Кислородная нестехиометрия, ионный и электронный транспорт в твердых растворах на основе феррита стронция
Диссертация
Комплексное изучение физико-химических свойств новых перовскитоподобных твердыхрастворов на основе феррита стронция 8гРе03.8 позволило установить взаимрсвязь' особенностей* структуры, нестехиометрищ термодинамических свойств, кислород-ионного и. электронного переносаг 1. Синтезированы твердые растворы. 8'гРе1хМх0з.8 (М = 8с," ЫЬ, Та). Показаночто допирование ионами 8с3+', и Та51 приводит… Читать ещё >
Список литературы
- Чеботин В.Н., Перфильев М. В. Электрохимия1 твердых электролитов. / -М.: Химия, 1978. С. 312.
- Перфильев М: В., Демин А. К., Кузин Б. Л., Липилин А. С. Высокотемпературный электролиз газов. /-М.: Наука, 1988″. с. 232.
- Kinoshita K. Electrochemical oxygen5 technology. New York — Chichester -Brisbane — Toronto — Singapore: John Wiley & Sons, Inc. 1992. p. 431.
- Singhal S.C. Application of ionic and electronic conducting ceramics in solid oxide fuel cells. // Proc. The Third Intern. Symp. on Ionic and Mixed Conducting Ceramics/ Ed- T.A.Ramanarayanan. Pennington: The Electrochemical Soc. Inc. 1998. p. 125−136:
- Mazanec TJ. Prospects for ceramic electrochemical reactors in industry. // Solid State Ionics. 1994. V. 70/71. p. 1.1−19.
- Dyer P.N., Richards RE.,. Russek S.L., Taylor D.M. Ion transport membranes technology for oxygen* separation and syngas production. // Solid State Ionics. 2000. V. 134. p. 21−33
- Badwal S.P.S., Ciacchi F.T. Ceramic membrane technologies for oxygen separation. //AdvancedMaterials. 2001. V. 13. p. 993−996.f i
- Stephens W.T., Mazanec T.J., Anderson H.U. Influence of gas flow rate on, oxygen flux measurements for dense oxygen conducting ceramic membranes. // Solid
- State Ionics. 2000. V. 129. p. 271−284. * 13. ten Elshof J.E., Bouwmeester H.J.M., Verweij H. Oxygen transport through1. ixSrxFe03.5 membranes. I. Permeation in air/He gradients. // Solid State Ionics. 1995. V. 81. p. 97−109:
- Hendriksen P.V., Larsen P.H., Mogensen M., Poulsen F.W., Wiik K. Prospects and problems of dense oxygen permeable membranes. // Catal. Today. 2000. V. 56. p. 283−295.
- Wilhelm D.J., Simbeck D.R., Karp A.D., Dickenson R.L. Syngas production^ for gas-to-liquids applications: technologies, issues and- outlook. // Fuel Process. Technol. 2001. V. 71. p. 139−148.
- Shaula A.L., Yaremchenko A.A., Kharton V.V., Logvinovich D.I., Naumovich E.N., Kovalevsky A.V., Frade J.R., Marques F.M.B. Oxygen permeability of LaGa03-based ceramic membranes. // J. Membr. Sci. 2003. V. 221. p. 69−77.
- Bresden R., Sogge J. / Paper presented at the United Nations Economic Commission for Europe Seminar on Ecological Applications of Innovative Membrane Technology in Chemical Industry, Chem/Sem. 21/R.12, Cetaro, Calabria, Italy, May 1−4,1996.
- Teraoka Y., Zhang H.-M., Furukawa S., Yamazoe N. Oxygen permeationthrough perovskite-type oxides. // Chem. Lett. 1985. p. 1743−1746.t
- Schmidt M., Campbell S J. Crystal and magnetic structures of Sr2Fe205 at elevated temperature. // J. Solid State Chem. 2001. V. 156. p. 292−304.
