ΠΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π° ΠΌΠ ΠΠ ΠΈΠ· ΠΈΠ½ΡΠΎΡΠΌΠΎΡΠΎΠΌ Π² ΠΏΠΎΠ»ΠΈΡΠΈΠ±ΠΎΡΠΎΠΌΡ Ρ ΡΠ°Π·Π½ΡΡ Π²ΠΈΠ΄ΠΎΠ² Π°ΠΌΡΠΈΠ±ΠΈΠΉ
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
Π€ΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΉ Π²ΠΎΠΏΡΠΎΡ Π² ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡΠ½ΡΡ ΡΠ²ΡΠ·Π°Π½ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³Π»Π°Π²Π½ΡΡ ΠΎΡΠ΅ΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°. ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ ΠΎΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΊ Π°ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ»ΡΡΠ΅Π²ΡΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ (Kathleen et al, 1999). ΠΠ΅ΡΠ²ΠΈΡΠ½ΡΠΌ ΡΠΎΠ±ΡΡΠΈΠ΅ΠΌ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΡΠΈ ΡΠ΅Π»Π° Ρ Π°ΠΌΡΠΈΠ±ΠΈΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΈΡΠΎΠΏΠ»Π°Π·ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π² ΡΠ΅ΡΠ΅Π½ΠΈ^ 1-Π³ΠΎ ΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΠΏΠΎΡΠ»Π΅ V ΠΎΠΏΠ»ΠΎΠ΄ΠΎΡΠ²ΠΎΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΈΠ½ΠΈΡΠΈΠΈΡΡΠ΅Ρ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΉΡΠ°… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- ΠΡΠΉΡΠ°Ρ Π.Π., ΠΠΎΠ·ΠΎΠ²ΡΠΊΠ°Ρ Π. Π . ΠΠ΅Π½Ρ ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°. ΠΠΈΠΎΠ»ΠΎΠ³, ΡΠ½ΡΠΈΠΊΠ»ΠΎΠΏ. ΡΠ»ΠΎΠ²Π°ΡΡ. 1989. Π‘. 180.
- ΠΠΎΡΠΎΠ½ΠΈΠ½Π° Π.Π‘. Π’ΡΠ°Π½ΡΠ»ΡΡΠΈΠΎΠ½Π½Π°Ρ ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ Π² ΡΠ°Π½Π½Π΅ΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΠΈ. Π£ΡΠΏΠ΅Ρ ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³. Π₯ΠΈΠΌΠΈΠΈ. 2002. Π’.42, Π‘. 139−160.
- Π‘ΠΏΠΈΡΠΈΡ^Π.Π‘. Π Π΅Π³ΡΠ»ΡΡΠΈΡ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΈ ΠΌΠ ΠΠ-ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ Ρ Π²ΡΡΡΠΈΡ ΡΡΠΊΠ°ΡΠΈΠΎΡ. Π£ΡΠΏΠ΅Ρ ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ ΠΈΠΌΠΈΠΈ. 1996. Π’.36, Π‘.3−48
- Kathleen Π. Schroeder, Maureen L. Condic, Leonard M. Eisenberg, H. Josef Yost. Spatially regullated translation in embryos: assymetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev.Biol. 1999. V.214. P.288−297
- Gerhart J., Danilckik M., Doniach Π’., Downing R.B., Stewart R. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development. 1989. Suppl. P.37−51.
- Melton D.A. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature. 1987. Y.328. P.80−82.
- Green J.B., Smith J.K. Craded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature. 1990. V.347. P.391−394.
- Nusse R, Varmus H.E. Wnt genes. Cell. 1992. Y.69. P. 1073−1087.
- Qhong Xu, Patricia D’Amore, Sergei Y. Solcol. Functional and biochemical interactions of wnts with FrsA, a secreted wnt antogonist. Development. 1998. V.125. P.4767−4776.
- Parr B.A., McMahon A.P. Wnt genes and vertebrate development. Curr. Opin.Genet. Dev. 1995. V.4 P.523−528.
