Помощь в написании студенческих работ
Антистрессовый сервис

Развитие теории расчета нелинейных пластинчатых систем

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Методика расчета применялась при проектировании несущей части системы на воздушной подушке. Также по нелинейной теории выполнялся расчет экспериментальной модели помещения АЭС с использованием обобщенных уравнений МКР. Алгоритм и методика расчета переданы в проектный институт «Марийскгражданпроект». Разработанная методика расчета пластинчатых систем в упругой среде использовалась при чтении… Читать ещё >

Развитие теории расчета нелинейных пластинчатых систем (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Предварительные замечания
    • 1. 2. Об аппроксимации нелинейных свойств материалов. 5 1.3. Основные сведения о нелинейных теориях расчета тонкостенг (ных пространственных систем на прочность, устойчивость и колебания
  • 1. 1 '

В связи с развитием науки и техники нашли широкое применение в строительной промышленности, авиастроении, судостроении, приборостроении тонкостенные пространственные конструкции, составленные из пластинчатых элементов. Современные многоэтажные здания представляют собой многосвязные пластинчатые системы. Как оболочки можно рассматривать пустотные панели перекрытий. С начала 80-х годов нынешнего века в качестве конструктивной схемы нашли применение здания типа «труба с ядром» [52]. Несущая система их состоит из железобетонного ствола, имеющего вид замкнутой одно-связной призматической оболочки. Такие оболочки применяются в гидротехническом строительстве: в подпорных стенках и шлюзах, затворах плотин с плоской несущей обшивкой. Несущие конструкции автодорожных и железнодорожных мостов также представляют пластинчатые системы. Крыло современного авиалайнера, его несущая часть, имеет вид пластинчатой пространственной системы, выполненной из композиционных материалов. В судостроении применяются тонкостенные пространственные конструкции в виде плавучих доков и корпусов кораблей. В современном машиностроении пластинчатые системы используются как корпуса автобусов и троллейбусов, цельнометаллических вагонов железнодорожного транспорта, скоростного трамвая метрополитена. Так, несущая часть амфибийных аппаратов, самоходных платформ на воздушной подушке представляют собой многосвязную пластинчатую систему. В приборостроении такие системы находят применение в виде манометрических пружин, различных термобиметаллических полос и спиралей, тонкостенных труб и др.

Из приведенного здесь неполного перечня видно, насколько широка область применения тонкостенных пространственных конструкций. Это требует дальнейшего совершенствования методов их расчета. Конструктор сможет более рационально и экономично спроектировать конструкцию, если он будет рассматривать ее с точки зрения современных методов расчета.

Многие из выше указанных пространственных конструкций выполняются из материалов (железобетон, различные сплавы, пластмассы, композиты), имеющих нелинейную диаграмму деформирования. В природе нет материалов, идеально подчиняющихся закону Гука. Все они в той или иной мере обладают физической нелинейностью, которая проявляется тем в большей степени, чем массивнее конструкция.

В настоящее время в строительстве применяются большепролетные пространственные конструкции, работающие под воздействием статических и динамических нагрузок. В машиностроении, например, используются грузоподъемные краны с телескопической стрелой, поперечное сечение которых имеет вид односвязной пластинчатой системы. При полном вылете стрела имеет достаточно большую длину. В связи с увеличением длины в пластинчатых системах могут возникнуть большие перемещения, которыми нельзя пренебрегать при проведении проектировочных расчетов. Известно, что в таких случаях линейная зависимость между деформациями и перемещениями не выполняется, т. е. конструкция обладает геометрической нелинейностью.

Оболочки, выполненные из нелинейно-упругого материала и имеющие большие перемещения, одновременно обладают физической и геометрической нелинейностью.

Расчет пространственных конструкций с учетом физической, геометрической или одновременно обоих видов нелинейности требует значительно больших усилий по сравнению с расчетом конструкций в линейной постановке. Решить такие задачи в замкнутом виде почти не удается. Исследование задач с двойной нелинейностью достаточно сложный процесс. В последнее время, в связи с развитием компьютерной техники, данного типа задачи решаются численными методами.

Актуальность темы

Для более точной постановки коэффициента запаса прочности конструкции, точной и правильной оценки ее работы необходимо дальнейшее развитие нелинейной теории расчета. Важное место занимает вопрос расчета пространственных пластинчатых систем на прочность, устойчивость при наличии физической и геометрической нелинейности.

Основными задачами нелинейной теории являются:

1. Объяснение и исследование явлений, которые принципиально не могут быть описаны по линейной теории.

2. Установка новых явлений, связанных с углубленным исследованием нелинейных зависимостей.

3. Определение пределов применимости решений, полученных на основании линейной теории.

4. Изучение взаимного влияния нелинейностей на напряженно-деформированное состояние конструкций.

Исследование вынужденных колебаний нелинейных систем является достаточно актуальной задачей для пластинчатых систем, применяемых в строительстве и машиностроении.

Исследование устойчивости физически нелинейных оболочек, составленных из пластин, является весьма актуальной задачей, т.к. учет нелинейных свойств материала не идет в запас устойчивости, что связано с безопасностью эксплуатации сооружения.

Цель работы. В диссертации поставлена задача разработки приближенных способов исследования напряженно-деформированного состояния, устойчивости, колебаний физически и геометрически нелинейных пространственных систем, составленных из пластин.

Предусматривается построение эффективных математических моделей расчета нелинейных пластинчатых систем на устойчивость, колебания, статические воздействия и разработка вычислительных алгоритмов, программных средств.

Научная новизна работы заключается в том, что в ней впервые:

— получены нелинейные дифференциальные уравнения, позволяющие одновременно (и раздельно) учитывать физическую и геометрическую нелинейности в пластинчатых системах при расчетах на устойчивость, колебания и статические воздействия;

— разработаны алгоритмы расчета нелинейных пространственных пластинчатых систем на колебания, устойчивость и на действие статических нагрузок;

— разработана методика статического расчета нелинейных пластинчатых систем в упругой среде, позволяющая оценивать влияние нели-нейностей на их напряженно-деформированное состояние;

— решены задачи о свободных и вынужденных колебаниях нелинейных призматических оболочек с оценкой влияния нелинейностей на различные факторы (частоту, период и т. п.);

— исследовано взаимное влияние нелинейностей в статических задачах;

— решены задачи устойчивости нелинейных призматических оболочек;

— наряду с вариационным методом расчета разработан способ расчета нелинейных систем на основе обобщенных уравнений МКР, позволяющий строить разрывные решения;

— дана оценка — в каких случаях необходимо применять тот или иной метод расчета к нелинейным пластинчатым системам.

Достоверность результатов устанавливается: точным выводом дифференциальных уравнений, сходимостью решений, сопоставлениями с результатами других методов, а для некоторых задач — сравнением с экспериментальными данными.

Практическое значение работы заключается в том, что разработанные алгоритмы и составленные программы могут быть использованы в настоящее время в инженерных расчетах с применением ПЭВМ.

