ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ΠœΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΠ² со смСшанной ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π² ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ продСмонстрирована долговрСмСнная ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Ρ„Π΅Ρ€Ρ€ΠΈΡ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΡ€ΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΌ ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ окислСнии ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³Π°Π·Π° с ΡΠΎΡ…Ρ€Π°Π½Π΅Π½ΠΈΠ΅ΠΌ высоких, Π±Π»ΠΈΠ·ΠΊΠΈΡ… ΠΊ Ρ‚СорСтичСским значСниям, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΈ ΠΈΡΠΏΡ‹Ρ‚Π°Π½Π° Ρ†Π΅Π»ΡŒΠ½ΠΎΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ многомСмбранная конструкция ПОМ-Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ для… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠœΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΠ² со смСшанной ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ‚Π΅ΠΌΡ‹
  • ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹
  • Научная Π½ΠΎΠ²ΠΈΠ·Π½Π°
  • Π›ΠΈΡ‡Π½Ρ‹ΠΉ Π²ΠΊΠ»Π°Π΄
  • ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ
  • ПолоТСния, выносимыС Π½Π° Π·Π°Ρ‰ΠΈΡ‚Ρƒ
  • Апробация
  • Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° диссСртации

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎ-ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΉ комплСкс для высокотСмпСратурных ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ кислородной нСстСхиомСтрии ΠΈ ΡΠ»Π΅ΠΊΡ‚рофизичСских свойств слоТных оксидов Π² ΡƒΡΠ»ΠΎΠ²ΠΈΡΡ… ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ активности кислорода, позволивший Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ систСматичСскоС исслСдованиС тСрмодинамичСских ΠΈ Ρ‚ранспортных свойств ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ класса пСровскитоподобных Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΠ² со ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ Ρ‚ΠΈΠΏΠΎΠΌ проводимости.

2. Показано, Ρ‡Ρ‚ΠΎ основныС Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΈ Π² ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… тСрмодинамичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ³ΠΎ кислорода Π² Π½Π΅ΡΡ‚СхиомСтричСских пСровскитоподобных Ρ„Π΅Ρ€Ρ€ΠΈΡ‚Π°Ρ… ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΌΠΎΠ΄Π΅Π»ΠΈ идСального Π³Π°Π·Π°. ΠžΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ‚ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ повСдСния ΠΈΠΎΠ½Π½ΠΎΠΉ подсистСмы Π΄Π°Π½Π½Ρ‹Ρ… оксидов обусловлСны взаимодСйствиями, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ приводят ΠΊ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡŽ эффСктов Π±Π»ΠΈΠΆΠ½Π΅Π³ΠΎ порядка. Π₯Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌ проявлСниСм Π½Π΅ΠΈΠ΄Π΅Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π² ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΉ подсистСмС являСтся ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ подвиТности носитСлСй заряда с ΠΈΡ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ.

3. УстановлСна взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΡΠ½Ρ‚Π°Π»ΡŒΠΏΠΈΠ΅ΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ кислородной дСинтСркаляции ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎ-баричСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ тСрмодинамичСской ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΠ². Π­Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ простой инструмСнт ΠΎΡ†Π΅Π½ΠΊΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΠ² Π² ΠΆΠ΅ΡΡ‚ΠΊΠΈΡ… Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… условиях Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ проводимости. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ являСтся ΠΎΠ±Ρ‰ΠΈΠΌ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ для ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ ΠΊΡ€ΡƒΠ³Π° оксидных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². Показано, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π°ΠΌΠΈ с Π²Ρ‹ΡΠΎΠΊΠΎΠΉ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ окислСния способствуСт ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΠ² Π² Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… условиях.

4. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΠ² установлСно, Ρ‡Ρ‚ΠΎ влияниС Π΄ΠΎΠΏΠ°Π½Ρ‚ΠΎΠ² Π½Π° Ρ‚ранспортныС характСристики пСровскитоподобных оксидов опрСдСляСтся Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΈΠΏΠΎΠΌ зарядовой компСнсации (ионная <-" элСктронная), Π½ΠΎ Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ стСпСни Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ кислородных вакансий. Π’ ΡΠ»ΡƒΡ‡Π°Π΅, ΠΊΠΎΠ³Π΄Π° Π΄ΠΎΠΏΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Π’ΠΊΠ°Ρ‚ΠΈΠΎΠ½ Π½Π΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ нСпосрСдствСнного участия Π² Ρ‚ранспортных процСссах, Π΅Π³ΠΎ влияниС ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Ρ‚ΡŒΡΡ Ρ‡Π΅Ρ€Π΅Π· Π°Π½ΠΈΠΎΠ½Π½ΡƒΡŽ подсистСму. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ кислородных вакансий Π²ΠΎΠΊΡ€ΡƒΠ³ Π΄ΠΎΠΏΠ°Π½Ρ‚Π° с Ρ‚СтраэдричСской кислородной ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠ΅ΠΉ ΠΏΠΎΠ½ΠΈΠΆΠ°Π΅Ρ‚ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΆΠ΅Π»Π΅Π·ΠΎ-кислородной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, благоприятствуя элСктронному пСрСносу. НизкозарядныС (3+) ΠΈΠΎΠ½Ρ‹ с ΠΎΠΊΡ‚аэдричСской кислородной ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠ΅ΠΉ, Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ², ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ дСфСктности транспортной систСмы Π‘Π΅-О, оказывая Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ влияниС Π½Π° ΡΠ»Π΅ΠΊΡ‚ропСрСнос.

5. Показано, Ρ‡Ρ‚ΠΎ Π² Π²Π°ΠΊΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎ-упорядочСнных Ρ„Π΅Ρ€Ρ€ΠΈΡ‚Π°Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ вовлСчСния структурных кислородных вакансий Π² ΠΈΠΎΠ½Π½Ρ‹ΠΉ транспорт основан Π½Π° Π°Π½Ρ‚ΠΈ-фрСнкСлСвском разупорядочСнии Π°Π½ΠΈΠΎΠ½Π½ΠΎΠΉ подсистСмы. ЀизичСской ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ эффСкта являСтся большоС врСмя ΠΆΠΈΠ·Π½ΠΈ ΠΈΠΎΠ½Π° кислорода Π² ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎΠΉ вакансии, Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ происходит нСсколько ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ быстрых Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… Π°ΠΊΡ‚ΠΎΠ² ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² кислорода Π² ΠΏΠ΅Ρ€ΠΎΠ²ΡΠΊΠΈΡ‚Π½Ρ‹Ρ… Π±Π»ΠΎΠΊΠ°Ρ….

6. УстановлСно, Ρ‡Ρ‚ΠΎ элСктронный пСрСнос Π² ΠΏΠ΅Ρ€ΠΎΠ²ΡΠΊΠΈΡ‚ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Ρ„Π΅Ρ€Ρ€ΠΈΡ‚Π°Ρ… осущСствляСтся ΠΏΠΎ ΠΏΠΎΠ»ΡΡ€ΠΎΠ½Π½ΠΎΠΌΡƒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡƒ. Анализ повСдСния тСрмоэдс ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π² Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΌ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‡Π°ΡΡ‚ΡŒ ΠΈΠΎΠ½ΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ участиС Π² ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»Π΅Π½ΠΈΠΈ элСктронного транспорта.

