extreme condition. -Eur. J. Biochem. 1991, v. 202, p. 715−728.
  47. Jaenicke R, Zavodszky P. Proteins under extreme physical conditions. FEBS Lett 1993 Jun 28−325(l-2):5−16.
  48. R. A., Burgess S. M., Hirsh D. (3-Gluciironidase from Escherichia coli as a gene-fusion marker. -Proc Natl Acad Sci., 1986, v. 83, p. 8447−8451.
  49. Kaneko, T. et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803 II. Sequence determination of the entire genome and assignment of potential protein-coding regions. -DNA Res., 1996, v. 3, p. 109−136.
  50. Kagawa Y., Nojima H., Nukiwa N., Ishizuka M., Nakajima T., Yasushara, Tanaka T., and Oshima T., High Guanine plus Cytosine Content in the Third Letter of Codons of an Extreme Thermophile. -J of Biol. Chem., 1984, v. 259, p. 2956−2960.
  51. Kelly C. A., Nishiyama M., Ohnishi Y., Beppu T., Birkoft J. Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. -J. Biochem., 1993, v. 32, p. 3913−3922.
  52. Kim H. K., Kwon S.T. Cloning, nucleotide sequence, and expression of the DNA ligase-encoding gene from Thermus filiformis. -Mol. Cells., 1998. v. 31, N. 8 (4), p. 438 443.
  53. Koncz C, Olsson 0, Langridge W. H. R, Schell J, Szalay A. A. Expression and assembly of functional bacterial luciferase in plants. -Proc Natl Acad Sci, 1987, v. 84 p. 131−135.
  54. Kosuge T., K. Tabata, and T. Hoshino. Molecular cloning and sequencing analysis of proBA operon from extremely thermophilic eubacterium Thermus thermophilus HB27. -FEMS Microbiol. Lett., 1994, v. 157, p. 73−79.
  55. Kraepelin G., and H. U. Gravenstein. Experimentelle indktion von 'rotund dodies' bei Thermus aquaticus Zeitschr. -Algm. Mikobiol. v. 20: p. 33−45
  56. Kristjansson J. K., G. O. Hreggvidsson and G.A. Alfresson. Isolation of halotolerant Thermus spp. From submarine hot springs in Iceland. -Appl. Environ. Microbiol. 1986, v. 52. p. 1313−1316.
  57. Laemmli, U.K. Cleavage of structural proteins during the assebly of the head of bacteriophage T4. -Nature, 1970, v. 227, p. 680−685.-8998. Lacks S., Greenberg J. R. J. Mol. Biol., 1977, v. 114, p. 153.
  58. Loginova, L.G., L. A. Egorova, R. S. Golovacheva, and L. M. Seregina. Thermus ruber sp. nov. rev. -Int. J. Syst. Bacterid. 1984, 34, 498−499.
  59. Limaurio D., Falciatore A., Basso A.L., Florani G., and Maurillio De Felice. Proline biosynthesis in Streptococcus thermophilus: characterization of the proBA operon and its products. -Microbiology, 1996, v. 142, p. 3275−3285.
  60. Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC. Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. J Mol Biol 1992 Jul 5−226(l):29−35.
  61. Matsuzawa, H., Hamaoaki M., and Ohta T. Production of thermophilic extracellular proteases (aqulysins I and II) by Thermus aquaticus YT-1, an extreme thermophile. Arg. Biol. Chem., 1983, v. 47, p. 25−28.
  62. T., Fritsch E.F., Sambrook J. (1982) .Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 135−136.
  63. Merkel, G.J., S. S. Stapleton, and J. J. Perry. Isolation and peptidoglycan of Gramnegative hydrocarbon-utilizing thermophilic bacteria. -J. Gen. Microbiol. 1978. v. 109, p. 141−148.
  64. Matthews B.W.Structural and genetic analysis of protein stability. -Science. 1988, Jun 17−240(4859): 1648−52.
  65. Menendez-Arias L., Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. -J. Mol. Biology, 1989, v. 206(2). p. 397−406.
  66. McKay, A., J. Quiller, and C. W. Jones. Energey conservation in the extreme thermophile Thermus thermophilus HB8. -Arch. Microbiol., 1982. v. 131. p. 43−50.
  67. McClelland, M., L. G. Kessler, and M. Bitther. Site specific cleavage of DNA at 8-and 10-base pair sequences. -Proc. Natl. Acad. Sci USA, 1984, v. 81, p. 983−987.
  68. Munster, M. J., A. P. Munster, J.R. Woodrow, and R. J. Sharp. Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA. -J. Gen. Microbiolgy, 1986, 132, 1677−1683.
  69. Omori K., Suzuki S-I., Imai Y. and Komatsubara S. Analysis of the Serratia marcescens proBA operon and feedback control of proline biosynthesis. Journal of Gen. Microbiology. 1991, v. 137, p. 509−517.
  70. Oshima T. and K. Imahori. Isolation of an extreme thermophile and thermostability of its transfer ribo nucleic acid and ribosomes. -J. Gen. Appl. Microbiology, 1971, v. 17. p. 513−517.
  71. Oshima T, et al. Physiochemical properties of deoxyribonucleic acid from an extreme thermophile. -J. Biochem (Tokyo)., 1974, v. 75(1), p. 179−183.
  72. Ow D. W., Wood K. V., DeLuca M, De Wet J. R, Helinski D. R, Howell S. H. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. -Science, 1986, v. 234, p. 856−859.
  73. Pace CN. Contribution of the hydrophobic effect to globular protein stability. Nature 1991 Jul 4−352(6330): 17−8.
  74. Prado, A., M. S. da Costa, and V.M.C. Maderia. Effect of the growth temperature on the lipid composition of two strains of Thermus sp. J. Gen. Microbiology. 1988. V. 134. P. 1653−1660.