Методика расчета применялась при проектировании несущей части системы на воздушной подушке. Также по нелинейной теории выполнялся расчет экспериментальной модели помещения АЭС с использованием обобщенных уравнений МКР. Алгоритм и методика расчета переданы в проектный институт «Марийскгражданпроект». Разработанная методика расчета пластинчатых систем в упругой среде использовалась при чтении спецкурса «Балки и плиты на упругом основании» в Марийском государственном техническом университете.

На защиту выносятся математические модели статического расчета, колебаний и устойчивости пластинчатых систем в нелинейной постановкеметодика статического расчета пластинчатых систем в упругой среде с учетом нелинейностейвычислительные алгоритмы расчета параметров 11ДС, устойчивости, свободных и вынужденных колебаний пластинчатых систем в нелинейной постановкерезультаты численного решения статических задач, задач свободных, вынужденных колебаний и устойчивости нелинейных призматических системметодика расчета пластинчатых систем с учетом геометрической нелинейности на основе обобщенных уравнений МКРрезультаты математического моделирования, имеющие практическое значение.

Апробация диссертации определяется докладами автора по отдельным разделам работы на:

— первой Всесоюзной научно-технической конференции «Прочность, жесткость и технологичность изделий из композиционных материалов» (Каменец-Подольский, 1982 г.),.

— II Всесоюзном совещании-семинаре молодых ученых «Актуальные проблемы механики оболочек» (Казань, 1985 г.),.

— II и III Всесоюзных симпозиумах «Устойчивость и пластичность в механике деформируемого тела (Калинин, 1986, 1992 гг.),.

— XXVIII Межреспубликанском семинаре «Актуальные проблемы прочности» (Вологда, 1992 г.),.

— II Межреспубликанской конференции «Механика и технология изделий и металлокерамических композиционных материалов» (Волгоград, 1996 г.),.

— Всероссийском семинаре «Структура и молекулярная динамика полимерных систем» (Йошкар-Ола, 1995 г.),.

— Всероссийской научно-технической конференции «Прочность и технологичность лесных машин» (Москва, 1997 г.),.

— 1, II, IV и V Вавиловских чтениях: Всероссиских междисциплинарных научных конференциях (Йошкар-Ола, 1996, 1997, 2000, 2001 гг.),.

— Международной конференции «Актуальные проблемы механики оболочек» (Казань, 1998 г.),.

— XIX Международной конференции по теории пластин и оболочек (Нижний Новгород, 1999 г.),.

— Международной научно-практической конференции «Строительные конструкции XXI века» (Москва, 2000 г.),.

— Межрегиональной научно-практической конференции «Региональные проблемы строительного и дорожного комплексов» (Йошкар-Ола, 2000 г.),.

— 35-ой научно-технической конференции МИСИ (Москва, 1976 г.),.

— ежегодных научно-технических конференциях МарГТУ (МарПИ),.

— объединенном заседании кафедр сопротивления материалов, теоретической механики и деталей машин МГУЛ (Москва, 1997 г.),.

— объединенном семинаре кафедр строительной механики и сопротивления материалов МГСУ (Москва, 1997, 2002 гг.),.

— заседании кафедры строительной механики МГСУ (Москва, 2002 г.).

Публикация основного содержания диссертации отражена в 2 7 статьях автора. Наименования статей приводятся в списке использованной литературы.

Объем диссертации составляет 225 стр.

Список литературы

включает 228 наименований. Диссертация состоит из введения, семи глав и заключения, включая 89 рис., 2 табл. и акт о внедрении.

7.7. Выводы по седьмой главе.

1. Для расчета коротких гибких пространственных пластинчатых систем получены уравнения обобщенного метода МКР. По сравнению с обычным методом МКР здесь для решения задачи не требуются законтурные точки. Для границы составляются дополнительные уравнения. Данный метод позволяет учитывать разрывы в самой системе и в действующих нагрузках.

2. Расчет пространственных пластинчатых систем по обобщенному методу МКР при перемещениях, сравнимых с толщиной составляющих элементов, указывает на необходимость учета продольных сил, действующих в поперечном направлении, т. е. нельзя вводить гипотезу о не растяжимости пластинчатой системы в поперечном направлении. Такая необходимость возникает в том случае, когда перемещения сравнимы с поперечными размерами системы.

3. Решение нелинейных задач обобщенным методом МКР дает достаточную точность даже при небольшом числе разбиения системы. В отличие от метода конечных элементов здесь не требуется составление матриц жесткости.

ЗАКЛЮЧЕНИЕ

.

1. Получены разрешающие нелинейные дифференциальные уравнения для статического расчета пластинчатых систем типа призматических оболочек. Уравнения позволяют исследовать напряженно-деформированное состояние таких систем при учете сжимаемости материала, наличии нелинейной диаграммы и больших перемещений в системе. Возможен учет упругой среды в виде однослойного основания.

2. Составлены дифференциальные уравнения нелинейных свободных и вынужденных колебаний пластинчатых систем в двух вариантах. Показано использование этих уравнений для расчета таких пространственных систем.

3. Составлены уравнения устойчивости нелинейной пластинчатой системы. Исследована устойчивость при сжатии. Показано, что физическая нелинейность оказывает существенное влияние на устойчивость системы и идет не в запас.

4. Полученные нелинейные дифференциальные уравнения, позволяют учитывать продольные, поперечные изгибающие и крутящие моменты в сечениях пластин, составляющих призматическую оболочку.

5. Составлены алгоритмы расчета пластинчатых систем на статические, динамические воздействия и на устойчивость. По этим алгоритмам решение задач осуществляется без линеаризации нелинейных уравнений. Решение уравнений с применением линеаризации подтверждает полученные по этим алгоритмам результаты.

6. Составлены программы численного решения задач статики, динамики и устойчивости нелинейных пластинчатых систем.

7. Исследовано взаимное влияние физической и геометрической нелинейности на напряженно-деформированное состояние пластинчатых систем при статическом нагружении, свободных и вынужденных колебаниях, устойчивости.

8. Приводится оценка влияния физической нелинейности на напряженно-деформированное состояние системы. В отдельных случаях влияние упругой среды может гаситься физической нелинейностью и тогда пластинчатую систему можно рассчитывать без учета этих факторов.

9. Исследованы случаи, когда нет необходимости учитывать физическую и геометрическую нелинейности одновременно (они как бы гасят друг друга).

10. Расчеты показывают, что в физически нелинейных пластинчатых системах нет необходимости учета всех нелинейных членов во всех случаях.

11. Результаты расчета по разработанному здесь методу корпуса самоходной платформы с воздушной разгрузкой использованы для проектирования этих конструкций и их серийного производства.

12. Для коротких гибких оболочек при действии разрывных нагрузок составлен алгоритм расчета по обобщенным уравнениям МКР. Алгоритм работает без привлечения законтурных точек.

