Миелоидные супрессорные клетки при экспериментальной туберкулёзной инфекции
Диссертация
Обращает на себя внимание тот факт, что в нашей работе супрессорной активностью обладала популяция Gr-ldim, выделенная из КМ здоровых мышей, в то время как клетки цельного неразделённого КМ такой способностью не обладали. Содержание клеток Gr-ldim в КМ здоровых мышей низкое (6%), в лёгких и селезёнке здоровых мышей они практически отсутствуют. Можно предположить, что отсутствие супрессорной… Читать ещё >
Список литературы
- Авербах M. М. Иммунология и иммунопатология туберкулёза // Медицина. Москва, 1970.
- Андрюхина Г. Я.Сон И. М. Анализ случаев невыявленного при жизни туберкулёза // Туберкулёз сегодня: проблемы и перспективы. 2000. — № - с. 184−185.
- Брудастов Ю. А., Журлов О. С., Грудинин Д. А. Колиниченко Е. В. Активные метаболиты кислорода при фагоцитозе // Вестник ОГУ. 2008. — № 12. -148−151.
- Гробова О. М., Копьева Т. Н., Дыханов И. И. Русаков М. А. Функциональная активность нейтрофилов бронхоальвеолярного пространства при хроническом бронхите и бронхоэктатической болезни // Лаб. дело. -1991. № 4. — 35 — 41.
- Ловачёва О. В. Бронхоальвеолярный лаваж в диагностике и оценке эффективности лечения у больных туберкулёзом лёгких // Диссертация на соискание учёной степени доктора медицинских наук. 1993.
- Лядова И. В., Цыганов Е. Н. Костюкевич М. В. Нейтрофилы при туберкулезе: протекция или патология? // Туберкулез и болезни легких -2012. № 7. — С. 12−21.
- Николаева Г. М. Дорожкова И. Р. Клиническое цитологическое и бактериологическое исследование жидкости бронхоальвеолярного лаважа в целях дифференциальной диагностики саркоидоза и диссеминированного туберкулёза лёгких // Пробл. туб. -1989.-№ 3. с. 33−36.
- Уразова О. И., Новицкий В. В. Чурина Е. Г. Цитокиновый статус у больных туберкулёзом лёгких с множественной лекарственной устойчивостью // Российский Иммунологический Журнал. 2011. — № 5 (14). — 244−253.
- Шевченко Ю. Л. Борьба с туберкулезом в России на пороге XXI века // Пробл. туб. -2000. № 3. — 2−5.
- Шмелёв Н. А. Цитологический анализ крови и его значение при туберкулёзе // Медгиз. Москва, 1959.
- Ярилин А. А. Иммунология // ГЭОТАР-Медиа. М., 2010.
- Abrams S. I. Waight J. D. Identification of a G-CSF-Granulocytic MDSC axis that promutes tumor progression // Oncoimmunology. 2012. — № 1. — 550−551.
- Algood H. M., Chan J. Flynn J. L. Chemokines and tuberculosis // Cytokine Growth Factor Rev. 2003. — № 14. — 467−477.
- Appelberg R., Castro A. G., Gomes S., Pedrosa J. Silva M. T. Susceptibility of beige mice to Mycobacterium avium: role of neutrophils // Infection and immunity. 1995. — № 63. -3381−3387.
- Barnes P. F., Lu S., Abrams J. S., Wang E., Yamamura M. Modlin R. L. Cytokine production at the site of disease in human tuberculosis // Infection and immunity. 1993. -№ 61.-3482−3489.
- Beck J. S., Potts R. C., Kardjito T. Grange J. M. T4 lymphopenia in patients with active pulmonary tuberculosis // Clin Exp Immunol. 1985. — № 60. — 49−54.
- Bekker L. G., Moreira A. L., Bergtold A., Freeman S., Ryffel B. Kaplan G. Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent // Infection and immunity. 2000. — № 68. — 6954−6961.
- Beutler B., Greenwald D., Hulmes J. D., Chang M., Pan Y. C., Mathison J., Ulevitch R. Cerami A. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin // Nature. 1985. — № 316. — 552−554.