7. Показано, Ρ‡Ρ‚ΠΎ процСсс ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ окислСния ΠΌΠ΅Ρ‚Π°Π½Π° Π½Π° ΠΎΠΊΡΠΈΠ΄Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅ со ΡΠΌΠ΅ΡˆΠ°Π½Π½ΠΎΠΉ кислород-ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ характСризуСтся Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ коэффициСнт амбиполярной проводимости Π² ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΠΈ с ΡΠΊΠ·ΠΎΡ‚СрмичСским Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ процСсса окислСния ΠΌΠ΅Ρ‚Π°Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ ΡΠΊΠ»ΠΎΠ½Π½ΠΎΡΡ‚ΡŒ систСмы ΠΊ ΡΠ°ΠΌΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΌΡƒ Ρ€Π°Π·ΠΎΠ³Ρ€Π΅Π²Ρƒ. Π­Ρ‚ΠΎΡ‚ эффСкт ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ сниТСн ΠΏΡƒΡ‚Π΅ΠΌ увлаТнСния ΠΌΠ΅Ρ‚Π°Π½Π°, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ‡Π΅Π³ΠΎ процСсс ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π²Π΅Π΄Π΅Π½ Π² Π°Π²Ρ‚отСрмичСский ΠΈΠ»ΠΈ ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ эндотСрмичСский Ρ€Π΅ΠΆΠΈΠΌ.

8. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π² ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ продСмонстрирована долговрСмСнная ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Ρ„Π΅Ρ€Ρ€ΠΈΡ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΡ€ΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠΌ ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ окислСнии ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³Π°Π·Π° с ΡΠΎΡ…Ρ€Π°Π½Π΅Π½ΠΈΠ΅ΠΌ высоких, Π±Π»ΠΈΠ·ΠΊΠΈΡ… ΠΊ Ρ‚СорСтичСским значСниям, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΈ ΠΈΡΠΏΡ‹Ρ‚Π°Π½Π° Ρ†Π΅Π»ΡŒΠ½ΠΎΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ многомСмбранная конструкция ПОМ-Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ для ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌΠ°ΡΡˆΡ‚Π°Π±Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠ³ΠΎ использования Π² Ρ†Π΅Π»ΡΡ… замСщСния Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ°Ρ€ΠΎΠ²ΠΎΠΉ конвСрсии ΠΌΠ΅Ρ‚Π°Π½Π°.

Автор считаСт своим приятным Π΄ΠΎΠ»Π³ΠΎΠΌ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ‡Π»Π΅Π½-ΠΊΠΎΡ€Ρ€. РАН B.JI. ΠšΠΎΠΆΠ΅Π²Π½ΠΈΠΊΠΎΠ²Ρƒ Π·Π° ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Π΅ ΠΊΠΎΠ½ΡΡƒΠ»ΡŒΡ‚Π°Ρ†ΠΈΠΈ ΠΏΠΎ Π½Π°ΡƒΡ‡Π½Ρ‹ΠΌ вопросам. Автор Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€ΠΈΡ‚ ΠΊ.Ρ….Π½. И. А. Π›Π΅ΠΎΠ½ΠΈΠ΄ΠΎΠ²Π° Π·Π° Ρ€Π΅Π³ΡƒΠ»ΡΡ€Π½Ρ‹Π΅ обсуТдСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², A.A. ΠœΠ°Ρ€ΠΊΠΎΠ²Π°, Π·Π° ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ экспСримСнтов. Автор ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»Π΅Π½ ΠΊ.Ρ….Π½. Π’. Π’. Π₯Π°Ρ€Ρ‚ΠΎΠ½Ρƒ, ΠΊ.Ρ….Π½. Π•. Π’ Π¦Ρ‹ΠΏΠΈΡ, ΠΊ.Ρ….Π½. E.H. Наумовичу, ΠΊ.Ρ….Π½. A.A. Π―Ρ€Π΅ΠΌΡ‡Π΅Π½ΠΊΠΎ ΠΈ Π΄.Ρ….Π½. А. П. НСмудрому Π·Π° ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½Π΅Π΅ ΠΏΠ»ΠΎΠ΄ΠΎΡ‚Π²ΠΎΡ€Π½ΠΎΠ΅ сотрудничСство.

1. Anderson H.U. Review of p-type doped perovskite materials for SOFC and other applications // Solid State Ionics. 1992. — V. 52. — P. 33−41.

2. Bouwmeester H.J.M., Burgraaf A.J., in: Burgraaf A.J., Cot L. (Editors), Fundamentals of inorganic membrane science and technology // Elsevier, Amsterdam. 1996. — P. 435.

3. Balachandran U., Dusek J.T., Kleefisch M.S., Kobylinski T.P. Functionally gradient material for membrane reactors to convert methane into value-added products // US Patent 5 573 737 assn. US Army. 1996.

4. Mazanec T.J., Cable T.L. Process for the partial oxidation of hydrocarbons // US Patent 5 714 091 assn. The Standard Oil Company, 1998.

5. ΠΡ€ΡƒΡ‚ΡŽΠ½ΠΎΠ² B.C., ΠšΡ€Ρ‹Π»ΠΎΠ² O.B. ΠžΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ конвСрсия ΠΌΠ΅Ρ‚Π°Π½Π° // УспСхи Ρ…ΠΈΠΌΠΈΠΈ-2005.-Π’. 74.-Π‘. 1216−1241.

6. Battle P.D., Gibb Π’.Π‘., Lightfoot P. The crystal and magnetic structures of Sr2LaFe308 // J. Solid State Chem. 1990 — V. 84. — P. 237−144.

7. Schmidt M., Campbell S.J. Crystal and magnetic structures of Sr2Fe205 at elevated temperature // J. Solid State Chem. 2001. — V. 156. — P. 292−304.

8. Mizusaki J., Sasamo Π’., Cannon W.R., Bowen H.K. Electronic conductivity, seebeck coefficient and defect structure of Lai. xSrxFe03 (x = 0.1, 0.25) // J.Amer.Ceram.Soc. 1983. — V. 66. — P. 247−252.

9. Sunarso J., Baumann S., Serra J.M., Meulenberg W.A., Liu S., Lin Y.S., Diniz da Costa J.C. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation // J. Membr. Sci. 2008. — V. 320. — P. 1341.

10. Teraoka Y., Zhang H.-M., Furukawa S., Yamazoe N. Oxygen permeation through perovskite-type oxides // Chem. Lett. (The Chem.Soc.Jpn.) 1985. -P. 1743−1746.

11. Teraoka Y., Nobunaga Π’., Okamoto K., Miura N., Yamazoe N. Influence of constituent metal cations in substituted LaCo03 on mixed conductivity and oxygen permeability // Solid State Ionics. 1991. — V. 48. — P. 207−212.

12. Raccah P.M., Goodenough J.B. First-Order Localized electron collective electron transition in LaCo03 // Phys. Rev. — 1967. — V. 155. — P. 932−943.