13. Результаты расчета модели фрагмента АЭС, полученные по обобщенным уравнениям МКР с применением нелинейной теории, достаточно близки к эспериментальным.

Показать весь текст

Список литературы

  1. , В. Л. Поведение цилиндрических оболочек при динамическом нагружении всестороннего давления или осевого сжатия / В. Л. Агамиров, А. С. Вольмир//Механика и машиностроение. 1959. -№ 3. -С.29−35.
  2. , Э. Л. Гибкие оболочки / Э. Л. Аксельрад. М.: Наука, 1976.-364 с.
  3. , Н. А. К расчету оболочек камеры сгорания ЖРД на местные прогибы / Н. А. Алфутов // Некоторые вопросы механики. М.: Оборонгиз, 1962 — С.38−46.
  4. , С. А. Основные уравнения теории упругости для материалов разносопротивляющихся растяжению и сжатию / С. А. Амбарцумян, А. А. Хачатрян // Механика твердого тела. 1966. -№ 2. — С.38−44.
  5. , С. А. Осесимметричная задача круговой цилиндрической оболочки, изготовленной из материала, разносопротивляющеюся растяжению и сжатию / С. А. Амбарцумян // Изв. АН СССР. Механика. 1965. — № 4. -С.56−62.
  6. , И. Я. Исследование нелинейных колебаний цилиндрических оболочек / И. Я. Амиро, Н. Я. Прокопенко // Прикл. механика-Киев, 1997-№ 11.- С.63−70.
  7. Багир-заде, Н. М. Вынужденные нелинейные колебания физически нелинейных тонкостенных цилиндрических оболочек при больших прогибах / Н. М. Багир-заде // Conf. Nonlinear Oscill, Budapest, Ang. 17−23, 1987 Budapest, 1987.-C.531−534.
  8. Баженов, В. Г. Нелинейные процессы ударного выпучивания упругих элементов конструкций в виде ортотропных оболочек вращения / В. Г. Баженов, Е. В. Игоничева Н. Новгород: Изд-во Нижегор. ун-та, 1991.-132 с.
  9. , В. Г. Нелинейный анализ неосесимметричного выпучивания цилиндрических и конических оболочек при осевом ударе / В. Г. Баженов, Е. В. Игоничева//Прикл. механика. 1987. -№ 5- С. 10−17.
  10. , Г. И. О виброползучести полимерных материалов/ Г. И. Баренблат, Ю. И. Козырев, Н. И. Малинин // Докл. АН СССР. 1966. -Т. 166, № 4. — С.89−95.
  11. , Н. И. Основы теории сооружений, материал которых не следует закону Гука / Н. И. Безухов // Тр. / МАДИ. 1936. — С.78−83.
  12. , Е. А. О теории тонкостенных криволинейных стержней с открытым деформируемым контуром / Е. А. Бейлин // Сб. тр. МИСИ. 1966-Вып.49. — С.394.
  13. , О. А. Расчет призматических оболочек в упругой среде / О. А. Березинская // Расчет сооружений на деформируемом основании и в деформируемой среде: Сб. тр. / МИСИ. 1971. — № 79. — С.46−50.
  14. , А. Е. Нелинейные задачи динамики нелинейных цилиндрических композитных оболочек / А. Е. Богданович. Рига: Зинагшсе, 1987.-295 с.
  15. , Н. Н. Асимптотические методы в теории нелинейных колебаний/ Н. Н. Боголюбов, Ю. А. Митропольский. М.: Физматгиз, 1963. — 315с.
  16. , В. В. Динамическая устойчивость симметричной формы колебаний сжато-изогнутой арки / В. В. Болотин // Докл. АН СССР. 1952. -Т.83, № 4. — С. 38−43.
  17. , В. В. Строительная механика / В. В. Болотин, И. И. Голь-денблат, А. Ф. Смирнов // Современное состояние и перспективы развития. -М.: Стройиздат, 1972. 189 с.
  18. Т. Р. Экспериментальные численные методы исследования напряженного состояния здания АЭС / Т. Р. Бохуа: Дис. канд. техн. наук / МИСИ. -М., 1986.- 186 с.
  19. , И. Г. Напряжения в обшивке судов от давления воды / И. Г. Бубнов // Морской сб. 1902. — № 8. — 93 с.
  20. , И. Г. Труды по теории пластин / И. Г. Бубнов. М.: Гостех-издат, 1953.-423 с.
  21. , В. А. Железобетонные конструкции / В. А. Бушков. МЛ.: Стройиздат, 1940−4.1.-305 с.
  22. , Г. И. О ползучести полимерных материалов при периодически изменяющихся нагрузках / Г. И. Буянов, В. Д. Касюк, Н. И. Малинин // Механика полимеров. 1966. -№ 3. — С.28−33.
  23. , П. М. Метод сеток в задачах расчета строительных конструкций / П. М. Варвак, Л. П. Варвак. М.: Стройиздат, 1977. — 154 с.
  24. , В. М. Численные методы / В. М. Вержбицкий // Линейная алгебра и нелинейные уравнения. М.: Высш. шк., 2000. — 265 с.
  25. , В. 3. Строительная механика оболочек/ В. 3. Власов. М.-Л.гЦНИПС, 1936.-263 с.
  26. , В. 3. Тонкостенные пространственные системы / В. 3. Власов. М.: Госстройиздат, 1958. — 502 с.
  27. , В. 3. Тонкостенные упругие стержни / В. 3. Власов. М.: ГИФМЛ, 1959.-568 с.
  28. , В. 3. Балки, плиты и оболочки на упругом основании / В. 3. Власов, Н. Н. Леонтьев. М.: ГИФМЛ, 1960. — 491 с.
  29. , А. С. Гибкие пластинки и оболочки / А. С. Вольмир. М.: Гостехиздат, 1956.-453 с.
  30. А. С. Нелинейная динамика пластин и оболочек / А. С. Вольмир. М.: Наука, 1972. — 432 с.
  31. , А. С. Устойчивость деформируемых систем / А. С. Вольмир. М.: Наука, 1967. — 984 с.
  32. , Б. П. Расчет коробчатых конструкций на изгиб и кручение / Б. П. Вольфсон. М.: Госстройиздат, 1968. — 105 с.
  33. , JI. Н. Деформационный расчет и устойчивость тонкостенных стержней открытого профиля / JI. Н. Воробьев // Тр. / Новочеркас. политехи. ин-т. 1958. — Т.69/83. — С.36−44.
  34. , Г. В. Тангенциальные матрицы жесткости нелинейно-деформируемых тонкостенных стержней / Г. В. Воронцов, О. А. Кузина // Изв. вузов Сев.-Кавк. региона. 1996. -№ 2. — С. 115−130.
  35. , Г. В. Дифференциальные уравнения изгиба и кручения нелинейных тонкостенных стержней / Г. В. Воронцов, Е. А. Лященко, О. А. Кузина //Изв. вузов Сев.-Кавк. региона. 1996. -№ 3. — С. 127−142.
  36. , С. П. О пространственной деформации гибких тонкостенных стержней / С. П. Вязьменский // Строительная механика и расчет сооружений. — JI.: Стройиздат, 1957. С.28−36.