- Perrimon N. The genetic basis of patterned baldness in Drosophila. Cell. 1994. V.76P.781−784.
- Stark K., Vainio S., Vassileva G., McMahon A.P. Epithelial transformation of matanepliric mesenchyme in the developing kidney regulated by Wnt-4. Nature. 1994. V.372. P679−683.
- Herzlinger D., Qiao J., Cohen D., Ramakrishna N., Brown A.M.C. Induction of kidney epithelial morphogenesis by cells expressing Wnt-1. Dev.Biol. 1994. V.166. P.815−818
- Sokol S.Y., Klingesmith J., Perrimon N., Itoh K. Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homologue of dishevelled. Development. 1995. V.121. P.1637−1647.
- Rothbacher U., Laurent M.N., Blitz I.L., Watabe Π’., Marsh J.L., Cho K.W.Y. Functional conservation of the wnt signaling pathway revealed by ectopic expression of Drosophila dishevelled in Xenopus. Dev.Biol. 1995. V.170.P.717−721.
- Funayama N., 'Fagotto F., McRea P., Gumbiner B.M. Embryonic axis induction by the armadillo repeat domain p-catenin evidence for untracellular signaling. J. Cell Biol. 1995. V.128. P.959−968.
- Kaknovsky A., Klymkovsky M.W. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proc.Nat.Acad.Sci.USA. 1995. Y.92. P.4522−4526.
- Dominguez I., Itoh K., Sokol S.Y. Role of glycogene synthase kynase 3J3 as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc.Nat.Acad.Sci.USA. 1995. Y.92. P.8498−8502.
- He X., Saint-Jeannet J.P., Woodgett J.R., Varmus K.E., Dawid I.B. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature. 1995. Y.374. P.617−622.
- Parr B.A., McMahon A.P. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes in mouse limb. Nature. 1995. V.374. P.350−353.
- Sokol S., Cristian J.L., Moon R.T., Melton D.A. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell. 1991. V.67. P.741−752
- McMahon A.P., Moon R.T. Ectopic expression of the protooncogene Int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell. 1989. V.58. P.1075−1084.
- Nusse R., van Oogen A., Cox D., Fung Y.K., Varmus H.E. Mode of proveial activation of a putative mammary oncogene Int-1 on mouse chromosome 15. Nature. 1994. V.307. P. 131−136.
- Eisenberg L.M., Ingham P.W., Brown A.M.C. Cloning and characterization of a novel Drosophila wnt gene (Dwnt-5), a putative downstream target of the homeobox gene Distal-less. Dev.Biol. 1992. V.154.P.73−83. (
- Russel J., Gennissen A., Nusse R. Isolation and expression of the novel wntYwingless gene homologues in Drosophila. Development. 1992. V.154. P.475−483.
- Smith W.C., Harland R.M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992. V.70.P.829−840.
- Peifer M., Bejsovec A. Knowing your neighbors: cell interactions determine intrasegmental patterning in Drosophila. Trends in Genetics. 1992. V.8 P.243−249.
- Spemann H. Embryonic development and induction. New York: Yale University press. 1938.
- Yamada Π’. Dorsalization of the ventral marginal zone of the Trituris gastrula. Amonia-treatment of the medio-lateral marginal zone. Bull. Mar. Biol. Lab. Woods Hole. 1950. V.98. P.98−121.
- Dale L., Slack J .M.W. Regional specification within the mesoderm of early embryos of Xenopus laevis. Development. 1987. V.100. P.279−294.
- Yuge M., Kobayakawa Y., Fujisue M., Yamana K. A cytoplasmic determinant for dorsal axis formation in an early embryo of Xenopus laevis. Development. 1990. VI10. P.1051−1056.
- Fujisue M., Kobayakawa Y., Yamana K. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation. Development. 1993. V.118. P. 163−170.
- Jen-Chih H., Kodjabachian L., Rebbert L.M., Rattner A., Smallwood M.P., Samos C.H., Nusse R., Dawid B.I., Nathans J. A new secreted protein that binds to wnt proteins and inhibits their activities. Nature. 1999. V.398. P.431−436.