13. Raccah P.M., Goodenough J.B. A localized-electron to collective electron transition in the system (La, Sr) Co03 // J. Appl. Phys. 1968. — V. 39. — P. 1209−1210.

14. Ohbayashi H., Kudo Π’., Gejo T. Crystallographic, Electric and thermochemical properties of the perovskite type LnixSrxCo03 (Ln: lanthanoid element)//Jpn. J. Appl. Phys. 1974. — V. 13.-P. 1−7.

15. Kobylinski T.P., Masin J.G., Udovich C.A., Kleefisch M.S., Composite materials for membrane reactors // US Patent 5 935 533, BP Amoco Corp. -1999.

16. Chen C.-C., Prasad R., Stabilized perovskite for ceramic membrane // US Patent 6 146 445, Praxair Technol. Inc. 2000.

17. Mazanec T.J., Cable T.L., Oxygen separation process // US Patent 6 544 404. BP Corporation North America Inc. 2003.

18. Bitterlich S., Voss H., Hibst H., Tenten A., Voigt I., Pippardt U. Oxidative reactions using membranes that selectively conduct oxygen // US Patent 6 730 808. BASF Akiengesellschaft. 2004.

19. Zeng Y. et al. Formation of hydrogen and carbon monoxide // Patent JP 2 001 010 802. Bog Group Inc., US,-2001.

20. Kuipers J. et al. Process and reactor for the production of hydrogen and carbon dioxide // Application US 20 060 013 762, Shell Oil Company, US. -2006.

21. Keefer et al. Systems and processes for providing hydrogen to fuel cells // US Patent 7 041 272. Quest Air Technologies Inc., US. 2006.

22. Gallo P.D. et al. Catalytic membrane reactor // Application US 20 060 127 656, Air Liquide, FR. 2006.

23. Dyer P.N., Richards R.E., Russek S.L., Taylor D.M. Ion transport membrane technology for oxygen separation and syngas production // Solid State Ionics -2000.-V. 134.-P. 21−33.

24. Liu M, Joshi A.V., Shen Y., Krist K., Virkar A.V. Composite mixed ionic-electronic conductors for oxygen separation and electrocatalysis // US Patent 5 478 444 assn. Gas Research Institute. 1995.

25. Mazanec T.J., Cable T.L. // US Patent 5 648 304 assn. The Standard Oil Company. 1997.28. 1 Mazanec T.J., Cable T.L. Oxygen permeable mixed conductor membranes // US Patent 5 702 999 assn. The Standard Oil Company. 1997.

26. Mazanec T.J., Cable T.L. Oxygen permeable mixed conductor membranes // US Patent 5 788 748 assn. The Standard Oil Company. 1998.

27. Ma B., Balachandran U., Park J.-H., Segre C.U. Determination of chemical diffusion coefficient of SrFeCoo. jOx by the conductivity relaxation method // Solid State Ionics. 1996. — V. 83. — P. 65−71.

28. Fossdal A., Sagdahl L.T., Einarsrud M.-A., Wiik K., Grande T., Larsen P.H., Poulsen F.W. Phase equilibria and microstructure in Sr4Fe6. xCoxO, 3 (0 < x < 4) mixed conductors // Solid State Ionics. 2001. — V. 143. — P. 367−377.

29. Bredesen R., Norby T., Bardal A., Lynum V. Phase relations, chemical diffusion and electrical conductivity in pure and doped Sr4Fe60n mixed conductor materials // Solid State Ionics. 2000. — V. 135. — P. 687−697.

30. Patrakeev M.V., Mitberg E.B., Leonidov I.A., Kozhevnikov V.L. Electrical characterization of the intergrowth ferrite Sr4Fe60i3+s // Solid State Ionics. -2001.-V. 139.-P. 325−330.

31. Schwartz M., White J., Sammels A. // Int. Patent Application PCT WO 97/41 060, — 1997.

32. Kozhevnikov V.L., Leonidov I.A., Patrakeev M.V., Mitberg E.B., Poeppelmeier K.R. Electrical properties of the ferrite SrFeOv at high temperatures //J.Solid State Chem. 2001. — V. 158. — P. 320−326.

33. Leonidov I.A., Kozhevnikov V.L., Patrakeev M.V., Mitberg E.B., Poeppelmeier K.R., High-temperature electrical conductivity of Sr0.7La0.3FeO3−8 U Solid State Ionics. 2001. — V. 144. — P. 361−369.

34. Prado F., Mogni L., Guello G.J., Caneiro A. Neutron powder diffraction study at high temperature of the Ruddlesden-Popper phase Sr3Fe206+s // Solid State Ionics. 2007. — V. 178. — P. 77−82.

35. Adler S., Russek S., Reimer J., Fendorf M., Stacy A., Huang Q., Santoro A., Lynn J., Baltisberger J., Werner U. Local structure and oxide-ion motion in defective perovskites // Solid State Ionics. 2004. — V. 68. — P. 193−211.

36. Lankhorst M.H. R., Bouwmeester H.J.M., Verweij H. Thermodynamics and transport of ionic and electronic defects in crystalline oxides // J. Am. Ceram. Soc.- 1997,-V. 80.-P. 2175−98.

37. Oleynikov N.N., Ketsko V.A. Design of oxygen-conducting membrane materials: A review // Rus. J. Inorg. Chem. 2004. — V. 49. — P. 1−21.

38. Akhtar M.J., Akhtara Z.N., Dragunb J.P., Catlowc C.R.A. Electrical conductivity and extended X-ray absorption fine structure studies of SrFe,.xNbx03.8 and BaPe1. xNbx03.s systems // Solid State Ionics. 1997. — V. 104.-P. 147−158.

39. Бавинская О. А., НСмудрый А. П., Ляхов Н. Π—. Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΈ ΡΠ²ΠΎΠΉΡΡ‚Π²Π° пСровскитоподобных оксидов SrFe|.xMx03.s (М Mo, Nb) // НСорганичСскиС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹. — 2007. — Π’.43 .-№ 12.-Π‘. 1−11.

40. Zhogin I.L., Nemudry A.P., Glyanenko P.V., Kamenetsky Yu.M., Bouwmeester H.J.M., Ismagilov Z.R. Oxygen diffusion in nanostructured perovskites // Catalysis Today. 2006. — V. 118. — P. 151 -157.

41. Kroger F.A. The Chemistry of Imperfect Crystals // North-Holland Publ Co, Amsterdam. 1964.

42. Tsidilkovskii V.l., Leonidov I.A., Lakhtin A.A., Mezrin V.A. High-temperature equilibrium between high-TC oxide and gas phase the role of electrons and holes // Phys Status Solidi B. — 1991. — V. 163. — P. 231−240.

43. Tsidilkovskii V.l., Leonidov I.A., Lakhtin A.A., Mezrin V.A. The role of the electron-hole system in the thermodynamics of YBa2Cu307.5 gas equilibrium // Phys Status Solidi B. — 1991. — V. 168. — P. 233−244.

44. Patrakeev M.V., Leonidov I.A., Kozhevnikov V.L. Applications of coulometric titration for studies of oxygen non-stoichiometry in oxides. // J. Solid State Electrochem. 2011. — V. 15. — P. 931 -954.