  37. , Р. Ф. Численные решения задач строительной механики/ Р. Ф. Габбасов: Дис. д-ра техн. наук. М., 1989. -323 с.
  38. , Р. Ф. Колебания нелинейно-упругих призматических оболочек/ Р. Ф. Габбасов, С. П. Иванов // Теоретические и экспериментальные исследования прочности и жесткости элементов строительных конструкций: Сб. ст. / МГСУ. -М., 2001. С.51−53.
  39. Р. Ф. Свободные колебания нелинейно-упругих призматических оболочек при больших перемещениях / Р. Ф. Габбасов, С. П. Иванов //
  40. Междунар. науч.-практ. конф. «Строительные конструкции. XXI века»: Сб. материалов. М., 2000. — 4.1. — С. 175−177.
  41. , К. 3. Основы нелинейной теории тонких оболочек / К. 3. Галимов // Изд. Казан, ун-та. 1975. — Вып. 11.- С.47−52.
  42. , М. С. О некоторых приближениях при решении задач изгиба пластин и оболочек с учетом физической и геометрической нелинейности / М. С. Танеева // Исследования по теории пластин и оболочек. Казань, 1972. -№ 9. — С.28−34.
  43. , С. К. О численном решении краевых задач для систем обыкновенных дифференциальных уравнений / С. К. Годунов // Успехи математических наук 1961. — Т. 16, вып. 3. — С. 171−174.
  44. , Д. П. Устойчивость при кручении длинной цилиндрической оболочки / Д. П. Голосков / Ленингр. ин-т вод. транспорта. JI., 1986, 14с.- Деп. ВИНИТИ 17.2.86, № 8648.
  45. , С. Д. Строительная механика: Лабораторный практикум / С. Д. Гольман, С. П. Иванов. Йошкар-Ола: АСВ, 2001. — 52 с.
  46. Горбунов-Посадов, М. И. Расчет конструкций на упругом основании / М. И. Горбунов-Посадов, Т. А. Маликова, В. И. Соломин. М.: Стройиздат, 1984.-679 с.
  47. , А. С. Изгиб круглых и кольцевых пластин переменной и постоянной толщины за пределом упругости / А. С. Григорьев // Инж. сб.-1954.- Т. XX.
  48. , Г. А. Исследование влияния геометрической и физической нелинейности на устойчивость стенок коробчатых балок / Г. А. Гурвиц / Хабар, ин-т инж. ж.-д.транспорта Хабаровск, 1989. — С. 68−75.
  49. , Н. Н. О рассеянии энергии при вибрациях / Н. Н. Дави-денков//Журн. техн. физики. 1938.-Т.8, вып. 6.-С.25−31.
  50. , И. А. Динамическая устойчивость стержня из нелинейно-упругого материала / И. А. Даниляк // Исследования по теории стержней, пластинок и оболочек. М.: МИСИ, 1965. — № 47.-С.28−35.
  51. , И.И. Неоднородная задача теории упругости для просадоч-ных оснований сооружений / И. И. Демин // Изв. вузов. Строительство и архитектура. 1985. — № 7. — С.37−40.
  52. , Б. П. Основы вычислительной математики / Б. П. Деми-дович, И. А. Марон. М.: Наука, 1966. — 664 с.
  53. , П. Ф. Конструирование и расчет несущих систем многоэтажных зданий и их элементов / П. Ф. Дроздов. М.: Стройиздат, 1977. — 223 с.
  54. , Р. Железобетон его расчет и проектирование / Р. Залигер — М.-Л., 1929.-298 с.
  55. , С. П. Расчет геометрически нелинейных призматических оболочек / С. П. Иванов // Материалы. 35-ой науч.-техн. конф. / МИСИ. М., 1976.-С. 38−39.
  56. , С. П. Расчет призматических оболочек на кручение при конечных прогибах / С. П. Иванов // Строительство и архитектура: НТЛ, раздел Б. 1977. — Вып. 9. — С. 8. — Деп., № 765.
  57. , С. П. Изгиб с кручением призматических оболочек при больших перемещениях / С. П. Иванов // Сб. тр. / МарПИ.-Йошкар-Ола, 1981. -С.161−163.
  58. , С. П. Устойчивость призматических оболочек при больших перемещениях / С. П. Иванов // Тез. докл. II Всесоюз. совещ.-семинара молодых ученых «Актуальные проблемы механики оболочек.» Казань, 1985. — С.83−84.
  59. , С.П. Расчет призматических оболочек на устойчивость при физической нелинейности / С. П. Иванов, А. Н. Актуганов // Тез. докл. II Всесоюз, симпозиума «Устойчивость в механике деформируемого твердого тела.» -Калинин, 1986. -С.157−158.
  60. , С. П. Устойчивость физически нелинейных призматических оболочек при больших перемещениях / С. П. Иванов // Динамика и прочность машин. Харьков, 1988. — Вып.47. — С.40−45.
  61. , С. П. Расчет физически нелинейных призматических оболочек при больших перемещениях в упругой среде / С. П. Иванов // Эффективность проектных решений фундаментов: Межвуз. сб. Йошкар-Ола, 1992. -С.99−103.
  62. , С. П. Расчет на собственные колебания композиционных призматических оболочек при больших перемещениях / С. П. Иванов // Материалы XXVIII Межресп. семинара «Актуальные проблемы прочности.» Вологда, 1992.-С.106−107.
  63. , С. П. Собственные колебания физически нелинейных призматических оболочек / С. П. Иванов //Динамика и прочность машин. Харьков, 1993. — Вып.54. — С.108−116.
  64. , С. П. Динамика призматических оболочек из композиционных материалов / С. П. Иванов // Структура и молекулярная динамика полимерных систем: Материалы Всерос. семинара. Йошкар-Ола, 1995 — 4.II. — С.57−59.
  65. , С. П. Свободные колебания призматических оболочек замкнутого контура при больших перемещениях / С. П. Иванов // Строительные конструкции и механика деформируемого твердого тела. Йошкар-Ола, 1998. -В.1. — С.76−79.
  66. , С. П. Собственные колебания геометрически нелинейных призматических оболочек / С. П. Иванов // Тр. междунар. конф. «Актуальные проблемы механики оболочек.» Казань, 1998. — С.94−98.
  67. , С. П. Собственные колебания призматических оболочек замкнутого контура при больших перемещениях / С. П. Иванов // Тр. науч. конф. по итогам н.-и. работ Map. гос. техн. ун-та. Йошкар-Ола, 1998 — С. 1215. — Деп. в ВИНИТИ 28.08.98, № 2710-В98.
  68. , С. П. Вынужденные колебания геометрически нелинейных призматических оболочек / С. П. Иванов // Сб. докл. XIX Междунар. конф. по теории пластин и оболочек. Механика оболочек и пластин. Н. Новгород, 1999. — С.76−79.