- Cristian J.L., Moon R.T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 1993. V.7. P. 13−28.
- Moon R.T. Dissecting wnt signaling pathways and wnt-sensetive developmental processes through transient mixexspression analyses in embryos of Xenopus Laevis. Development. 1993. Suppl. P.85−94.
- Glinka A. Dickkopf-1 is member of a new family of secreted proteins and functions in head induction. Nature. 1998. V.391. P.357−362.
- Piccolo S., Sasai Y., Lu Π., De Robertis E.M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell. 1996. V.86. P.589−598.
- Zimmerman L.B., De Jesus-Escobar J.M., Harland R.M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein. Cell. 1996. V.86. P.599−606.
- Hsu D.R., Economides A.N., Wang X., Eimon P.M., Harland R.M. The Xenopus dorsalizing factor gremlin identifies a novel family of secreted proteins that antogonize BMP activities. Moll. Cell. 1998. V.l. P.673−683.
- Cadigan K.M., Fish M.P., Rulifson E.J., Nusse R. Wingless repression of Drosophila frizzled 2 expression shapes the wingless morphogen gradient. Cell. 1998. V.93. P.767−777.
- Vinson C.R., Conover S., Adler P.N. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature. 1989. V.338. P.263−264.
- Perrimon N. Serpentine proteins slither into the wingless and hedgehog fields. Cell. 1996. V.86. P.513−516.
- Adler P.N. The genetic control of tissue polarity in Drosophila. Bio Essays. 1992. V.14. P.735−741.
- Wang S., Kninks M., Lin K., Luyten P.P., Moos Jr. M. FrzB, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell. 1997. V.88. P.757−766.
- He X., Saint-Jeannet J.P., Wang Y., Nathans J., Dawid I.B., Varmus H. A member of frizzled protein family mediating axis induction by Wnt-5A. Science. 1997. V.275. P. 1652−1654.
- Yang-Snyder J., Miller J.R., Brown J.D., Lai C.J., Moon R.T. A frizzled homolog functions in a vertebrate wnt signaling pathway. Curr. Biol. 1996. V, 6 P.1302−1306.
- Masazumi Π’., Smith J.K. Xwnt-11 is a target of Xenopus brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical wnt pathways. Development. 2000. V.127. P.2227−2238.
- Wilson V., 'Mauson L., Skarnes W.C., Beddington R.S.P. The T gene is necessary for normal mesodermal morphogenetic cell movementes during gastrulation. Development. 1995. V.121. P.877−886.
- Tada M., Casey E.S., Fairedough L., Smith J.C. Bix 1, a direct target of Xenopus T box genes, causes formation of ventral mesoderm. Development. 1998. V.125. P.3997−4006.
- Casey E.S., Tada M., Fairedough L., Wilie C.C., Heasman J., Smith J.K. Bixl is activated by Veg T and mediates endoderm formation in Xenopus development. Development. 1999. V.126. P.4193−4200.
- Conlon F.L., Smith J.K. Interference with Brachyury function inhibits convergent extension, causes apoptesis, and reveals separate requirement in the FGF and activin signaling pathways. Dev.Biol. 1999. V.213. P.85−100
- Masanori Π’., Saint-Jeannet J.P., Dawid I.B. Role of the Xlim-1 and Xbra genes in aneteroposterior patterning of neural tissue by the ytfd and trunk organizer. Dev.Biol. 1997. V.94 P.895−900.
- Von Dassow G., Schmidt J.E., Kimelman D. Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeobox gene. Genes Dev. 1993. Y.7 P.355−366.
- Steinbesser H., De Robertis E.M. Xenopus goosecoid: a gene expressed in the prechordal plate that has dorsalizing activity. C.R.Acad.Sci. 1993. V316 № 3. P.959−971.
- Isaacs H.V. New perspectivies on the role of the fibroplast growth factor family in amphibian development. Cell.Mol.Life Sci. 1997.- Y.53. P.350−361.
- Burglin T.R. A comprehensive classification of homeobox genes. In Guidebook to the homeobox genes. Oxford university press. 1994. P27−71.