- Patrakeev M.V., Leonidov I.A., Kozhevnikov V.L., Kharton V.V. Ion-electron transport in strontium ferrites: relationships with structural features and stability. // Solid State Sciences 2004'. V. 6. p. 907−913.
- Wang J., Shu N., Ke M., Tang Z., Shi J. Electronic structure-and transport properties of K-doped blue bronze Rb0. i5K0.i5MoO3. // Mater. Lett. 2007. V. 61. p." 5067−5069.
- Liu Y., Li C., Wang J., Yin D., Shi J., Xiong R. Thermal transport properties and electronic structure of W-doped rubidium blue bronzes Rb0.3Moi VWx03 (x = 0, 0.001, 0.003, 0.005). // Phys. B. 2010. V. 405. p. 2857−2862.
- Takeda Y., Kanno K., Takado T., Yamamoto O., Takano M., Nakayama N., Bando Y. Phase relation- in the oxygen nonstoichiometric system, SrFeOx (2.5
- Gibb T.C. Reinterpretation of the magnetic structures of the perovskites SrFe02.7io and Sr2LaFe308.4i7. // J. Mater. Chem. 1994. V. 4. p. 1445−1449.
- Harder M., Mueller-Buschbaum H. Derstellung und untersuchung von Sr2Fe205-einkristallen ein beitrag zur kristallchemie von M2Fe20s verbindungen. // Z. Anorg. Allg. Chem. 1980. V. 464. p. 169−175.
- Berastegui P., Eriksson S.-G., Hull S.A. Neutron diffraction study of the temperature dependence of Ca2Fe205. //Mater. Res. Bull. 1999. V. 34. p. 303−314.
- MacChesney J.B., Sherwood R.C., Potter J.F. Electric and- magnetic properties of the strontium ferrates. // J. Chem. Physics. 1965. V. 43. № 6. p. 19 071 913.
- Takano M., Kawachi J., Nakanishi N., Takeda Y. Valence state of the Fe ions in Sri. yLayFe03. // J. Solid State Chem. 1981. V. 39. p. 75−84.
- Mizusaki J., Okayasu M., Yamauchi S.,.Fueki K. Nonstoichiometry and phase relationship of the SrFe02 5—SrFe03 system at high temperature. // J. Solid State Chem. 1992. V. 99. p. 166−172.
- Fournes L., Potin Y., Grenier J.C., Demazeau G., Pouchard Mi High temperature mossbauer spectroscopy of some SrFe03. y phases. // Solid State Comm. 1987. V. 62. p. 239−244
- Takano M., Okita T., Nakayama N., Bando Y., Takeda Y., Yamamoto O., Goodenough" J.B. Dependence of the structure and electronic state of SrFe03. y on* composition and temperature. // J. Solid State Chem.41 988. V. 73. p. I40−150:
- Takeda T., Yamaguchi Y., Watanabe H. Magnetic Structure of SrCo02.5. // J. Phys. Soc. Japan. 1972. V. 33. p. 970−972.
- Gallagher P.K., MacChesney J.B., Buchanan D.N.E. Mossbauer Effect in the System SrFe02 5−3.0. H J- Chem. Phys. 1964. V. 41. p. 2429−2434
- Greaves C., Jacobson A.J., Tofield B.C., Fender B.E. A powder neutron diffraction investigation of the nuclear and magnetic structure of Sr2Fe205. // Acta Crystallogr. B. 1975. V. 31. p. 641−646.
- Tofield B.C., Greaves C., Fender B.E.F. The SrFe02.5 | SrFeO3.0 system. Evidence of a new phase Sr^On (SrFe02.75). // Meter. Res. Bull. 1975. V. 10. p. 737−745.
- Schmidt M., Hofmann M., Campbell S. J. Magnetic structure of strontium ferrite Sr4Fe40n. // J. Phys.: Condens. Mater. 2003. V. 15. p. 8691−8701'.