- Biermann H., Pietz B., Dreier R., Schmid K. W., Sorg C. Sunderkotter C. Murine leukocytes with ring-shaped nuclei include granulocytes, monocytes, and their precursors // Journal of leukocyte biology. -1999. № 65. — 217−231.
- Bingisser R. M., Tilbrook P. A., Holt P. G. Kees U. R. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway // J Immunol. 1998. — № 160. — 5729−5734.
- Bloom B. R. Tuberculosis: pathogenesis, protection, and control // ASM Press. -Washington, D.C., 1994.
- Bold T. D., Banaei N., Wolf A. J. Ernst J. D. Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosis in vivo // PLoS pathogens. 2011. — № 7. -el002063.
- Boros P., Ochando J. C., Chen S. H. Bromberg J. S. Myeloid-derived suppressor cells: natural regulators for transplant tolerance // Hum Immunol. 2010. — № 71. — 1061−1066.
- Bowen J. L. Olson J. K. Innate immune CDllb+Gr-l+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease // J Immunol. 2009. — № 183.-6971−6980.
- Bunt S. K., Clements V. K., Hanson E. M., Sinha P. Ostrand-Rosenberg S. Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4 // Journal of leukocyte biology. 2009. — № 85. — 996−1004.
- Bunt S. K., Sinha P., Clements V. K., Leips J. Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression // J Immunol. 2006. — № 176. — 284−290.
- Caruso A. M., Serbina N., Klein E., Triebold K., Bloom B. R. Flynn J. L. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis // J Immunol. 1999. — № 162. — 5407−5416.
- Cavalcanti Y. V., Brelaz M. C., Neves J. K., Ferraz J. C. Pereira V. R. Role of TNF-Alpha, IFN-Gamma, and IL-10 in the Development of Pulmonary Tuberculosis // Pulmonary medicine. 2012. — № 2012. — 745 483.
- Churina E. G., Urazova O. I. Novitskiy V. V. The role of foxp3-expressing regulatory T cells and T helpers in immunopathogenesis of multidrug resistant pulmonary tuberculosis // Tuberculosis research and treatment. 2012. — № 2012. — 931 291.
- Cooper A. M., Dalton D. K., Stewart T. A., Griffin J. P., Russell D. G. Orme I. M. Disseminated tuberculosis in interferon gamma gene-disrupted mice // The Journal of experimental medicine. 1993. — № 178. — 2243−2247.
- Cooper A. M., Segal B. H., Frank A. A., Holland S. M. Orme I. M. Transient loss of resistance to pulmonary tuberculosis in p47(phox-/-) mice // Infection and immunity. 2000. — № 68. — 1231−1234.
- Corleis B., Korbel D., Wilson R., Bylund J., Chee R. Schaible U. E. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils // Cellular microbiology. -2012.-№ 14.-1109−1121.
- Cripps J. G. Gorham J. D. MDSC in autoimmunity // International immunopharmacology. -2011. -№ 11. 789−793.
- Cuenca A. G., Delano M. J., Kelly-Scumpia K. M., Moreno C., Scumpia P. O., Laface D. M., Heyworth P. G., Efron P. A. Moldawer L. L. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma // Mol Med. 2011. — № 17. — 281−292.
- Denis M. Human neutrophils, activated with cytokines or not, do not kill virulent Mycobacterium tuberculosis // The Journal of Infectious Diseases. 1991. — № 163. — 919 920.
- Dilek N., Vuillefroy de Silly R., Blancho G. Vanhove B. Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance // Front Immunol. 2012. — № 3. — 208.
- Egen J. G., Rothfuchs A. G., Feng C. G., Horwitz M. A., Sher A. Germain R. N. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas // Immunity. 2011. — № 34. — 807−819.
- Elkington P. T., Ugarte-Gil C. A. Friedland J. S. Matrix metalloproteinases in tuberculosis // Eur Respir J. 2011. — № 38. — 456−464.
- Ernst J. D. Macrophage receptors for Mycobacterium tuberculosis // Infection and immunity. 1998. — № 66. — 1277−1281.