  69. , С. П. Колебания призматических оболочек при больших перемещениях / С. П. Иванов // Изв. вузов. Строительство. 1999. — № 1. — С.26−28.
  70. , С. П. Статический расчет нелинейно-упругих призматических оболочек при больших перемещениях / С. П. Иванов // Материалы межрегион. науч.-практ. конф. «Региональные проблемы строительных и дорожных комплексов.» Йошкар-Ола, 2000. — С.80−84.
  71. , С. П. Расчет пространственных пластинчатых систем с учетом физической и геометрической нелинейностей / С. П. Иванов // Механика композиционных материалов и конструкций М., 2001. — Т.7, № 4. — С.526−532.
  72. , С. П. Расчет нелинейных пластинчатых систем вариационным методом В.З.Власова / С. П. Иванов // Изв. вузов. Строительство. 2002. -№ 6. -С. 18−23.
  73. , А. А. Некоторые вопросы теории пластических деформаций / А. А. Ильюшин // Прикладная математика и механика. М., 1943. — Т.7, № 4. — С.53−61.
  74. А.А. Устойчивость пластин и оболочек за пределом упругости / А. А. Ильюшин // Прикладная математика и механика. М., 1944 — Т.8, вып.5.-С.65—71.
  75. , А. А. Связь между теорией Сен-Венана Леви — Мизеса и теорией малых упруго-пластических деформаций / А. А. Ильюшин // Прикладная математика и механика. — М., 1945.- Т. 9.-С.96−103.
  76. , А. А. К теории малых упруго-пластических деформаций / А. А. Ильюшин // Прикладная математика и механика. М., 1946 — Т.10, в. З-С.29−34.
  77. , А. А. Пластичность / А. А. Ильюшин. М.: Гостехтео-ретиздат, 1948.-405 с.
  78. , А. Ю. Об уравнениях деформации тел за пределом упругости / А. Ю. Ишлинский // Учен. зап. МГУ. Механика. 1946. — Вып. 117, № 1. — С.78−84.
  79. , Н. И. Общие модели механики железобетона / Н. И. Карпенко.-М.: Стройиздат, 1996.-416 с.
  80. , Г. Нелинейная механика / Г. Каудерер. М.: Изд-во иностр. лит., 1961.-777 с.
  81. , Л. М. К механике пластических сред / Л. М. Качанов // Прикладная математика и механика-1940 Т.12, вып.З.-С.68−71.
  82. , Л. М. Упруго-пластическое состояние твердых тел / Л. М. Качанов // Прикладная математика и механика. М., 1941. — Т.5, вып.З. — С.39−45.
  83. , Л. М. Механика пластических средств / Л. М. Качанов. -М.: Гостехиздат, 1948. 294 с.
  84. , Л. М. Основы теории пластичности / Л. М. Качанов. М.: Гостехтеоретиздат, 1956. — 394 с.
  85. , Р. А. Физически нелинейное поведение композитных оболочек / Р. А. Каюмов, А. У. Богданович, Д. X. Сафиуллин // Прикладные проблемы прочности и пластичности: анализ и оптимизация конструкций. -Н. Новгород, 1995.-С.115−118.
  86. , В. В. Расчет прочности и устойчивости гибких пологих оболочек с учетом физической нелинейности и деформаций поперечного сдвига /
  87. B. В. Кислов, С. И. Трушин // Численные методы в исследовании строительных конструкций. М., 1986. — С.90−99.
  88. , Л. Г. Нелинейная теория упругих незамкнутых тонкостенных стержней / Л. Г. Кобец: Автореф. дис. канд. техн. наук. Харьков, 1955. — 12 с.
  89. , Л. Г. Основные уравнения напряженно-деформированного состояния упругих незамкнутых тонкостенных стержней при больших углах закручивания / Л. Г. Кобец // Тр. / Харьков, инж.- строит, ин-т. 1957. — Вып.5. — С.74−82.
  90. , Л. В. Поведение тонкостенных пространственных систем из нелинейно-упругих материалов / Л. В. Кожаринова // Расчет пространственных систем в строительной механике / Саратов, ун-т. Саратов, 1972.1. C.67−71.
  91. , Л. В. Расчет призматических систем из нелинейно-упругих материалов / Л. В. Кожаринова, В. Н. Пастушихин // Сопротивление материалов и теория сооружений. Киев: Буд1вельник, 1972. — Вып. XVI. -С. 132—141.
  92. , А. М. Пространственная устойчивость нелинейно-упругих металлических стержней при двухосном внецентренном сжатии / А. М. Козовенко / Киев, инж.- строит, ин-т .- Киев, 1984. 21с. — Деп. в Укр-НИИНТИ 27.11.94, № 1960.
  93. , Л. Численные методы решения дифференциальных уравнений/Л. Коллатц.-М., 1953.-378 с.
  94. , В. И. Расчет составных конструкций / В. И. Колчунов, Л. А. Панченко. М.: АСВ, 1999. — 281 с.
  95. , А. А. Устойчивость внецентренно-сжатых стальных прямоугольных труб / А. А. Кользеев // Изв. вузов. Строительство. 1997. — № 1−2. -С.8−12.
  96. , Б. Г. Вопросы расчета балок и плит на упругом основании / Б. Г. Коренев. М.: Госстрой издат, 1954. — 223 с.
  97. , М. С. Большие прогибы прямоугольных в плане пластин и пологих оболочек из нелинейно-упругого материала / М. С. Корнишин, Н. Н. Столяров, Н. И. Дедов // Исследования по теории пластин и оболочек. -Казань, 1972. С. 136−142.
  98. , Б. Е. К расчету призматической оболочки из нелинейно-упругого материала под действием случайной нагрузки / Б. Е. Кочетков, Д. Н. Соболев // Расчет пространственных конструкций. М.: МИСИ, 1981. -№ 157.-С. 45−57.
  99. , В. А. Влияние краевых условий на динамическое поведение гибких замкнутых цилиндрических оболочек при продольном ударе грузом / В. А. Крысько, А. М. Варыгин, С. Г. Ошменский // Изв. вузов. Строительство и архитектура. 1988. -№ 5. — С.35−39.
  100. , В. А. Динамическая потеря устойчивости гибких нелинейно-упругих пологих оболочек / В. А. Крысько, Н. Н. Куцемако // Прикл. механика.-Киев, 1985.- № 7. С.32−38.
  101. , В. А. Динамическая устойчивость геометрически и физически нелинейных пологих оболочек при учете связанности деформаций и температуры / В. А. Крысько, А. А. Сопенко // Прикл. механика Киев, 1989. -№ 11.- С.49−54.
  102. , О. Р. Кручение замкнутого призматического кессона с учетом растяжимости его оси / О. Р. Кузнецов, Н. А. Страшнова // Изв. вузов. Строительство. 1997. — № 11.- С.4−8.