- Bonanos N., Knight K.S., Ellis B. Perovskite solid electrolytes: structure, transport properties and fuel cell applications. // Solid- State Ionics. 1995. V. 79. p. 161−170.
- Haavik C., Atake T., Kawaji H., St0len S. On the entropic contribution to the redox energetics of SrFe03.5. // Phys. Chem. Chem. Phys. 2001. V. 3. p. 3863−3870.
- Shin S, YonemuraM.", Ikawa H: Order-disorder transition of Sr2Fe205 from brownmillerite to perovskite structure at an elevated temperature. // Mater. Res. Bull. 1978: V. 13. p. 1017−1021.'
- Bush A.A., Sarin V.A., Georgiev D.G., Cherepanov V.M., Synthesis, x-ray and neutron diffraction, and* mossbauer studies, of SrFeOx crystals. // Crystallography Reports. 2000. V. 45. № 5. p. 734−738.
- Shaula A.L., Kharton V.V., Patrakeev M.V., Waerenborgh J.C., Rojas D.P., Marques F.M.B. Defect Formation* and Transport in SrFeixAlx035. // Ionics. 2004. V. 10. p. 378−384.
- Shaula A.L., Kharton" V.V., Vyshatko N.P., Tsipis E.V., Patrakeev M.V., Marques F.M.B'., Frade J.R. Oxygen ionic transport in SrFeiyAly03. s and Sri.xCaxFeo.5Alo.503.5 ceramics. // J. Europ. Ceram. Soc. 2005. V. 25. p. 489−499.
- Waerenborgh J.C., Rojas D.P., Shaula A.L., Mather G.C., Patrakeev M.V., Kharton V.V., Frade J.R. Phase formation and iron oxidation states in SrFe (Al)03.5 perovskites. //Mater. Lett. 2005. V. 59. p. 1644−1648.
- Shannon R.D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. // Acta Cryst. 1976. V. A32. p. 751−767.
- Leonidov I.A., Patrakeev MiV., Bahteeva J.A., Poholok K.V., Filimonov D.S., Poeppelmeier K.R., Kozhevnikov V.L. Oxygen-ion and' electron conductivity in Sr2(Fe1.xGax)205. // J. Solid-State Chem. 2006. V. 179. p. 3045−3051.
- Shin M.J., Yu J: H., Lee S. Phases transition and oxygen permeating properties of SrFeGao.2503−8. // Inter. J. Hydrogen Energy. 2010: V. 35. p. 7512−7518.
- Kokhanovskii- L.V., Vashuk V.V., Ol’shevskaya 0: P., Kirilenko O. I: Oxygen stoichiometry and phase transitions of SrCoixFex03:5. // Inorg. Mater. 2001. V. 37. № 7. p. 730−736.
- Trofimenko N.E., Paulsen J., Ulimann H., Muller R. Structure oxygen' stoichiometry and electrical conductivity in the system Sr-Ce-Co-O.' // Solid State Ionics. 1997. V. 100. № 3 / 4. p. 183−191.v
- Aksenova’T.V., Gavrilova L.Ya., Cherepanov V.A. Phase equilibria and crystal structure of the complex oxides in the Sr-Fe-Co-O system. // J. Solid State Chem. 2008. V. 181. p. 1480−1484.
- Holt A., Norby T., Glenne R. Defects and transport' in SrFei. xCox03.§. // Ionics. 1999. V. 5. p. 434−443.
- Ma B., Balachandran U., Park J.H., Segre C.U. Determination of chemical diffusion coefficient of SrFeCoo. sOx by the conductivity, relaxations method. // Solid State Ionics. 1996. V. 83. p. 65−71. '
- Ma B., Balachandran U., Park J.H., Segre G.U. Electrical transport properties and defect structure of SrFeCo0.5Ox. // J: Electrochem. Soc. 1996. V. 143. p. 1736−1744.