- Heanue T.A., Johnson R.L., Izpizua-Belmonte J.C., Stern C.D., De Robertis E.M., Tabin Π‘ J. Goosecoid mixexpression alters the morphology and Hox gene expression of the developing chick limb bud. Mech.Dev. 1997. Π£.69. P.31−37.
- Danilov V., Blum M., Schweikert A., Campione M., Steinbesser H. Negative autoregulation of the organizer-specifie homeobox gene goosecoid. J.Biol.Chem. 1998. V.273. P.627−635.
- Ferreiro Π., Artinger M., Cho K.W.Y., Neihrs C. Antimorphic goosecoids. Development. 1998. V.125. P.1347−1359.
- Blumberg Π., Wright C.V.E., De Robertis E. M, Cho K.W.Y. Organizer-specific homeobox genes in Xenopus laevis embryos. Scince. 1991. V.253. P.194 196.
- Izpizua-Belmonte J.K., De Robertis E.M., Storey K.G., Stem C.D. The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell. 1993 V.74. P645−659.
- Stachel S.E., Greenwald D.J., Mayers P. Lithium perturbation and goosecoid expression identify a dorsal specification pathways in the pregastrula zebrafish. Development. 1993. V. l 17. P. 1261−1274.
- Blum M., De Robertis E.M., Kojis R.S. Molecular cloning of the human homeobox gene goosecoid and mapping of the gene to human chromosome 14q32.1. Genomicks. 1994. V.21. P.388−393.
- Shulte-Merher S., Hammershmidt M., Beuchle D., Cho K.W.Y., De Robertis E.M., Nusslein-Volhard C. Expression of zebrafish goosecoid and no tall gene products in wild-type and mutant no tall emryos. Development. 1994. V.120. P.843−852.
- Goriely A., Stella M., Coffmier C., Kessler D., Maihos C., Dessain S., Desplaw C. A functional homologue of goosecoid in Drosophila. w
- Development. 1996. V.122. P.1641−1650.
- Hahn M., Jackie R. Drosophila goosecoid participates in neural development but not in body axis formation. EMBO J. 1996. V. l5. P.3077−3084.
- Gaunt S.J., Blum M., De Robertis E.M. Expression of the mouse goosecoid gene during mid-embryogenesis may mark mesenchymal cell lineages in the developing head, limbs and body wall. Development. 1993. V. l 17. P.769−778.
- Wakamya M., Rivera-Perez J.A., Baldini A., Behringer R.R. Goosecoid and goosecoid-related genes in mouse embryogenesis. Cold Spring Harbor Symposia on Quantitative Biology. 1997. V.62. P. 145−149.
- Cho K.W.Y., Blumberg Π., Steinbesser H., De Robertis E.M. Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell. 1991. V.67. P. llll-1120.
- Neihrs C., Keller R., Cho K.W.Y., De Robertis E.M. The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell. 1993. Π£.12. P.491−503.
- Meijer S.H., Van De Parvert S.A., Stroband H.W., Boerjan M.L. Expression of the organizer specific homeobox gene goosecoid in embryos. Mol.Reprod.Dev. 2000. Y.55 № 3 P. 1−7.
- Jie Y., Danniel S.K. Goosecoids promotes head organizer activity by direct repression of Xwnt-8 in Spemann’s organizer. Development. 2001. Y.128. P.2975−2987.
- Rivera-Perez J.A., Mallo M., Gendron-Maquire M., Griedly Π’., Behringer R.R. Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development. 1995. V.121. P.3005−3012.
- Yamada G., Mansouri A., Torrez M., Stuart E.T., Blum M., Schultz M., De Robertis E.M., Gruss P. Targeted mutation of the murine goosecoid generesults in craniofacial defects and death. Development. 1995. V.121. P.2917−2922.
- Yamada G., Ueno K., Nalcamura S., Hanamure Y., Yasui R., Uemura M., Eizuku Y., Mansuori A., Blum M., Sugimura K. Nasal and pharyngeal donormalities caused by the mouse goosecoid gene mutation. Biochem.Biophys.Res.Commun. 1997. V.233. P. 161−165.