45. Patrakeev M.V., Mitberg E.B., Lakhtin A.A., Leonidov I.A., Kozhevnikov V.L., Poeppelmeier K.R. Thermodynamics of the movable oxygen and conducting properties of the solid solution YBa2Cu306+s at high temperatures // Ionics. 1998. — V. 4. — P. 191−199.

46. Mitberg E.B., Patrakeev M.V., Lakhtin A.A., Leonidov I.A., Kozhevnikov V.L., Poeppelmeier K.R. Intercalation thermodynamics and chemical diffusion of oxygen in the solid solution YBa2Cu3xCox06+5 // Solid State Ionics. 1999. — V. 120. — P. 239−249.

47. Park J-H., Blumental R.N. Electronic transport in 8 mole percent Y203-Zr02 // J. Electrochem. Soc. 1989. — V. 136. — P. 2867−2876.

48. Cusak N., Kendall P. The absolute scale of thermoelectric power at high temperature // Proc. Phys. Soc. 1958. — V. 72. — P. 898−901.

49. Bouwmeester H.J.M., Kruidhof H., Burgraaf A.J. Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides // Solid State Ionics. 1994. — V. 72. — P. 185−194.

50. Rodriguez-Carvajal J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction // Physica B. 1993. -V. 192. — 55−69.

51. Islam M.S. Ionic Transport in AB03 Perovskite Oxides: A computer modelling tour // J. Mater. Chem. 2000. — V. 10. — P. 1027−1038.

52. Gale J.D., Rohl A.L. The general utility lattice program (GULP) // Mol. simul. 2003. V. 29. P. 291−341.

53. Khan M.S., Islam M.S., Bates D.R. Dopant substitution and ion migration in the LaGa03-based oxygen ion conductor // J. Phys. Chem. B. 1998. — V. 102.-P. 3099−3104.

54. Ruddlesden S.N., Popper P. The compound Sr3Ti207 and its structure // Acta Crystallogr. B. 1958. — V. 11. P. 54−55.

55. Gallagher P.K., MacChesney J.B., Buchanan D.N. // Mossbauer Effect in the system SrFe02.5−3.o // JChem. Phys. 1964. — V. 41. — No 8. — P. 2429−2434.

56. Schmidt M. Composition adjustement of non-stroichiometric strontium ferrite SrFe03.5 // J. Phys. Chem. 2000. — V. 61.-P. 1363−1365.

57. Grenier G-C., Ea N., Pouchard M., Hagenmuller P. Structural transitions at high temperature in Sr2Fe205 // J. Solid State Chem. 1985. — V. 58. — P. 243−252.

58. Mizusaki J., Okayasu M., Yamauchi S., Fueki K. Nonstoichiometry and phase relationship of the SrFeO? 5 SrFe03 system at high temperature // J. Solid State Chem. — 1992. — V. 99. — P. 166−172.

59. Dann S.E., Weller M.T., Currie D.B. Structure and oxygen stoichiometry in Sr3Fe207. y'0 < y< 1.0//J. Solid State Chem.- 1992.-V. 97.-P. 179−185.

60. Patrakeev M.V., Leonidov I.A., Kozhevnikov V.L., Kharton V.V. Ion-electron transport in strontium ferrites: relationships with structural features and stability // Solid State Sciences. 2004. — V. 6. — P. 907−913.

61. Π›Π΅ΠΎΠ½ΠΈΠ΄ΠΎΠ² И. А., ΠŸΠ°Ρ‚Ρ€Π°ΠΊΠ΅Π΅Π² M.B., КоТСвников Π’. Π›. ВСрмодинамичСскиС свойства слабосвязанного кислорода Π² Sr3Fe206+s Π² ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… условиях // Π–ΡƒΡ€Π½Π°Π» физичСской Ρ…ΠΈΠΌΠΈΠΈ. 2006. — Π’. 80. — № 4. — Π‘. 523 528.

62. Meuffels P., Naeven R., Wenzl H. Pressure-composition isotherms for the oxygen solution in YBa2Cu307.Β§ // Physica C. 1989.-V. 161.-P. 539−548.

63. Kanamaru F., Kiozumi M. Oxygen vacancy formation and ionic transport in Sr4Fe60,3.d // J. Phys. Chem. Solids. 1972. — V. 33. — P. 1169.

64. Yoshiasa A., Ueno K., Kanamaru F., Horiuchi H. Structure of Sr4Fe60i3 // Mater. Res. Bull. 1986. — V. 21.-P. 175−181.

65. Ma Π’., Balachandran U. Oxygen Nonstoichiometry in Mixed-Conducting. SrFeCoo. jOx // Solid State Ionics. 1997. — V. 100. — P. 53−62.

66. Guggilla S., Manthiram A. crystal-chemical characterization of the mixed conductor Sr (Fe, Co) i 50Y Exhibiting Unusually High Oxygen Permeability // J. Electrochem. Soc. 1997. — V. 144. — P. L120-L122.

67. Balachandran U., Kleefisch M.S., Kobylinski T.P., Morissette S.L., Pei S. // International Patent Application PCT WO 94/24 065. 1994.

68. Balachandran, U., Ma, Π’., Maiya, P. S., Mieville, R.L., Dusek, J.T., Picciolo, J.J., Guan, J., Dorris, S.E., Liu, M. Development of mixed-conducting oxides for gas separation // Solid State Ionics. 1998. — V. 108. — P. 363−370.

69. Ma B., Balachandran U., Hodges J.P., Jorgensen J.D., Miller D.J., Richardson J.W. Synthesis, conductivity and oxygen diffusivity of Sr2Fe3Ox // Mater. Lett. 1998. — V. 35. — P. 303−308.

70. Armstrong T., Prado F., Xia Y., Manthiram A. Role of perovskite phase on the oxygen permeation properties of the Sr4Fe6. xCoxO|3+8 system // J. Electrochem. Soc. 2000. — V. 147. — P. 435−438.

71. Xia Y., Armstrong T., Prado F., Manthiram A. Sol-gel synthesis, phase relationships, and oxygen permeation properties of Sr4Fe6. xCoxOi3+5 // Solid State Ionics. 2000. — V. 130. — P. 81 -90.

72. Mitchell B.J., Richardson J.W., Murphy C.D., Ma B., Balachandran U., Hodges J.P., Jorgensen J.D. Study of the mixed conducting SrFeCoo.5Ov ceramic methane material by in-situ neutron powder diffraction // Mater. Res. Bull.-2000.-V. 35.-P. 491−501.

73. Patrakeev M.V., Mitberg E.B., Leonidov I.A., Kozhevnikov V.L. Electrical characterization of the intergrowth ferrite Sr4Fe60i3+5 // Solid State Ionics2001.-V. 139.-P. 325−330.

74. Avdeev M.Yu., Patrakeev M.V., Kharton V.V., Frade J.R. Oxygen vacancy formation and ionic transport in Sr4Fe60i3±Β§ // J. Solid State Electrochem.2002.-V. 6.-P. 217−224.