- Ma B., Balachandran, U. Oxygen nonstoichiometry in mixed-conducting SrFeCo0.5Ox. // Solid State Ionics. 1997. V. 100. p. 53−62.
- Ma B., Park J.H., Balachandran U. Analysis of oxygen transport and stoichiometry in mixed-conducting SrFeCoo. sO^ by conductivity and thermogravimetric analysis. //J'. Electrochem. Soc. 1997. V. 144. p. 2816−2823.
- Ma B., Balachandran U. Phase stability of SrFeCo0.5Ox in" reducing environments. // Mater. Res. Bull. 19 981 V. 33. p. 223−236.^
- Guggilla S., Manthiram A. Crystal1 chemical characterization of the mixed conductor^ Sr (Fe, Go) i.5Oj- exhibiting* unusually high oxygen permeability. // J. Electrochem. Soc. 1997. V. 144. p. 120−122.
- Kimn S., Yang Y.L., Christoffersen R., Jacobson* A.J. Determinations of oxygen permeation kinetics in a ceramic membrane* based' on* the composition SrFeCoo.5O3.25−5. // Solid State Ionics. 1998. V. 109. p. 187−196.
- Fjellvag H., Hauback B.C., Bredesen R. Crystal structure of the mixed conductor Sr4Fe4Co20i3. // J: Mater. Chem. 1997. V. 7. p. 2415−2419.v '
- Evenrud H., St0len S. Redox thermochemistry of SrFeixCox03. S- // J. Therm. Anal, and Calorim. 2002. V. 69. p. 795−803.
- Gibb T.C. Determination of co-ordination numbers and oxidation, states in chromium oxides by extended x-ray absorption fine structure spectroscopy. // J. Mater. Chem. 1992. V. 2 (1). p. 57−64.
- Gibb T.C. Investigation of defect ordering in" the perovskite system SrCr0., Fe0.9O3.8 by mossbauer spectroscopy. // J. Mater. Chem. 1991. V. 1 (1). p. 2328.
- Zhang H, Wang Т., Dong X., Lin W. Preparation and oxygen permeation properties of SrFe (Cu)03.8 dense ceramic membranes. // J. Nat. Gas Chem. 2009. V. 18. p. 45−49.
- Xinfa, D., Heng Z., Weiming L. Conducting SrFeo.6Cuo.3Tio.i035 membrane for partial oxidation of methane to, syngas. // Chin. J. Chem. Engin. 2008. V. 16 (3). p. 411−415.i
- Kiselev E.A., Proskurnina N.V., Voronin V.I., Cherepanov V.A. Phase equilibria and crystal structures of phases in the La-Fe-Ni-O system at"! 370 К in air. // Neorg. Mater. 2007. V. 43. № 2. p. 209−217.
- Kiselev E.A., Proskurnina N.V., Voronin V.I., Cherepanov V.A. Phase equilibria and crystal structures of solid solutions in the Sr-Fe-Ni-0 system at 1100 °C in air. // Inorg. Mater. 2009. V. 45. № 3. p. 271−277.
- Schott S., Jia Z., Schaper A.K., Thangadurai V., Weppner W., Schmid-Beurmann' P., Superlattice ordering in SrFe03-s: electron microscopy and? diffraction study. // Phys. Stat. Sol. (a) 2005. V. 202. № 12. p. 2330−2335.
- Rizki Y., LeBreton J.-M., Folcke E., Lechevallier L., Breard Y., Maignan A. A Mossbauer spectroscopy investigation of SrFeixScx03.6 perovskites. // Solid1 State Sci. 2010. V. 12. p. 739−744.
- Kharton V.V., Kovalevsky A.V., Tsipis E.V., Viskup A.P., Naumovich E.N., Jurado J.R., Frade J.R. Mixed* conductivity and stability of A-site-deficient Sr (Fe, Ti)03.5 perovskites. // J. Solid State Electrochem. 2002. V. 7. p. 3036.