- Belo J.A., Leyns L., Yamada G., De Robertis E.M. The prechordial midline of the chondrocranium is defective in goosecoid-1 mouse mutants. Mech.Dev. 1998. V.211. P.374−381.
- Zhu C.C., Yamada G., Nakamura S., Terashi Π’., Scheikert A., Blum M. Malformation of trachea and pervic region in goosecoid mutant mice. Dev.Dyn. 1998. V.21 l.P.371−381.
- Smith S.T., Jaynes T.B. A conserved region of engrailed, shared among en, gsc-, nkl-, nk2- and msh-class homeoproteins, mediates active repression in vivo. Development. 1996. V. 122. P.3141−3150.
- Ferreiro Π., Artinger M., Cho K.W.Y., Neihrs C. Antimorphyc goosecoids. Development. 1998. V.125. P. 1347−1359.
- Mailhos C., Andre S., Mollereua Π., Goriely A., Hemmati-Brivanlou A., Desplaw C. Drosophila goosecoid requires a conserved heptapeptide-s for repression of paired-like class homeoprotein actovators. Development. 1998. V.125. P.937−947.
- Latinkis B.Y., Smith J.C. Goosecoid and mix-1 repress brachyury expression and are required for head formation inXenopus. Development. 1999. V.126. P. 1769−1779.
- Fainsod A., Steinbeisser H., De-Robertis E.M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 1994. V.13. P.5015−5025.
- Steinbeisser H., Fainsod A., Neihrs C., Sasai Y., De Robertis E.M. The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA. EMBO J. 1995. V.14. P.5230−5243.
- Dale L., Howes G., Price B.M.J., Smith J.C. Bone morphogenetic protein 4: a ventralizing factor in Xenopus development. Development. 1992. V. l 15. P.573−585.
- Jones C.M., Lyons K.M., Lapan P.M., Wright C.V.E., Hogan B.J.M. DVR-4 (bone morphogenetic protein-4) as a postero-ventralizing factor in Xenopus mesoderm induction. Development. 1992. V. l 15. P.639−647.
- Jones C.M., Dale L., Hogan B.J.M., Wright C.V.E., Smith J.C. Bone morphogenetic protein-4 acts during gastrula stages to cause ventralization of Xenopus embryos. Development. 1996. V. l 22. P. 1545−1554.
- Jaynes J.B., O’Farrel P.H. Active reoression of transcription by the engrailed homeodomain protein. EMBO J. 1991. V. 10. P.1427−1433.
- Had Π., Manley J.L. Functional domains of the Drosophila engrailed protein. EMBΠ J. 1993. V. 12 P.2723−2733.
- Zoltewicz J.S., Gerhart J.K. The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage. Dev.Biol. 1997. V. 192. P.482−491.
- Suzuki A., Thies R.S., Yamaji N., Song J.J., Warney J.M., Murakami K., Ueno N. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc.Natl.Acad.Sci.USA. 1994. V.91. P.10 255−10 259.
- Glinka A., Wu W., Relius H., Managhan A.P., Blumenstock C., Niehrs C. Head induction by simultaneous repression of BMP and Wnt signaling in Xenopus. Nature. 1997. V.389. P.517−519.
- Vodicka M.A., Gerhart J.C. Blastomere in the Spemann organizer of Xenopus laevis. Development. 1995. V.121 P.3505−3518.
- Lemaire P., Kodjabachian L. The vertebrate organizer: structure and molecules. Trends Genet. 1996. Π£.12. P.525−531.
- Thissue Π., Wright C.V.E., Thissue C. Activin- and nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature. 2000. Π£.403. P.425−428.
- Harland R., Gerhart J. Formation and function of Spemann’s organizer. Annu.Rev.Cell Dev.Biol. 1997. V.19. P611−667.
- Beddington R.S., Robertson E.J. Axis Development and early asymmetry in mammals. Cell. 1999. V.96. P. 195−209.