  103. , Н. JI. Расчет конструкций из тонкостенных стержней и оболочек / Н. Л. Кузьминых, П. А. Лукаш, И. Е. Милейковский. М.: Госстрой-издат, 1960.- 182 с.
  104. , В. А. О зависимости между напряжениями и деформациями при нелинейной деформациии ортотропных стеклопластиков / В. А. Ломакин, М. А. Юмашев // Механика полимеров. 1965. — № 4. — С. 18−26.
  105. , О. В. Определение частот собственных колебаний тонкостенных стержней замкнутого и открытого профиля / О. В. Лужин // Исследование по теории сооружений. 1959. — Вып.8. — С. 28−34.
  106. , П. А. Расчет пологих оболочек и плит с учетом физической и геометрической нелинейности / П. А. Лукаш // Тр. / ЦНИИСК-1961- Вып. 7. -С.29−35.
  107. , П. А. О центре изгиба и центре кручения тонкостенных стержней из нелинейно-упругих материалов / П. А. Лукаш // Тр. / МИСИ. -1963.-Вып. 44. -С.83−91.
  108. , П. А. Основы нелинейной строительной механики / П. А. Лукаш. М.: Стройиздат, 1978. — 204 с.
  109. , П. А. Продольный, поперечный изгиб и устойчивость круглой пластинки / П. А. Лукаш // Исследования по теории сооружений. 1976. -Вып.ХХН. — С.75−81.
  110. , Ф. П. Приближенный метод расчета тонкостенного стержня по деформированной схеме / Ф. П. Лукьянов // Прикл. механика.1965. -№ 5. -С.28−34.
  111. , М. Д. Об одном методе решения систем алгебраических и трансцендентных уравнений / М. Д. Майергойз // Вычислительная математика и мат. физика. 1967 — Т.7, № 4- С.25−29.
  112. Мак-Кракен, Д. Численные методы и программирование на Фортране /Д. Мак-Кракен, У. Дорн. -М.: Мир, 1977.- 587 с.
  113. , Л. В. О пространственной устойчивости стального стержня замкнутого прямоугольного сечения при динамических нагрузках / Л. В. Махов // Металлические конструкции и испытания сооружений Л., 1987 — С.68−75.
  114. , В. В. Исследование керамзитобетонных преднапряжен-ных плит покрытий пролетом 12 м. / В. В. Михайлов // Бетон и железобетон1966.-№ 10 — С.48−53.
  115. , Ю. В. Нелинейные колебания длинных цилиндрических оболочек с учетом статического осевого сжатия / Ю. В. Михлин // Гидроаэромеханика и теория упругости. Днепропетровск, 1983. -№ 31. — С. 117−121.
  116. , С. М. К расчету нелинейно-упругих тонкостенных стержней / С. М. Мулин // Науч. тр. / Омск, ин-т инж. ж.-д. трансп. 1966. — Вып. 69-С.87−98.
  117. , С. М. Применение матричных алгоритмов к расчету нели-нейноупрутих тонкостенных стержней / С. М. Мулин // Науч. тр. / Омск, ин-т инж. ж.-д. трансп. -1969. Вып. 69. — С. 125−140.
  118. , С. М. Пространственная устойчивость нелинейн-упругих тонкостенных стержней/ С. М. Мулин // Науч. тр. / Омск, ин-т инж. ж.-д. трансп. -1967. Вып. 80. — 108 с.
  119. , С. М. Прочность и устойчивость нелинейно-упругих цилиндрических оболочек замкнутого кругового профиля/ С. М. Мулин // Науч. тр. / Омск, ин-т инж. ж.-д. трансп. 1969 — Т.98. — С.67−79.
  120. , С. М. Расчет нелинейно-упругих тонкостенных стержней жесткого прямоугольного профиля / С. М. Мулин // Науч. тр. / Омск, ин-т инж. ж.-д. трансп. 1965.- Вып. 56. — С.28−35.
  121. , С. М. Расчет нелинейно-упругих тонкостенных стержней открытого профиля / С. М. Мулин // Науч. тр. / Омск, ин-т инж. ж.-д. трансп. -1965. Вып.49.-С.59−71.
  122. , С. М. Расчет нелинейно-упругих тонкостенных стержней открытого и замкнутого профиля с помощью ЭЦВМ / С. М. Мулин // Науч. тр. / Омск, ин-т инж. ж.-д. трансп 1969. — Т.8.-С.28−39.
  123. , С. М. Расчет нелинейно-упругих тонкостенных стержней с круговой осью / С. М. Мулин // Науч. тр. / Омск, ин-т инж. ж.-д. трансп. 1965. -Вып. 56. -С.48−60.
  124. , С. М. Расчет нелинейно-упругих тонкостенных стержней-оболочек закрытого изменяемого профиля / С. М. Мулин // Науч. тр. / Омск, инт инж. ж.-д. трансп. 1964 — Вып. 50. — С.58−72.
  125. , В. И. Трещиностойкость, жесткость и прочность железобетона / В. И. Мурашев. М.: Машстройиздат, 1950. — 496 с.
  126. , В. И. Железобетонные конструкции: Общий курс /
  127. B. И. Мурашев, Э. Е. Сигалов, В. Н. Байков. М.: Госстройиздат, 1962. — 645 с.
  128. , X. М. Работы казанских ученых по нелинейной теории оболочек после Великой Октябрьской социалистической революции / X. М. Муштари Казань: Изв. Казан, филиала АН СССР, 1958. — Вып.2. — С.89−102.
  129. , X. М. Нелинейная теория упругих оболочек / X. М. Муштари, К. 3 Галимов. Казань: Таткнигоиздат, 1957. — 431 с.
  130. , В. В. О связи между напряжениями и деформациями в нелинейно-упругой среде / В. В. Новожилов // Прикладная математика и механика. 1951. — Т. 15, Вып.6 — С.28−35.
  131. , В. В. Основы нелинейной теории упругости / В. В. Новожилов. М.: Гостехиздат, 1948. — 132 с.
  132. , Я. Г. Основы прикладной теории колебаний и удара / Я. Г. Пановко. JL: Машиностроение, 1976. — 320 с.
  133. , В. Н. Колебания пластин и оболочек из нелинейных почти упругих материалов / В. Н. Пастушихин: Дис. д-ра техн. наук. М.: 1967. -383 с.
  134. , В. Н. Нестационарные колебания пологих оболочек из нелинейных не вполне упругих материалов / В. Н. Пастушихин // Прикл. механика. Киев, 1970. — Т.6, вып.7. — С.73−78.
  135. , В. Н. Вариационная формулировка теории тонкостенных систем, составленных из прямоугольных пластинок / В. Н. Пастушихин // Расчет сооружений на деформируемом основании и в деформируемой среде / Сб.тр.-М.: МИСИ.- 1971.-№ 79.-С.103−111.
  136. , В. В. Метод последовательных нагружений в нелинейной теории пластинок и оболочек / В. В. Петров // Сб. тр. / Саратовский ун-т. Саратов, 1975. -С.78−84.