75. Waerenborgh J.C., Avdeev M.Yu., Patrakeev M.V., Kharton V.V., Frade J.R. Redox behaviour of Sr4Fe60.3+§ by Mossbauer spectroscopy and neutron diffraction // Materials Letters. 2003. — V. 57 — P. 3245- 3250.

76. Mizusaki J., Tagawa H., Hayakawa K., Hirano K. Thermal expansion of YBa2Cu307x as determined by high-temperature X-ray diffraction under controlled oxygen partial pressures // J. Am. Ceram. Soc. 1995. — V. 78. -P. 1781−1786.

77. Vashook V.V. // DSc Thesis, Belarus Academy of Sciences, Minsk, Belarus, 2000.

78. Fagg D.P., Waerenborgh J.C., Kharton V.V., Frade J.R. Redox Behaviour and transport properties of Lao.5-xSro.5-xFeo.4Tio.6O3.ci (0 < x < 0.1) validated by Mossbauer spectroscopy // Solid State Ionics. 2002. — V. 146. — P. 87−93.

79. McCammon C.A., Becerro A.I., Langenhorst F., Angel R., Marion S., Seifert F. Short-range ordering of oxygen vacancies in CaFexTi|. r03., x-/2 perovskites (0 < x < 0.4) // J. Phys. Condens. Mater. 2000. — V. 12. — P. 2969−2985.

80. Kozhevnikov V.L., Leonidov I.A., Patrakeev M.V., Mitberg E.B., Poeppelmeier K.R. Electrical properties of the ferrite SrFeOy at high temperatures // J. Solid State Chem. 2000. — V. 158. — P. 320−326.

81. Manthiram A., Prado F., Armstrong T. Oxygen separation membranes based on intergrowth structures // Solid State Ionics. 2002. — V. 152−153. — P. 647−655.

82. Nakamura T., Petzow G., Gauckler L.J. Stability of the perovskite phase LaB03 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results // Mater. Res. Bull. 1979. — V. 14. — P. 649−659.

83. Katsura T., Kitayama K., Sugihara T., Kimizuka N. Thermochemical properties of lanthanoid-iron-perovskite at high temperatures //Bull. Chem. Soc. Jpn. 1975.-V. 48.-P. 1809−1811.

84. Doumerc J.P. Thermoelectric power for carriers in localized states: a generalization of heikes and Chaikin-Beni formulae // J. Solid State Chem. -1994.-V. 110.-P. 419−420.

85. Goodenough J.B., Zhou J.-S. Localized to itinerant electronic transitions in transition-metal oxides with perovskite structure // Chem. Mater. 1998. — V. 10.-P. 2980−2993.

86. Tuller H.L. «Highly conductive ceramics» in Ceramic materials for electronics, (Buchanan R.C., ed.) // Marcel Dekker, INC., New York. 1986. -P. 425−473.

87. Bosman A.J., van Daal H.J. Small-polaron versus band conduction in some transition-metal oxides // Advanc. Phys. 1970. — V. 19. — P. 1−117.

88. Adler P. Electronic state, magnetism, and electrical transport behavior of Sr3-.AFe207(x<0.4,A=Ba, La) // J. Solid State Chem. 1997. — V. 130. — P. 129−139.

89. Veith G.M., Chen R., Popov G. et al. // Ibid. 2002. — V. 166. — P. 292.

90. Chaikin P.M., Beni G. Thermopower in the correlated hopping regime // Phys. Rev. B. 1976. — V. 13. — P. 647−651.

91. Mirmelstein A., Bobrovskii V., Golosova N., Furrer F. // J. Supercond.: Incorporating Novel Magnetism. 2002. — V. 15. — P. 367−372.

92. Mizusaki J., Sasamo T., Cannon W.R., Bowen H.K. Electronic conductivity, seebeck coefficient, and defect structure of LaFe03 // J. Am. Ceram. Soc. -1982.-V. 65.-P. 363−368.

93. Kim M.C., Park S.J., Haneda H., Tanaka J., Shirasaki S. High temperature electrical conductivity of La1vSrYFe03-g (x>0.5) // Solid State Ionics. 1990. -V. 40/41.-P. 239−243.

94. Eishof J.E., Bouwmeester H.J.M., Verweij H. Oxygen transport through Lai-xSrxFe03-§ membranes. I. Permeation in air/He gradients // Solid State Ionics. 1995. — V. 81. — P. 97−109.

95. Patrakeev M. V., Bahteeva Ju. A., Mitberg E. B., Leonidov I. A., Kozhevnikov V. L., Poeppelmeier K. R. Electron/hole and ion transport in La^SrJFeO^s // J. Solid State Chem. 2003. — V. 172. — P. 219−231.

96. Dann S.E., Currie D.B., Weller M.T., Thomas M.F., Al-Rawwas A.D. The effect of oxygen stoichiometry on phase relations and structure in the system1.^Sr.FeO^ (0 <5< 0.5) // J. Solid State Chem. 1994. — V. 109. -P. 134−144.

97. Battle P.D., Gibb T.C., Lightfoot P. The structural consequences of charge disproportionation in mixed-valence iron oxides. I. The crystal structure of Sr2LaFe308.94 at room temperature and 50 K // J. Solid State Chem. 1990. -V. 84.-P. 271−279.

98. Patrakeev M.V., Leonidov I.A., Kozhevnikov V.L., Poeppelmeier K.R. p-Type electron transport in LaixSrxFe03.5 at high temperatures // J. Solid State Chem. 2005. — V. 178. — P. 921−927.

99. Elshof J.E., Bouwmeester H.J.M., Verweij H. Oxygen transport through Lai-xSrxFe03-g membranes II. Permeation in air/CO, C02 gradients // Solid State Ionics. 1996. — V. 89. — P. 81−92.

100. Mizusaki J., Ychihiro M., Yamauchi S., Fueki K. Thermodynamic quantities and defect equilibrium in the perovskite-type oxide solid solution La1-xSrvFe03−5 // J. Solid State Chem. 1987. — V. 67. — P. 1−8.

101. Ishigaki T., Yamauchi S., Mizusaki J., Fueki K., Naito H., Adachi T. Diffusion of oxide ions in LaFe03 single crystal // J. Solid State Chem. -1984,-V. 55.-P. 50−53.

102. Ishigaki T., Yamauchi S., Kishio K., Mizusaki J., Fueki K. Diffusion of oxide ion vacancies in perovskite-type oxides // J. Solid State Chem. 1988. — V. 73.-P. 179−187.

103. Kim M.C., Park S.J., Haneda H., Tanaka J., Mitsuhasi T., Shirasaki S. Self-diffusion of oxygen in La,.xSrxFe03−8 // JMater. Sci. Lett. 1990. — V. 9. — P. 102−104.

104. Teraoka Y., Nobunaga T., Yamazoe N. Effect of Cation Substitution on the Oxygen Semipermeability of Perovskite-type Oxides // Chemistry Letters. -1988.-V. 17.-No. 3. P.503−506.

105. Takeda Y., Kanno K., Takada T., Yamamoto O., Takano M., Nakayama N., Bando Y. Phase relation in the oxygen nonstoichiometric system, SrFe0. x (2.5 < 3.0) // J. Solid State Chem. 1986. — V. 63. — P. 237−249.