  75. Perutz M. F., Raidt H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. -Nature, 1975, v. 255, p. 256−259.
  76. Petukhov M., Kil Y., Kuramitsu S., Lanzov V. Insights into thermal resistance of proteins from the intrinsic stability of their alpha helices. -Proteins, 1997, v. 29, p. 309 320.
  77. Pask-Hughes, R. A. and R. A. D. Williams. Cell components of strains belonging to the genus Thermus. J. Gen. Microbiol. 1978. V. 102. P. 65−72.
  78. Pask-Hughes, R. A. and N. Shaw. Glycolipids from thermophilic bacteria belonging to the genus Thermus. 1982. J. Bacteriology. V. 149. P. 54−58.
  79. Richardson J. S, Richardson D.C. Amino acid preferences for specific locations at the ends of alpha helices. Nature, 1979, Feb 22- 277(5698), 667−9.
  80. Roberts, R. J. Restriction enzymes and their isoschizomers. Nucl. Acid. Res., 1989, v. 17, p. 347−387.
  81. Rossi J.J., Vender J., Berg C. M., Coleman W. H. Partial purification and some properties of A1 -pyrroline -5 carboxylate reductase from Escherichia coli.- J. Bacterid., 1977, v. 129, p. 108−114.
  82. Ramaley R. F. and J. Hixson. Isolation of non-pigmented, thermophilic bacterium similar to Thermus aquaticus. J. Bacterid. V. 103. P. 527−528.
  83. Saiki, R. K., Gelfand D. H., S. Stoffell, Scharf, S. J., Higguchi R., Horn G. T., Mullis K. B. and Erlich H. A. Primer-directed enzymatic amplification of DNA with termostable DNA polymerase. -Science, 1988, v. 239, p. 487−491.
  84. Stearman R. S., Frankel A. D. Frieir E., Liu В., Pabo C. Combining thermostable mutations increases the stability of lambda repressor. -Biochemistry, 1988, v.3, p. 75 717 574.
  85. Stamm L. V. Barnes N. Y. Nucleotide sequence of the proA and proB genes of Treponemapallidium, the syphilis agent. Dna Seq., 1997, v. 8 (1−2), 63−70.
  86. Sandberg WS, Terwilliger ТС. Influence of interior packing and hydrophobicity on the stability of a protein. Nature, 1990, May 3−345(6270):86−9.
  87. Schultes, V., Deutzmann, R& Janenicke.R. Complete amino sequence of glyceraldehyde-3-phosohate dehydrogenase from the hyperthermophilic eubacterium Thermatoga martima. -Eur. J. Biochem., 1990,192, p. 25−31.
  88. Sharp R., J and R. A. D. Williams. Properties of Thermus ruber strains isolated from Icelandic hot springs and DNA: DNA gomology of Thermus ruber and Thermus aquaticus. -Appl. Environ. Microbiology, 1988, v. 54, p. 2049−2053.
  89. Smith C. J., Deutch A. H., Rushlow К. E. Purification and characteristics of y-glutamyl kinase involved in Escherichia coli proline biosynthesis. J. Bacteriology., 1984, v. 1984, v. 157, p. 545−551.
  90. Susuki, K., and K. Imahori. Glyseraldehyde-3-phosphate of Bacillus stearothermophilus. Kinetics and physicochemical studies. -J. Biochem., 1973, v. 74, p. 955−970.
  91. Takase, M. and K. Horikoshi. A thermostable p-glucosidase isolated from a bacterial species of the genus Thermus. -Appl. Microbiol. Technol., 1988, v. 29, p. 55−60.
  92. Tamakoshi M, Yamagishi A, Oshima T. The organization of the leuC, leuD and leuB genes of the extreme thermophile Thermus thermophilus. -Gene, 1998, v. 222(1), p. 12 532.
  93. Tindall, K. R. and Kunkel T. A. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry, 1988, v. 27, p. 6008−6013.
  94. Van de Casteele, M., Demarez, M., Legrain, C., Glansdorff, N & Pierard, A. Pathways of arginine biosynthesis in extreme thermophilic archaeo and eubacteria. J. Gen. Microbiology, 1990, v. 136, p. 1177−1183.
  95. Van de Casteele, M., Chen, P., Roovers, M., Legrain, C. & Glansdorff, N. Structure and expression of a pyrimidine gene cluster from the extreme thermophile Thermus Z05. -J. Bacteriology, 1997, v. 11, p. 3470−3481.
  96. Villafranca J. E, Howell E. E, Oatley SJ, Xuong NH, Kraut J. An engineered disulfide bond in dihydrofolate reductase. Annu Rev Biochem, 1993−62:139−60.
  97. Williams, R.A.D. Caldoactive and thermophilic bacteria and their thermostable protein. Sci. Prog., 1975. v. 62, p. 373−393.
  98. Walker J., Wanacott A., Harris, J. Heat stability of a tetrameric enzyme, D-glyceraldehyde-3-phosphate dehydrogenase. -Eur. J. Biochem., 1980, v. 108, p. 581 586.
  99. Wrba A., Schweiger A., Schultes V., Jaenicke R., Zavodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. -Biochemistry, 1990, v. 29. p. 7584−7592.
  100. Williamson, C. L. and Slocum, R. D. Molecular cloning and evidence for osmoregulation pyrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L.). -Plant physiol., 1992, 100, p. 1464−1470.
  101. Ulrich, J. T., G. A. McFeters, and K. L. Temple. Induction and characterization of J3-galactosidase in an extreme thermophile. -J. Bacteriology, 1972, v. 110, p. 691−698.
Заполнить форму текущей работой