  137. , В. В. Расчет пластинок и оболочек из нелинейно-упругого материала / В. В. Петров, И. Г. Овчинников, В. И. Ярославский // Сб. тр. / Саратовский ун-т. Саратов, 1976. — С.45−51.
  138. , В. В. Современное состояние и перспективы развития теории оболочек / В. В. Пикуль // Механика оболочек и пластин: Сб. докл. XIX Междунар. конф. по теории оболочек и пластин. Н. Новгород, 1999. — С.5−8.
  139. , Г. С. Колебания механических систем с учетом несовершенной упругости / Г. С. Писаренко. Киев: Наук, думка, 1970. — 380 с.
  140. , Г. С. Вибропоглощающие-свойства конструкционных материалов / Г. С. Писаренко, А .П. Яковлев, В. В. Матвеев: Справочник. Киев: Наук, думка, 1971. -376 с.
  141. , Г. Ш. Деформационный расчет тонкостенных стержней открытого профиля / Г. Ш. Подольский// Тр. / МИСИ. 1963. — Вып. 44. -С.115−121.
  142. , В.В. Расчет прямоугольных пластин из нелинейно-упругих материалов при симметричных и несимметричных диаграммах работы / В. В. Пономарев // Теория пластин и оболочек. Киев, 1962. — С.136−144.
  143. , В. В. Расчет прямоугольных пластин из нелинейноIупругих материалов при малых прогибах / В. В. Пономарев // Стержни и пластинки: Тр. / МИСИ. 1963. — № 44. — С.59−64.
  144. Райзер, В • Д. К расчету на устойчивость тонкостенных стержней-оболочек при конечных деформациях / М. Д. Райзер // Проблемы устойчивости в строительной механике. М.: Стройиздат, 1965. — С.28−33.
  145. , В. Д. Нелинейные задачи расчета тонкостенных криволинейных стержней / М. Д. Райзер // Строительная механика и расчет сооружений. 1965.- № 1. — С.68−72.
  146. Расчет сооружений на импульсивные воздействия/ И. М. Рабинович, А. П. Синицын, О. В. Лужин, В. М. Теренин. М.: Госстройиздат, 1970. — 304 с.
  147. , А.Р. Расчет цилиндрических сводов-оболочек методами линейного программирования / А. Р. Ржаницын // Строительная механика и расчет сооружений. 1964. — № 4. — С.77−81.
  148. , А. Р. Устойчивость тонкостенных стержней за пределом упругости / А. Р. Ржаницын // Тр. / Лаб. строит, механики ЦНИПС. 1949-С.58−64.
  149. Р. Течение и потеря несущей способности композитов в условиях двухосного напряженного состояния: сопоставление расчета и экспериментальных данных / Р. Роуландес // Неупругие свойства композиционных материалов. М.: Мир, 1978. — С. 140−179.
  150. , А.Е. Нестационарные сейсмические колебания сооружения в виде жесткого тела на поверхности инерционного основания / А. Е. Саргсян, А. А. Нахапетян // Бюл. по инж. сейсмологии 1989. -№ 13. — С. 100−106.
  151. , В. Н. К вопросу численного решения нелинейных задач строительной механики / В. Н. Сидоров, С. И. Трушин // Теоретические и экспериментальные исследования строительных конструкций: Тр. ЦНИИСК. -1980. С.84−91.
  152. , И.Н. О вариационных методах расчета упругих призматических складок/ И. Н. Слезингер // Расчет пространственных конструкций. -1974- Вып. 16. С.78−86.
  153. , И.Н. Общая теория призматических складок и ее применение для расчета цилиндрических покрытий на ЭЦВМ / И. Н. Слезингер// Пространственные конструкции в Красноярском крае. Красноярск, 1968. — С. 146 153.
  154. , И. Н. Основные уравнения полубезмоментной нелинейной теории призматических оболочек и складок / И. Н. Слезингер // Труды IV Всесоюз. конф. по теории оболочек и пластин. Ереван, 1964. — С. 186−196.
  155. , И. Н. Практический метод расчета гибких цилиндрических оболочек и складок / И. Н. Слезингер // Расчет пространственных конструкций.- М., 1964. -Вып.9. С.82−93.
  156. , И. Н. Расчет гибких цилиндрических оболочек и складок в матричной форме / И. Н. Слезингер // Сопротивление материалов и теория сооружений. -1965. -Вып.2. С. 127−135.
  157. , И. Н. Расчет несущей способности цилиндрических оболочек / И. Н. Слезингер //Прикладная механика. 1965. — Т.2, Вып.9. — С.112−119.
  158. , В. А. Численный метод решения некоторых краевых задач теории упругости для дифференциальных уравнений в частных производных /
  159. B. А. Смирнов// Исследования по теории сооружений 1969. — Вып.ХУП.1. C.111−123.
  160. , В. А. Численный метод решения краевой задачи для дифференциальных уравнений в частных производных на примере устойчивости ортотропной пластинки / В. А. Смирнов // Тр. / НИИЖТ. 1970. — Вып.96. -С.374−379.
  161. , В. А. Расчет Г-образной ортотропной пластинки / В. А. Смирнов // Тр. / Моск. архит. ин-т. 1972. — Вып. 4. — С. 75−96.
  162. , В. И. Курс высшей математики / В. И. Смирнов. М-Л.: ГИТЛ, 1957.-627 с.
  163. , Г. А. Расчет геометрически нелинейных призматических оболочек / Г. А. Соколова, С. П. Иванов // Расчет пространственных конструкций: Тр. / МИСИ. 1981. -№ 157. — С. 145−153.
  164. , В. В. Теория пластичности / В. В. Соколовский. М.: Изд-во АН СССР, 1946. — 423 с.
  165. , В. С. К теории внутреннего трения при колебаниях упругих систем / В. С. Сорокин .- М.: Госстройиздат, 1960. 315с.
  166. , Л. С. Выпучивание и послекритическое поведение оболочек / Л. С. Срубщик. Ростов — на — Дону: Изд-во Ростов, ун-та.- 1981. — 96 с.
  167. , Я. В. Введение в теорию железобетона / Я. В. Столяров. -М.-Л.: Стройиздат, 1941.-246 с.
  168. , Н. С. Металлические конструкции / Н. С. Стрелецкий, А. Н. Гениев, Е. И. Беленя. М.: Госстройиздат, 1961. — 594 с.
  169. Строительная механика в СССР 1917−1957 / Под ред. И. М. Рабиновича. -М.: Госстройиздат, 1957 407 с.
  170. Строительная механика в СССР 1917−1967 / Под ред. И. М. Рабиновича.-М.:Госстройиздат, 1969.-.423 с.