- Zhou H.D., Goodenough J.B. Polaron morphologies in SrFe^TixO^s. // J. Solid State Chem. 2004. V. 177. p. 1952−1957.
- Savinskaya O.A., Nemudry A.P., Nadeev A.N., Tsybulya S.V. Synthesis and study of the thermal5 stability of SrFei. xMx03.z (M = Mo, W) perovskites. // Solid State Ionics. 2008. V. 179: p. 1076−1079:
- Савинская" O.A., Немудрый А. П., Ляхов^ Н. З. Синтез и свойства перовскитоподобных оксидов SrFei. xMx03.z (М = Mo, W). // Неорган. Материалы. 2007. Т. 43. № 12. с. 1−11.
- Hemery Е.К., Williams G: V. Mi, Trodahl H.J. The effect of the preparation method and grain morphology on the physical properties of A2FeMo06 (A = Sr, Ba). // Cur. Ap. Phys. 2006. V. 6. p. 312−315.
- Sarma D. D, Sampathkumaran E.V., Ray S., Nagarajan R., Majumdar S., Kumar A., NaliniG., Row T.N. Magnetoresistance in ordered' and disordered-double perovskite oxide, Sr2FeMo06. // Solid State Commun. 2000. V. 114. p. 465−468.
- Garcia-Landa В., Ritter C., Ibarra M.R., Blasco J., Algarabel P.A., Mahendiran R., Garcia J. Magnetic and magnetotransport properties of the ordered perovskite Sr2FeMo06. // Solid-State Comm. 1999. V. 110. p. 435−438.
- Kharton V.V., Marozau I.P., Vyshatko N. P!, Shaula A.L., Viskup A.P., Naumovich E.N., Marques F.M.B. Oxygen ionic conduction- in brownmillerite CaAl0 5Fe05O2.5+5. // Mater. Res. Bull. 2003. V. 38- p. 773−782.
- Nakamura T., Petzow G., Gauckler LJ. Stability of the perovskite phase LaB03 (B = V, Cr, Mn, Fe, Co, Ni) in reducing1 atmosphere. I. Experimental results. //Mater. Res. Bulls 19791V. 14. p. 649−659.
- Katsura T., Kitayama K., Sugihara T., Kimizuka N. Thermochemical properties of lanthanoid-iron-perovskite at high temperatures. // Bull. Chem. Soc. Japan. 1975. V. 48. p. 1809−1811.
- Jurado J.R., Figueiredo F. M-, Charbage. B., Frade J.R. Electrochemical permeability of Sr0.7(Ti, Fe) O3. s materials. // Solid-State Ionics. 1999. V. 118. p. 8997.
- Daroukh M. A1., Vashuk V.V., Ullmann H., Tietz F., Arual Raj I. Oxides of theAM03 and A2M04-type: structural stability, electrical conductivity and thermal', expansion. // Solid State Ionics. 2003. V. 158. p. 141−150.
- Fang T.-T., Wu M.S., Ko T.F. On the formation of double perovskite Sr2FeMo06. // J. Mater. Sci. Lett. 2001. V. 20. p. 1609−1610.
- Yaremchenko A.A., Kharton V.V., Shaula A.L., Snijkers F.M.M., Cooymans J.F.C., Luyten J. J1., Marques F.M.B. Ion transport and thermomechanicalproperties of SrFe (Al)03.5 SrAl204 composite membranes. // J. Electrochem. Soc. 2006. V. 153. p. 50−60.
- Poulsen F., Lauvstad G., Tinold R., Conductivity and seebeck measurements on strontium ferrates.'// Solid State Ionics. 1994. V. 72. p. 47−53.
- Vashuk V.V., Kokhanovskii L.V., Yushkevich I.I. Electrical conductivity and oxygen stoichiometry of SrFe03.§. // Inorg. Mater. 2000. V. 36. № 1. p. 79−83.
- Anderson M.T., Vaughey J.T., Poeppelmeier K.R. Structural similarities among oxygen-deficient perovskites. // Chem: Mater. 1993. V. 5. p. 151−165.