- Fexby S., Bjarnsholt T., Jensen P. 0., Roos V., H0iby N., Givskov M. Klemm P. Biological Trojan horse: Antigen 43 provides specific bacterial uptake and survival in human neutrophils // Infection and immunity. 2007. — № 75. — 30-34.
- Fiorenza G., Rateni L., Farroni M. A., Bogue C. Dlugovitzky D. G. TNF-alpha, TGF-beta and NO relationship in sera from tuberculosis (TB) patients of different severity // Immunology letters. 2005. — № 98. — 45−48.
- Flynn J. L. Chan J. Immunology of tuberculosis // Annu Rev Immunol. 2001. — № 19. — 93 129.
- Flynn J. L. Chan J. What’s good for the host is good for the bug // Trends Microbiol. 2005. -№ 13.-98−102.
- Flynn J. L., Chan J., Triebold K. J., Dalton D. K., Stewart T. A. Bloom B. R. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection // The Journal of experimental medicine. 1993. — № 178. — 2249−2254.
- Gabrilovich D. I. Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system // Nat Rev Immunol. 2009. — № 9. — 162−174.
- Gabrilovich D. I., Ostrand-Rosenberg S. Bronte V. Coordinated regulation of myeloid cells by tumours // Nat Rev Immunol. 2012. — № 12. — 253−268.
- Gallegos A. M., van Heijst J. W., Samstein M., Su X., Pamer E. G. Glickman M. S. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo // PLoS pathogens. 2011. — № 7. — el002052.
- Geissmann F., Manz M. G., Jung S., Sieweke M. H., Merad M. Ley K. Development of monocytes, macrophages, and dendritic cells // Science. 2010. — № 327. — 656−661.
- Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S. Tannenbaum S. R. Analysis of nitrate, nitrite, and 15N. nitrate in biological fluids // Analytical biochemistry. -1982. -№ 126. 131−138.
- Greifenberg V., Ribechini E., Rossner S. Lutz M. B. Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development // European journal of immunology. 2009. — № 39. — 2865−2876.
- Haile L. A., Gamrekelashvili J., Manns M. P., Korangy F. Greten T. F. CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice // J Immunol. -2010. -№ 185.-203−210.
- Hanson E. M., Clements V. K., Sinha P., Ilkovitch D. Ostrand-Rosenberg S. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells // J Immunol. 2009. — № 183. — 937−944.
- Harari O. Liao J. K. Inhibition of MHC II gene transcription by nitric oxide and antioxidants // Curr Pharm Des. 2004. — № 10. — 893−898.
- Hartmann P., Becker R., Franzen C., Schell-Frederick E., Romer J., Jacobs M., Fatkenheuer G. Plum G. Phagocytosis and killing of Mycobacterium avium complex by human neutrophils // Journal of leukocyte biology. 2001. — № 69. — 397−404.
- Hestdal K., Ruscetti F. W., Ihle J. N., Jacobsen S. E., Dubois C. M., Kopp W. C., Longo D. L. Keller J. R. Characterization and regulation of RB6−8C5 antigen expression on murine bone marrow cells // J Immunol. 1991. — № 147. — 22−28.
- Jackett P. S., Aber V. R. Lowrie D. B. Virulence of Mycobacterium tuberculosis and susceptibility to peroxidative killing systems // Journal of general microbiology. 1978. — № 107. — 273−278.
- Juffermans N. P., Florquin S., Camoglio L., Verbon A., Kolk A. H., Speelman P., van Deventer S. J. van Der Poll T. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis // J Infect Dis. 2000. — № 182. — 902−908.
- Kamei M. Carman C. V. New observations on the trafficking and diapedesis of monocytes // Curr Opin Hematol. 2010. — № 17. — 43−52.
- Keller C., Hoffmann R., Lang R., Brandau S., Hermann C. Ehlers S. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes // Infection and immunity. 2006. — № 74. — 4295−4309.
- Kisich K. O., Higgins M., Diamond G. Heifets L. Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils // Infection and immunity. -2002. № 70. — 4591−4599.