106. Shewmon P.G. Diffusion in Solids // McGraw-Hill, New York. 1963.

107. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. // Acta Crystallogr. A. -1976.-V. 32.-P. 751−764.

108. Mansourian-Hadavi N., Mason T.O., Ko D., Poeppelmeier K.R. Defect analysis of ionically compensated quadruple and quintuple perovskite layered cuprates with Ti blocking layers // J. Solid State Chem. 2002. — V. 164. — P. 188−200.

109. Schmalzried H. Solid State Reactions // Verlag Chemie, Weinheim, 1981.

110. Mizusaki J., Yoshihiro M., Yamauchi S., Fueki K. Nonstoichiometry and defect structure of the perovskite-type oxides La,-vSrxFe03-o // J. Solid State Chem. 1985. — V. 58. — P. 257−266.

111. Kharton V.V., Kovalevsky A.V., Tsipis E.V., Viskup A.P., Naumovich E.N., Jurado J.R., Frade J.R. Mixed conductivity and stability of A-site-deficient Sr (Fe, Ti)03g perovskites // J. Solid State Electrochem. 2002. — V. 7. — P. 30−36.

112. Patrakeev M.V., Leonidov I.A., Kozhevnikov V.L., Kharton V.V. Oxygen nonstoichiometry and ion-electron transport in SrFe0.9M0.|03.g (M=Cr, Ti, Al) // Materials Science Forum. 2006. — V. 514−516. — P. 382−386.

113. Shaula A.L., Kharton V. V., Vyshatko N. P., Tsipis E. V., Patrakeev M. V., Marques F. M. B., Frade J. R. Oxygen ionic transport in SrFe|.vAlv03.s and Sri. xCaxFe05Al05O3.8 ceramics // J. Europ. Ceram. Soc. 2005. — V. 25. — P. 489−499.

114. Schwartz M., White J.H., Sammells A.F. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them // US Patent 6 214 757. Eltron Research, Inc. 2001.

115. Takano M., Okita T., Nakayama N., Bando Y., Takeda Y., Yamamoto O., Goodenough J.B. Dependence of the structure and electronic state of SrFeOx (2.5.

116. Poulsen F.W., Lauvstad G., Tunold R. Conductivity and seebeck measurements on strontium ferrates// Solid State Ionics. 1994. — V. 72. -P. 47−53.

117. Kharton V.V., Marozau I.P., Vyshatko N.P., Shaula A.L., Viskup A.P., Naumovich E.N., Marques F.M.B. Oxygen ionic conduction in brownmillerite CaAlo.sFeo.sO^s+a // Mater. Res. Bull. 2003. — V. 38. — P. 773−782.

118. Goodenough J.B., Zhou J.-S., in: Goodenough J.B. (Ed.) Localized to Itinerant Electronic Transition in Perovskite Oxides // Springer-Verlag Berlin-Heidelberg 2001. — P. 17.

119. Maier J. Defect chemistry and ion transport in nanostructured materials: Part II. Aspects of nanoionics // Solid State Ionics. 2003. — V. 157. — P. 327−334.

120. Waerenborgh J.C., Rojas D.P., Vyshatko N.P., Shaula A.L., Kharton V.V., Marozau LP., Naumovich E.N. Fe4+ formation in brownmillerite CaAlo.5Feo.502.5+<5 // Mater. Lett. 2003. — V. 57. — P. 4388−4393.

121. Patrakeev M.V., Markov A.A., Leonidov I.A., Kozhevnikov V.L., Kharton V.V. Ion and electron conduction in SrFe|.xScx03Β§ // Solid State Ionics. -2006,-V. 177.-P. 1757- 1760.

122. Shaula A.L., Kharton V. V., Patrakeev M. V., Waerenborgh J. C., Rojas D. P., Marques F. M. B. Defect formation and transport in SrFeixAlx03.5 // Ionics. 2004. — V. 10. — P. 378−384.

123. Nemudry A., Uvarov N. Nanostructuring in composites and grossly nonstoichiometric or heavily doped oxides // Solid State Ionics. 2006. — V. 177-P. 2491−2494.

124. Maier J. Nano-ionics: more than just a fashionable slogan // J. Electroceram. -2004.-V. 13.-P. 593−598.

125. Π¨Π΅ΠΈΠ½ И. Π ., КоТСвников Π’. Π›., Ивановский А. Π›. Зонная структура пСровскитоподобных Ρ„Π°Π· A (SnixMx)03 (А=Π‘Π°, Sr, Π’Π°M=Mn, Fe, Π‘ΠΎ): поиск Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² // Π€ΠΈΠ·ΠΈΠΊΠ° ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ². 2006. — Π’. 40. — Π‘. 1295−1300.

126. Alario-Franco M.A., Joubert J.Π‘., Levy J.P. Anion deficiency in iron perovskites: The SrxNd|-xFe03v solid solution I: 0,6 < x < 0,8 // Mater. Res. Bull. 1982. — V. 17. — P. 733−740.

127. Maier J. Nano-sized mixed conductors (Aspects of nano-ionics. Part III) // Solid State Ionics. 2002. — V. 148. — P. 367−374.

128. Savinskaya O.A., Nemudry A.P., Lyakhov N.Z. Synthesis and properties of SrFe,.xMx03-s (M Mo, W) Perovskites // Inorg. Mater. — 2007. — V. 43. — P. 1350−1360.

129. Markov A.A., Leonidov I.A., Patrakeev M.V., Kozhevnikov V.L., Savinskaya O.A., Ancharova U.V., Nemudry A.P. Structural stability and electrical transport in SrFe,.xMox03.5 // Solid State Ionics. 2008. — V. 179. — P. 10 501 053.

130. Nakayama N., Takano M., Inamura S., Nakanishi N., Kosuge K. Electron microscopy study of the «cubic» perovskite phase SrFeKYVv02.5+x (0.05 < 0.1)//J. Solid State Chem. 1987. — V. 71.-P. 403−417.

131. Goodenough J.B., Manthiram A., Paranthaman P., Zhen Y.S. Fast oxide-ion conduction in intergrowth structures// Solid State Ionics. 1992. — V. 52. -P. 105−109.

132. Tomioca Y., Okuda T., Okimoto Y., Kumai R., Kobayashi K.I., Tokura Y. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMo06 // Phys. Rev. B. 2000. — V. 61. — P. 422−427.

133. Mogni L.V., Prado F.D., Cuello G.J., Caneiro A. Study of the crystal chemistry of the n = 2 Ruddlesden-Popper phases Sr3FeM06+s (M = Fe, Co, and Ni) using in situ high temperature neutron powder diffraction // Chem. Mater. 2009. — V. 21.-P. 2614−2623.

134. Mori K., Kamiyama T., Kobayashi H., Torii S., Izumi F., Asano H. Crystal structure of Sr3Fe207-i5 // J. Phys. Chem. Solids. 1999. — V. 60. — P. 14 431 446.