- Adler S., Russek S., Reimer J., Fendorf M., Stacy A., Huang Q., Santoro A., Lynn J., Baltisberger J., Werner U. Local: structure and oxide-ion motion in defective perovskites. // Solid State Ionics. 1994. V. 68- p. 193−211.
- Zalnullina V.M., Leonidov I.A., Kozhevnikov V.L. Specific features of the formation of oxygen defects in the SrFe02.5 ferrate with a brownmillerite structure. // Phys. Solid State. 2002. V. 44. № 11. p. 2063−2066.
- Tomioka Y., Okuda T., Okimoto Y., Kumai R., Kobayashi K.-I., Tokura Y. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMo06. // Phys. Rev. B. 2000−1. V. 61. p. 422−427.
- Choi G.M., Tuller H.L., Goldschmidt D. Electronic-transport behavior in single-crystalline Bao. osSro^TiOg. // Phys. Rev. B. 1986. V. 34. p. 6972−6979.
- Choi G.M., Tuller H.L. Defect structure and electrical properties of single-crystal Bao.osSWriCh. // J. Am. Ceram. Soc. 1988. V. 71. p. 201−205.
- Kharton V.V., Kovalevsky A.V., Viskup A.P., Jurado J.R., Figueiredo F. M, Naumovich E.N., Frade J.R. Transport properties and thermal expansion of Sro.97Ti,., Fex03−8 (x = 0.2−0.8). // J: Solid State Chem. 2001. V. 156. p. 437−444.
- Kaus I, Anderson H.U. Electrical and' thermal properties of Lao2Sro8Cuo.iFeo.9035 and Lao 2Sr0 gCuo^Feo 8O3.5. // Solid State Ionics. 2000. V. 129. p. 189−200.
- Thangadurai V., Schmid-Beurmann P., Weppner W. Mixed oxide ion and electronic conductivity in perovskite-type SrSn03 by Fe substitution. // Mater. Sci. Engin. B. 2003. V. 100. p. 18−22.
- Qiu L., Lee T.H., Liu L.-M., Yang Y.L., Jacobson A.J. Oxygen permeation studies of SrCo0 8Fe02O35. // Solid State Ionics. 1995. V. 76. p. 321−329.k
- Kharton V. V, Naumovich E.N., Nikolaev A.V. Oxide ion> and electron conjugate diffusion in perovskite-like SrCoi. xMx03.5 (M= Cr. Cu- x = 0.0.5). // Solid State Phenom. 1994. V. 39−40. p. 147−152.
- Sherman X.J., William T. Ji Oxygen permeation rates through ion-conducting perovskite membranes. // Chem. Eng. Sci. 1999. V. 54. p. 3839−3850.
- Stevenson J.W., Armstrong T.R., Carneim R.D., Pederson L.R., Weber W J. Electrochemical properties of mixed conducting perovskites La,.xMxCoi.yFey03.5 (M = Sr, Ba, Ca). // J. Electrochem. Soc. 1996. V. 143. p. 27 222 729.
- Lane J.A., Benson S.J., Waller D., Kilner J.A. Oxygen transport in La0.6Sr0.4Coo.gFe0.2O3. // Solid State Ionics. 1999. V. 121. p. 201−208.
- Tai L.-W., Nasrallah M.M., Anderson H.U., Sparlin D.M., Sehlin S.R. Structure and electrical properties of LaixMxCoi. yFey03.5. Part' I. The system Lao.8Sro.2Co,.yFey03-o. // Solid State Ionics. 1995. V. 76. p. 259−271.
- Tai L.-W., Nasrallah M.M., Anderson H.U., Sparlin D.M., Sehlim S.R. Structure and electrical properties of LaixMxCoi. yFey03.5. Part IT. The system1 Lai.xMxCoo.2Feo.803.5. // Solid State Ionics. 1995. V. 76.p. 273−283.