- Kusmartsev S., Cheng F., Yu B., Nefedova Y., Sotomayor E., Lush R. Gabrilovich D. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination // Cancer Res. 2003. — № 63. — 4441−4449.
- Kusmartsev S. Gabrilovich D. I. Immature myeloid cells and cancer-associated immune suppression // Cancer Immunol Immunother. 2002. — № 51. — 293−298.
- Kusmartsev S., Nefedova Y., Yoder D. Gabrilovich D. I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species // J Immunol. 2004. — № 172. — 989−999.
- Kusmartsev S. A., Li Y. Chen S. H. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation // J Immunol. -2000. -№ 165.-779−785.
- Ladel C. H., Blum C., Dreher A., Reifenberg K., Kopf M. Kaufmann S. H. Lethal tuberculosis in interleukin-6-deficient mutant mice // Infection and immunity. 1997. — № 65. — 4843−4849.
- Lewis C. E. Pollard J. W. Distinct role of macrophages in different tumor microenvironments // Cancer Res. 2006. — № 66. — 605−612.
- Li H., Han Y., Guo Q., Zhang M. Cao X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1 // J Immunol. 2009. — № 182. — 240−249.
- Liu C., Yu S., Kappes J., Wang J., Grizzle W. E., Zinn K. R. Zhang H. G. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host // Blood. 2007. — № 109. — 4336−4342.
- Liu Y., Xiang X., Zhuang X., Zhang S., Liu C., Cheng Z., Michalek S., Grizzle W. Zhang H. G. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells // Am J Pathol. 2010. — № 176. — 2490−2499.
- Luster A. D. The role of chemokines in linking innate and adaptive immunity // Curr Opin Immunol. 2002. — № 14. — 129−135.
- Lyadova I. V. Inflammation and Immunopathogenesis of Tuberculosis Progression // Understanding Tuberculosis Analyzing the Origin of Mycobacterium Tuberculosis Pathogenicity. — 2012.
- Macatangay B. J., Landay A. L. Rinaldo C. R. MDSC: a new player in HIV immunopathogenesis // AIDS. 2012. — № 26. — 1567−1569.
- MacMicking J., Xie Q. W. Nathan C. Nitric oxide and macrophage function // Annu Rev Immunol. 1997. — № 15. — 323−350.
- Makarenkova V. P., Bansal V., Matta B. M., Perez L. A. Ochoa J. B. CDllb+/Gr-l+ myeloid suppressor cells cause T cell dysfunction after traumatic stress // J Immunol. 2006. — № 176.-2085−2094.
- Markiewski M. M., DeAngelis R. A., Benencia F., Ricklin-Lichtsteiner S. K., Koutoulaki A., Gerard C., Coukos G. Lambris J. D. Modulation of the antitumor immune response by complement // Nat Immunol. 2008. — № 9. — 1225−1235.
- Muller I., Cobbold S. P., Waldmann H. Kaufmann S. H. Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells // Infection and immunity. 1987. — № 55. — 2037−2041.
- Nagaraj S., Gupta K., Pisarev V., Kinarsky L., Sherman S., Kang L., Herber D. L., Schneck J. Gabrilovich D. I. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer // Nat Med. 2007. — № 13. — 828−835.
- Nathan C. Points of control in inflammation // Nature. 2002. — № 420. — 846−852.
- Nausch N., Galani I. E., Schlecker E. Cerwenka A. Mononuclear myeloid-derived «suppressor» cells express RAE-1 and activate natural killer cells // Blood. 2008. — № 112. — 4080−4089.
- Newman P. J. The biology of PECAM-1 // J Clin Invest. 1997. — № 99. — 3−8.
- NIH S. The pathophysiologic roles of interleukin-6 in human disease (An edited summary of a Clinical staff Conference held on 13 March 1996 at the National institutes of health) // Ann Intern Med. 1998. — № 128. — 127−137.
- Nikonenko B. V. Hanrahan C. Murine Model of Tuberculosis. In vitro and in vivo Study // Russian journal of immunology: RJI: official journal of Russian Society of Immunology. -2002. № 7. — 307−322.