- Nieto M.A. Reorganizing the organizer 75 years on. Cell. 1999. V.98. P.417−425.
- De Robertis E.M., Larrain J., Delgeschlager M., Wessley O. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat.Rev.Genet. 2000. V.l. P.171−181.
- Piccolo S., Agius E., Leyns L., Brattacharyya S., Grunz H., Bowmeester Π’., De Robertis E.M. The head inducer cerberus is a multifunctional antogonist of nodal, BMP, Wnt signals. Nature. 1999. V.397. P.707−710.
- Gerhart J.C., Stewart R., Doniach T. Organizing the Xenopus organizer. Plenum Press. New York. 1991. P.57−77.
- Ptashne M. How eukaryotic transcriptional activators work. Nature. 1988. V.335. P.683−689.
- Harland R.M. In situ hybridization: an improved whole mount method for Xenopus embryos. Methods Cell Biol. 1991. V.36. P.685−695.
- Keller R.E. Vital dye mapping of the gastrula and neurula of Xenopus laevis. Dev Biol. 1976. V.51. P. 118−137.
- Amaya E., Musei T.J., Kirshner M.W. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell. 1991. V.66. P.257−270.
- Ladher R., Mohun N.J., Smith J.C., Snape A.M. Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development. 1996. V.122. P.2385−2394.
- Onichtchouk D., Gawantlca V., Dosch R., Delius H., Hirshfeld K., Blumenstock C., Niehrs C. Thq Xvent-2 homeobox gene is part of the BMP-4 signaling pathway controlling dorsoventral patterning of Xenopus mesoderm. Development. 1996. V.122. P.3045−1053.
- Papalopulu N., Kintner C. A Xenopus gene, Xbr-J, defines a novel class of homeobox genes and is expressed in the dorsal ciliary margin of the eye. Dev.Biol. 1996. V. l74. P. 104−114.
- Rastegar S., Friedle H., m Frommer G., Knochel W. Transcriptiobal of Xvent homeobox Genes. Mech.Dev. 1999. V.81. P. 139−149.
- Schuler-Metz A., KnochelS., Kaufmann E., Knochel W. The homeodomain transcription factor Xvent-2 mediates autocatalytic regulation of BMP-4 expression in Xenopus embryos. J.Biol.Chem. 2000. V.275. P.34 365−34 374.
- Melby A.E., Clements W.K., Kimelman D. Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox. Dev.Biol. 1999. V.211. P.293−305.
- Onichtchouk D., Glinka A., Niehrs C. Requirement for Xvent-1 and Xvent-2 gene function in dorsoventral patterning of Xenopus mesoderm. Development. 1998. V.125. P. 1447−1456.
- Trindade M., Tada M., Smith J.Π‘. DNA-binding specificity and embryological function of Xom (Xvent-2). Dev.Biol. 1999. V.216. P.442−456.
- Melby A.E., Beach C., Mullins M., Kimelman D. Patterning the early Zebrqfish by the opposing actions of bozozok and vox/vent. Dev.Biol. 2000. V.224. P.275−285.
- Miyazono K., ten Dijke P., Heldin C.H. TGF-beta (TGF-(3) signaling by Smad proteins. Adv.Immunol. 2000. V.75. P. 115−157.
- Faure S., Lee M.A., Keller Π’., ten Dijke P., Whitman M. Endogenous patterns of TGF-(3 superfamily signaling during early Xenopus development. Development. 2000. V.127. P.2917−2931.
- Henningfeld K.A., Friedle H., Restegar S., Knochel W. Autoregulation of Xvent-2B- direct interaction and functional cooperation of Xvent-2 and Smad-1. Biol.Chem. 2002. V.277. P.2097−2103.
- Deremaudt T.B., Remy P., Stiegler P. Identification of interaction partners for two closely-related members of the ETS protein family, ELI and ERG. Gene. 2001. V.274. P.169−177.
- Knochel S., Schuler-Metz A., Knochel W. c-Jun (AP-1) activates BMP-4 transcription in Xenopus embryos. Mech.Dev. 2000. Y.28. P.29−36.