135. Markov A.A., Patrakeev M.V., Kharton V.V., Pivak Y.V., Leonidov I.A., Kozhevnikov V.L. Oxygen nonstoichiometry and ionic conductivity of Sr3Fe2. xScx07.s // Chemistry of Materials. 2007. — V. 19. — P. 3980−3987.

136. Yoo J., Jacobson A.J. Measurement of Electrical Conductivity and Oxygen Nonstoichiometry of Lao.5Sro.5Ga0.2Feo.803.s // J. Electrochem. Soc. 2009. -V. 156.-P. B1085-B1091.

137. Mizusaki J. Nonstoichiometry, diffusion, and electrical properties of perovskitetype oxide electrode materials // Solid State Ionics. 1992. — V. 52.-P. 79−91.

138. Matvejeff M., Lehtimaki M., Hirasa A., Huang Y-H., Yamauchi H., Karppinen M. New water-containing phase derived from the Sr3Fe207. g phase of the Ruddlesden-Popper structure // Chem. Mater. 2005. — V. 17. — P. 2775−2779.

139. Mogni L., Fouletier J., Prado F., Caneiro A. High-temperature thermodynamic and transport properties of the Sr3Fe206+5 mixed conductor // J. Solid State Chem. 2005. — V. 178. — P. 2715−2723.

140. Mogni L., Prado F., Caneiro A., Manthiram A. High temperature properties of the n = 2 Ruddlesden-Popper phases (La, Sr)3(Fe, Ni)207-(j // Solid State Ionics. 2006. — V. 177.-P. 1807−1810.

141. Wiik K., Aasland S., Hansen H.L., Tangen I.L., Odegard R. Oxygen permeation in the system SrFe03-v-SrCo03v // Solid State Ionics. 2002. -V. 152−153.-P. 675−680.

142. Π§Π΅Π±ΠΎΡ‚ΠΈΠ½ B.H. ЀизичСская химия Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° // Москва: Π₯имия. 1982. -Π‘. 312.

143. Mazanec T.J. Electropox gas reforming. In: Anderson H.U., Khandar A.C., M. Liu (ed) Ceramic Membranes I. The Electrochemical Society // Penington, NJ. 1997. PV95−24. — P. 16−28.

144. Kharton V.V., Kovalevsky A.V., Viskup A.P., Jurado J.R., Figueiredo F.M., Naumovich E.N., Frade J.R. Transport properties and thermal expansion of Sro.97Ti, xFex03−6 (x=0.2−0.8) // J. Solid State Chem. 2001. — V. 156. — P. 437−444.

145. Ming Q., Huang J., Yang Y.L., Nersesyan M., Jacobson A.J., Richardson J.Π’., Luss D. Combustion synthesis of Lao.2Sro.8Cro.2Fe0.803-x // Combust. Sci. Technol. 1998. — V. 138. — P. 279−296.

146. Ritchie J.T., Richardson J.T., Luss D. Ceramic membrane reactor for synthesis gas production // AIChE J. 2001. — V. 47. — P. 2092;2101.

147. Kharton V.V., Yaremchenko A.A., Patrakeev M.V., Naumovich E.N., Marques F.M.B. Thermal and chemical induced expansion of Lao.3Sro.7(Fe, Ga)03.s ceramics // J. Europ. Ceram. Soc. 2003. — V. 23. — P. 1417−1426.

148. Yamaji K., Horita T., Ishikawa M., Sakai N., Yokokawa H. Chemical stability of the Lao.9Sro.1Gao.8Mgo.2O2.85 electrolyte in a reducing atmosphere// Solid State Ionics. 1999. — V. 121. — P. 217−224.

149. Huang P., Horky A., Petric A. Interfacial Reaction between Nickel Oxide and lanthanum gal late during sintering and its effect on conductivity // J. Amer. Ceram. Soc. 1999. — V. 82. — P. 2402−2406.

150. Yaremchenko A.A., Patrakeev M.V., Kharton V.V., Marques F.M.B., Leonidov I.A., Kozhevnikov V.L. Oxygen ionic and electronic conductivity ofLao.3Sro.7Fe (Al)03-j perovskites // Solid State Sciences. 2004. — V. 6 — P. 357−366.

151. Yaremchenko A.A., Kharton V.V., Shaula A.L., Patrakeev M.V., Marques.

152. F.M.B. Transport properties and thermal expansion of perovskite-like La0.3Sr0.7Fe (Al, Cr) O3-j ceramics // J. Europ. Ceram. Soc. 2005. — V. 25. — P. 2603−2607.

153. Chick L.A., Pederson L.R., Maupin G.D., Bates J.L., Thomas L.E., Exarhos.

154. G.L. Glycine-nitrate combustion synthesis of oxide ceramic powders // Mater. Lett. 1990. — V. 10. — P. 6−12.

155. Stevenson J.W., Armstrong T.R., Pederson L.R., Weber W.J., in: Stimming U., Singhal S.C., Tagawa H., Lehnert W. (Eds.) // Proc. 5th Int. Symp. «Solid Oxide Fuel Cells» (SOFCV), PV 97−40, The Electrochemical Society, Pennington, NJ.- 1997.-P. 1031.

156. Hole J., Kuscer D., Hrovat M., Bernik S., Kolar D. Electrical and microstructural characterisation of (LaQ8Sr02)(Fei-lAlx)O3 and (La08Sr0 2)(Mni-xAlv)O3 as possible SOFC cathode materials // Solid State Ionics. 1997. — V. 95. — P. 259−268.

157. Marques F.M.B., Wirtz G.P. Oxygen Fugacity control in nonflowing atmospheres: I, Experimental observations in CO/CO2 and 02/N2 mixtures // J. Amer. Ceram. Soc. 1992. — V. 75. — P. 369−374.

158. Holt A., Norby T., Glenne R. Defects and transport in SrFeixCox03-Β§ // Ionics. 1999. — V. 5. — P. 434−443.

159. Atkinson A., Chater R.J., Rudkin R. Oxygen diffusion and surface exchange in Lao8Sro2Feo8Cro203-(5 under reducing conditions// Solid State Ionics. -2001,-V. 139.-P. 233−240.

160. Powder Diffraction File, Card 45−0637, JCPDS International Center Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19 073−3273, USA.

161. Trofimenko N., Ullmann H. Transition metal doped lanthanum gallates // Solid State Ionics. 1999. — V. 118. — P. 215−227.

162. Yaremchenko A.A., Kharton V.V., Viskup A.P., Naumovich E.N., Lapchuk N.M., Tikhonovich V.N. Oxygen Ionic and Electronic Transport in LaGaixNix03-S Perovskites // J. Solid State Chem. 1999. — V. 142. — P. 325−335.

163. Kharton V.V., Viskup A.P., Naumovich E.N., Lapchuk N.M. Mixed electronic and ionic conductivity of LaCo (M)03 (M=Ga, Cr, Fe or Ni): I. Oxygen transport in perovskites LaCo03-LaGa03 // Solid State Ionics. -1997.-V. 104.-P. 67−78.

164. Mack D.E., Wissmann S., Becker K.D. High-temperature Mossbauer spectroscopy of electronic disorder in complex oxides // Solid State Ionics. -2000,-V. 135.-P. 625−630.