- Noel J. G., Osterburg A., Wang Q., Guo X., Byrum D., Schwemberger S., Goetzman H., Caldwell C. C. Ogle C. K. Thermal injury elevates the inflammatory monocyte subpopulation in multiple compartments // Shock. 2007. — № 28. — 684−693.
- Oghiso Y., Yamada Y., Ando K., Ishihara H. Shibata Y. Differential induction of prostaglandin E2-dependent and -independent immune suppressor cells by tumor-derived GM-CSF and M-CSF // Journal of leukocyte biology. 1993. — № 53. — 86−92.
- Orme I. M. Collins F. M. Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. Requirement for T cell-deficient recipients // The Journal of experimental medicine. 1983. — № 158. — 74−83.
- Ostrand-Rosenberg S. Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer // J Immunol. 2009. — № 182. — 4499−4506.
- Ottenhoff T. H., Kumararatne D. Casanova J. L. Novel human immunodeficiencies reveal the essential role of type-I cytokines in immunity to intracellular bacteria // Immunology today. 1998. — № 19. — 491−494.
- Pilheu J. A., De Salvo M. C., Gonzalez J., Rey D., Elias M. C. Ruppi M. C. CD4+ T-lymphocytopenia in severe pulmonary tuberculosis without evidence of human immunodeficiency virus infection // Int J Tuberc Lung Dis. 1997. — № 1. — 422−426.
- Radi R., Beckman J. S., Bush K. M. Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide // J Biol Chem. 1991. — № 266. -4244−4250.
- Randhawa P. S. Lymphocyte subsets in granulomas of human tuberculosis: an in situ immunofluorescence study using monoclonal antibodies // Pathology. 1990. — № 22. — 153 155.
- Reiley W. W., Wittmer S. T., Ryan L. M., Eaton S. M., Haynes L., Winslow G. M. Woodland D. L. Maintenance of Peripheral T Cell Responses during Mycobacterium tuberculosis Infection // J Immunol. 2012. — № 189. — 4451−4458.
- Ribechini' E., Leenen P. J. Lutz M. B. Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells // European journal of immunology. 2009. — № 39. — 3538−3551.
- Rivoltini L., Carrabba M., Huber V., Castelli C., Novellino L., Dalerba P., Mortarini R., Arancia G., Anichini A., Fais S. Parmiani G. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction // Immunol Rev. 2002. — № 188. — 97−113.
- Rodriguez P. C. Ochoa A. C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives // Immunol Rev. 2008. — № 222. — 180−191.
- Salgame P. Host innate and Thl responses and the bacterial factors that control Mycobacterium tuberculosis infection // Curr Opin Immunol. 2005. — № 17. — 374−380.
- Sasindran S. J. Torrelles J. B. Mycobacterium Tuberculosis Infection and Inflammation: what is Beneficial for the Host and for the Bacterium? // Frontiers in microbiology. 2011. -№ 2. — 2.
- Scapini P., Lapinet-Vera J. A., Gasperini S., Calzetti F., Bazzoni F. Cassatella M. A. The neutrophil as a cellular source of chemokines // Immunological Reviews. 2000. — № 177. -195−203.
- Schmielau J. Finn O. J. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients // Cancer Res. 2001. — № 61. — 4756−4760.
- Schwadron R. B., Gandour D. M. Strober S. Cloned natural suppressor cell lines derived from the spleens of neonatal mice // The Journal of experimental medicine. 1985. — № 162. — 297−310.
- Serbina N. V., Hohl T. M., Cherny M. Pamer E. G. Selective expansion of the monocytic lineage directed by bacterial infection // J Immunol. 2009. — № 183. — 1900−1910.
- Serbina N. V., Shi C. Pamer E. G. Monocyte-mediated immune defense against murine Listeria monocytogenes infection // Adv Immunol. 2012. — № 113. -119−134.
- Sinha P., Clements V. K., Bunt S. K., Albelda S. M. Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response // J Immunol. 2007. — № 179. — 977−983.
- Sinha P., Clements V. K., Fulton A. M. Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells // Cancer Res. 2007. — № 67. — 4507−4513.