- Sekido S., Tachibana H., Yamamura- Y., Kambara T. Electric-ionic conductivity in perovskite-type oxides- LaixMxCoi-yFey03.5. // Solid State Ionics. 1990: V. 37. p. 253−259.
- Steele B.C.H. Oxygen ion conductors^and'their technological applications. // Mater. Sci. and, Eng. B.1992. V. 13. p. 79−87.
- Rothschild. A., Litzelman S. J., Tuller H.L., Menesklou W., Schneider T., Ivers-Tiff"ee E. Temperature-independent resistive oxygen, sensors, based on SrTi,.xFex03.5 solid solutions. // Sensors and Actuators B. 2005. V. 108. p. 223−230.
- Waerenborgh J.C., Rojas D.P., Vyshatko N.P., Shaula A.L., Kharton V.V., Marozau I.P., Naumovich E.N. Fe4+ formation in brownmillerite CaAlo.5Feo.502.5+s. // Mater. Lett. 2003. V. 57. p. 4388−4393.
- Goodenough J.B., Zhou J.-S. / Goodenough J.B. (Ed.), Localized to itinerant electronic transition in perovskite oxides. Springer-Verlag. BerlinHeidelberg. 2001. p. 17.
- Kharton V.V., Figueiredo F.M., Kovalevsky A.V., Viskup A.P., Naumovich E.N., Jurado J.R. Oxygen diffusion in, and thermal expansion of, SrTi035 and CaTi03.5 — based materials. // Defect Diffus. Forum. 2000. V. 186−187. p. 119−136.
- Mazanec T.J. Electropox gas reforming. / In: Anderson H.U., Krandhar A.C., Liu M. (eds) Ceramic membranes I. Electrochemical Society. Pennington. NJ. • 1997. p. 16−28.
- Thursfield A., Metcalfe I.S. The use of dense mixed ionic and electronic conducting membranes for chemical production. // J. Mater. Chem. 2004. V. 14. p. 2475−2485.
- Kovalevsky A.V., Kharton V.V., Snijkers F.M.M., Cooymans J.F.C., Luyten J.J., Marques F. M:B. Oxygen transport and' stability- of asymmetric SrFe (Al)03.5 SrAl204 composite membranes. // J. Memb. Sci. 2007. V. 301. p. 238 244.
- Неуймин А.Д., Пальгуев С. Ф. Методы исследования природы проводимости окислов. / Силикаты и окислы в химии высоких температур. М.: АН СССР. 1963. с. 253−268.
- Петров А.Н., Жуковский В. М. Руководство к лабораторным работам по спец практикуму. / «Химия твердого тела». Свердловск: УрГУ. 1978. 60 с.
- Cusak N., Kendal P. Absolute scale of thermoelectric power at high temperature. //Proc. Phys. Soc. (London). 1958. V. 72. p. 898−901.
- Doumerc J.P. Thermoelectric power for carriers in localized states: a generalization of Heikes and Chaikin-Beni formulae. // J. Solid State Chem. 1994. V. 109. p. 419−420.
- Goodenough J.B., Zhou J.-S. Localized to itinerant electronic transitions in transition-metal oxides with the perovskite structure. // Chem. Mater. 1998. V. 10. p. 2980−2993.
- Nakayama N., Takano M., Inamura S., Nakanishi N., Kosuge K. Electron microscopy study of the «cubic» perovskite phase SrFe"xVx02.5+x (0.05
- Patrakeev M.V., Leonidov I.A., Kozhevnikov V.L., Poeppelmeier K.R. p-type electron transport in Lai. xSrxFe03.5 at high temperatures. // J. Solid State Chem. 2005. V. 178. p. 921−927.
- Nemudry A., Uvarov N. Nanostructuring in composites and grossly nonstoichiometric or heavily doped oxides. // Solid State Ionics. 2006. V. 177. p. 2491−2494.