165. Leonidov I.A., Kozhevnikov V.L., Mitberg E.B., Patrakeev M.V., Kharton V.V., B. Marques F.M. High-temperature electrical transport in Lao.3Sro.7Fei xGax035 (x = 0−0.5)// J. Mater. Chem. 2001. — V. 11. — P. 1201−1208.

166. Kharton V.V., Viskup A.P., Naumovich E.N., Lapchuk N.M. Mixed electronic and ionic conductivity of LaCo (M)03 (M=Ga, Cr, Fe or Ni): I. Oxygen transport in perovskites LaCo03-LaGa03 // Solid State Ionics. -1997,-V. 104.-P. 67−78.

167. Kharton V.V., Viskup A.P., Kovalevsky A.V., Jurado J.R., Naumovich E.N., Vecher A.A., Frade J.R. Oxygen ionic conductivity of Ti-containing strontium ferrite // Solid State Ionics. 2000. — V. 133 — P. 57−65.

168. Ramadass N. AB03-type oxides their structure and properties — a bird’s eye view // Mater. Sei. Eng. — 1978. — V. 36. — P. 231 -239.

169. Moebius H.-H. // Ext. Abstracts 37th Meet. Int. Soc. of Electrochem. 1986. -V. l.-P. 136.

170. Kharton V.V., Yaremchenko A.A., Kovalevsky A.V., Viskup A.P., Naumovich E.N., Kerko P.F. Perovskite-type oxides for high-temperature oxygen separation membranes // J. Membr. Sei. 1999. — V. 163. — P. 307 317.

171. Kharton V.V., Figueiredo F.M., Kovalevsky A.V., Viskup A.P., Naumovich E.N., Jurado J.R., Frade J.R. Oxygen diffusion in, and thermal expansion of SiTi03s and CaTi03, rbased Materials // Defect Diffus. Forum. — 2000. — V. 186−187.-P. 119−137.

172. Kharton V.V., Naumovich E.N., Nikolaev A.V. Materials of high-temperature electrochemical oxygen membranes // J. Membr. Sci. 1996. — V. 111. — P. 149−157.

173. Kim S., Wang S., Chen X., Yang Y. L., Wu N., Ignatiev A., Jacobson A. J., Abeles B. Oxygen surface exchange in mixed ionic electronic conductors: application to Lao.sSro.sFeo.sGao^Os.s // J. Electrochem. Soc. 2000. — V. 147. -P. 2398−2406.

174. Elshof J.E. Ph.D. Thesis, University of Twente // Enschede, the Netherlands. 1997.

175. Kharton V.V., Viskup A.P., Kovalevsky A.V., Figueiredo F.M., Jurado J.R., Yaremchenko A.A., Naumovich E.N., Frade J.R. Surface-limited ionic transport in perovskites Sr0.97(Ti, Fe, Mg) O3.5 // J. Mater. Chem. 2000. — V. 10.-P. 1161−1171.

176. Nomura K., Tanase S., Electrical conduction behavior in (La0.9Sr0.i)MniO3-j (M'" =A1, Ga, Sc, In, and Lu) perovskites// Solid State Ionics. 1997. — V. 98.-P. 229−236.

177. Lybye D., Poulsen F.W., Mogensen M. Conductivity of Aand B-site doped LaA103, LaGa03, LaSc03 and Laln03 perovskites // Solid State Ionics. -2000.-V. 128.-P. 91−103.

178. Hendriksen P.V., Larsen P.H., Mogensen M., Poulsen F.W., Wilk K. Prospects and problems of dense oxygen permeable membranes // Catalisis Today. -2000. -V. 56. P. 283−295.

179. Sammells A.F., Schwarz M., Mackay R.A., Barton N.F., Peterson D.R. Catalytic membrane reactors for spontaneous synthesis gas production // Catal. Today. 2000. — V. 56. — P. 325−328.

180. Dong H.,. Shao Z. P, Xiong G.X., Tong J.H., Sheng S.S., Yang W.S. Investigation on POM reaction in a new perovskite membrane reactor // Catal. Today. 2001. — V. 67.-P. 3−13.

181. Bouwmeester H.J.M. Dense ceramic membranes for methane conversion // Catal. Today. -2003, — V. 82. P. 141−150.

182. Diethelm S., Sfeir J., Clemens F., Van herle J., Favrat D. Planar and tubular perovskite-type membrane reactors for the partial oxidation of methane to syngas // J. Solid State Electrochem. 2004. — V. 8. — P. 611−617.

183. Thursfield A., Metcalfe I.S. Methane oxidation in a mixed ionic-electronic conducting ceramic hollow fibre reactor module // J. Solid State Electrochem. -2006.-V. 10.-V. 604−616.

184. Tong J., Yang W., Suda H., Haraya K. Initiation of oxygen permeation and POM reaction in different mixed conducting ceramic membrane reactors // Catal. Today. 2006. — V. 118.-P. 144−150.

185. Park C.Y., Jacobson A.J. Electrical Conductivity and Oxygen Nonstoichiometry of Lao^Sro.gFeo.ssTioOa.s // J. Electrochem. Soc. 2005. -V. 152. — P. J65-J73.

186. Kharton V.V., Shaula A.L., Snijkers F.M.M., Cooymans J.F.C., Luyten J.J., Marozau LP., Marques F.M.B., Frade J.R. Oxygen transport in ferrite-based ceramic membranes: Effects of alumina sintering aid // J. Eur. Ceram. Soc. -2006,-V. 26.-P. 3695−3707.

187. Balachandran U., Ma B.H. Mixed-conducting dense ceramic membranes for air separation and natural gas conversion // J. Solid State Electrochem. -2006. -V. 10.-P. 617−624.

188. Zhu X., Wang H.H., Cong Y., Yang W. Partial oxidation of methane to syngas in BaCe0. i5Fe0.85O3−8 membrane reactors // Catal. Lett. 2006. — V. 111.-P. 179−185.

189. Sogaard M., Hendriksen P.V., Mogensen M. Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum ferrite // J. Solid State Chem. 2007. — V. 180.-P. 1489−1503.

190. Ito W., Nagai T., Sakon T. Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane // Solid State Ionics.2007.-V. 178.-P. 809−816.

191. Zhang H., Dong X., Lin W. Natural gas Industry. 2006. — V. 26. — P. 155 157.

192. Hu J., Xing T., Jia Q., Hao H., Yang D., Guo Y., Hu X. Methane partial oxidation to syngas in YBa2Cu307-x membrane reactor // Applied Catalisis A: General. -2006. -V. 306. P. 29−33.

193. Kozhevnikov V.L., Leonidov I. A., Patrakeev M.V., Markov A. A., Blinovskov Ya.N., Evaluation of Lao.sSro.sFeO^- membrane reactors for partial oxidation of methane // J. Solid State Electrochem. -2009. -V. 13. P. 391−395.

194. Ramos T., Atkinson A. Oxygen diffusion and surface exchange in La,-xSrvFeo.8Cro.203-?5 (x=0.2, 0.4 and 0.6) // Solid State Ionics. 2004. — V. 170.-P. 275−286.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