- Sinha P., Okoro C., Foell D., Freeze H. H., Ostrand-Rosenberg S. Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells // J Immunol. 2008. -№ 181, — 4666−4675.
- Srivastava M. K., Sinha P., Clements V. K., Rodriguez P. Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine // Cancer Res. 2010. — № 70. — 68−77.
- Strober S. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships // Annu Rev Immunol. 1984. — № 2. — 219−237.
- Sunderkotter C., Nikolic T., Dillon M. J., Van Rooijen N., Stehling M., Drevets D. A. Leenen P. J. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response // J Immunol. 2004. — № 172. — 4410−4417.
- Talmadge J. E., Hood K. C., Zobel L. C., Shafer L. R., Coles M. Toth B. Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion // International immunopharmacology. 2007. — № 7. — 140−151.
- Tsuchiya Y., Igarashi M., Suzuki R. Kumagai K. Production of colony-stimulating factor by tumor cells and the factor-mediated induction of suppressor cells // J Immunol. 1988. — № 141. — 699−708.
- Turett G. S. Telzak E. E. Normalization of CD4+ T-lymphocyte depletion in patients without HIV infection treated for tuberculosis // Chest. 1994. — J^o 105. — 1335−1337.
- Turner J., Gonzalez-Juarrero M., Ellis D. L., Basaraba R. J., Kipnis A., Orme I. M. Cooper A. M. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice // J Immunol. 2002. — № 169. — 6343−6351.
- Ulrichs T. Kaufmann S. H. New insights into the function of granulomas in human tuberculosis // J Pathol. 2006. — № 208. — 261−269.
- Umansky V. Sevko A. Melanoma-induced immunosuppression and its neutralization // Semin Cancer Biol. 2012. — № 22. — 319−326.
- Van Ginderachter J. A., Beschin A., De Baetselier P. Raes G. Myeloid-derived suppressor cells in parasitic infections // European journal of immunology. 2010. — № 40. — 2976−2985.
- Verbon A., Juffermans N., Van Deventer S. J., Speelman P., Van Deutekom H. Van Der Poll T. Serum concentrations of cytokines in patients with active tuberculosis (TB) and after treatment // Clin Exp Immunol. 1999. — № 115. -110−113.
- Waight J. D., Hu Q., Miller A., Liu S. Abrams S. I. Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism // PloS one. 2011. — № 6. — e27690.
- Weiss S. J. Tissue destruction by neutrophils // The New England journal of medicine. -1989. № 320. — 365−376.
- WHO, World Health Organization report: global tuberculosis control 2011, 2011, World Health Organization: Geneva, Switzerland.
- Yamamoto Y., Ishigaki H., Ishida H., Itoh Y., Noda Y. Ogasawara K. Analysis of splenic Gr-lint immature myeloid cells in tumor-bearing mice // Microbiol Immunol. 2008. — № 52. — 47−53.
- Yang C. S., Yuk J. M. Jo E. K. The role of nitric oxide in mycobacterial infections // Immune Netw. 2009. — № 9. — 46−52.
- Youn J. I., Collazo M., Shalova I. N., Biswas S. K. Gabrilovich D. I. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice // Journal of leukocyte biology. 2012. — № 91. -167−181.
- Youn J. I., Nagaraj S., Collazo M. Gabrilovich D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice // J Immunol. 2008. — № 181. — 5791−5802.
- Young M. R., Newby M. Wepsic H. T. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors // Cancer Res. 1987. — № 47. -100−105.189.190.191.192.
- Young M. R., Wright M. A. Young M. E. Antibodies to colony-stimulating factors block Lewis lung carcinoma cell stimulation of immune-suppressive bone marrow cells // Cancer Immunol Immunother. 1991. — № 33. — 146−152.
- Zuniga J., Torres-Garcia D., Santos-Mendoza T., Rodriguez-Reyna T. S., Granados J. Yunis E. J. Cellular and humoral mechanisms involved in the control of tuberculosis // Clin Dev Immunol. 2012. — № 2012. — 193 923.