  171. , Ю.Л. Влияние геометрической и физической нелинейности в докритическом состоянии на устойчивость нелинейно-упругих оболочек / Ю. Л. Супонев // Расчеты на прочность и жесткость. М., 1984. — № 6. — С.46−53.
  172. , Ю. М. О механизме передачи усилий при деформации ориентированных стеклопластиков / Ю. М. Тарнопольский, Т. Я. Кинциа // Механика полимеров. 1965. — № 1. — С.39−45.
  173. , П. И. Нелинейная задача чистого изгиба кессонной конструкции / П. И. Татаринов // Изв. ВУЗов. Авиационная техника. 1970. — № 4. -С.98−104.
  174. , И. Г. Об учете физической нелинейности в расчетах композитных цилиндрических оболочек на устойчивость при осевом сжатии / И. Г. Терегулов, А. У. Богданович // Проблемы прочности 1996. — N4. — С.57−63.
  175. , С. П. Пластинки и оболочки: Пер. с англ./ С. П. Тимошенко, С. Войновский-Кригер М.: Наука, 1966. — 535 с.
  176. , В. И. Расчет прямоугольных плит на упругом основании с учетом анизотропии грунта / В. И. Травуш, И. Н. Дюсембаев // Смешанные задачи механики деформируемого тела. Тез. докл. Всесоюз. конф.- Одесса, 1989. -Ч. 2. С. 110.
  177. , И. И. Деформации и напряжения в тонкостенном стержне при больших перемещениях / И. И. Трянин // Тр. / Горьк. ин-т инж. вод. трансп. -1973.-Вып. 133.-С.96−102.
  178. ФеоДосьев, В. И. Геометрически нелинейные задачи теории пластин и оболочек / В. И. Феодосьев // Труды VI Всесоюз. конф. по теории оболочек и пластин. М.: Наука, 1966. — С. 145−153.
  179. , С. Ю. О взаимодействии форм выпучивания при закритиче-ском поведении подкрепленных тонкостенных призматических складчатых систем/С. Ю. Фиалко//Прикл. механика-Киев, 1998.-№ 3. С.86−90.
  180. , JI. Н. О спектре собственных значений сжатых нелинейно-упругих и упруго-пластических стержневых систем / Л. Н. Хохлова // Строительная механика сооружений: Межвуз. тем. сб. тр. / ЛИСИ. 1981. — С.136−145.
  181. , И. С. К вопросу об интегрировании уравнений теории неупругих тонких оболочек I И. С. Цурков // Исследования по теории пластинок и оболочек. / МИСИ. 1965, № 47. — С.157−166.
  182. , И.С. К вопросу об упругом равновесии прямоугольной панели пологой оболочки при конечных прогибах / И. С. Цурков // Инж. сб. М.: 1958.- Т.26.-С.156−165.
  183. , И.С. К вопросу об упруго-пластическом изгибе металлических панелей пологих оболочек при конечных прогибах / И. С. Цурков // Инж. журнал. М., 1961.- Т. 1, вып. 1. — С. 192−201.
  184. , И.А. Основные уравнения теории тонких пологих оболочек с учетом физической нелинейности / И. А. Цурпал // Прикл. механика М., 1965.-Т.1, вып. 12. — С.131−139.
  185. , Н.Н. Расчет пластинок и коробчатых конструкций методом конечных элементов / И. И. Шапошников, А. С. Волков // Исследования по теории сооружений. 1976. — Вып.ХХН.-С. 134−146.
  186. , Н.Н. Исследование устойчивости шаговых методов применительно к решению нелинейных динамических задач / Н. Н. Шапошников, Г. В. Полторак // Инженерные проблемы механики: Межвуз. науч.-метод. сб. тр. / МИСИ. 1987. — Вып.5. — С.162−172.
  187. , Б. Ф. К теории тонкостенных закрученных стержней / Б. Ф. Шорр // Изв. АН СССР. Механика и машиностроение. 1960. -№ 5. — С.67−73.
  188. Шуп, Т. Решение инженерных задач на ЭВМ: Практ. рук.: Пер. с англ. / Т. Шуп- М.: Мир, 1982. 238 с.
  189. , С. X. Результаты испытаний на устойчивость цилиндрических оболочек, взаимодействующих с грунтовой средой, при осевом сжатии / С. ХЛкубов / Томск, ун-т. Томск, 1986. — 7с. Деп. в ВИНИТИ 23.12.86, № 1305.
  190. Aida, Т. Dynamic stability of thin-walled structural members subjected to periodic axial follower terque and force / T. Aida, Y. Ogawa, Y. Imada // J. Sound and Vibr.-l 993 .-№ 1.-0.7−23.
  191. Biman, V. Non-lenear beam-type vibratious of long cylindrical shells. / V. Biman, W. Bert Charles // Struct., Struct. Dyu. and Mater. Couf. San Antonio, Tex., May 19−21, 1986. Collect Techn. Pap. Pt.2.-New York, N.Y., 1986.-s.a., 564−568.
  192. Bulfinger, C.B. Desolidorum resistentia specimen / C.B.Bulfinger // Commentari Academiae scienttarum imperialis Petropol. 1729. — v.4.
  193. Chobaran, A.A. A. non-linear thin walled beam theory / A.A.Chobaran, W.K.Tso. //IntJ. Mech. Sci. 1971.- № 12. — P. 396−411.
  194. Foppe, A. Vorlensungeu ubertechn Mechanik / A.Foppe. 1907. — T.5.
  195. Xuanneg, G. Derivation of geometrically nonlinear equilibrinm equations and their boundary condition of thinwalled open-closs section members / G. Xuanneg, Z. Yinsheng, Z. Xuhong // Hunau Univ. Natur. Sci. 1996. — № 6. — C. 98−103.
  196. Hagiwara, I. Dynamic analysis of thin-walled box columns subjected to axial crushing using the finity-element method. / I. Hagiwara, M. Tsuda, Y. Sato // JSME Int. J. Ser. 1.-1990.-№ 4.- C.444−452.
  197. Hahn, H.T. Nonlinear behavior of laminated composites / H.T.Hahn // J.Compos. Mater. № 7. — 257−271.
  198. Hahn, H.T. Nonlinear elastic behavior of unidirectional composite laminae / H.T.Hahn, S.W.Tsai, W. Stephen // J.Compos. Mater., 7, 102−108.
  199. Karman, T. Fectigkeit sprobleme im Maschinehbau, Encycl / T. Karman // dermath. Wiss. IV (4), 1910
  200. Kauderer, H. Nichtlinear Mechanik / H. Kauderer // Spring.-Verl. Berlin.
  201. Kirn, J.H. A large deflection finite element model of beams with arbitary cross-sectional warping / J.H.Kim, S.W.Lee // Comput Mech'88: Theory and Appl.: Proc.Int. Conf. Comput. Eng. Sci., Atlanta, Ga, Apr. 10−14, 1988. Berlin, 1988. -Vol. 1. -C.29.
  202. Maciejewski M. Cienkoscieuny Zamkniety element pretoroy do analiry Zagadnien geometry / M. Maciejewski, W. Osmolski, R. Razyk // Masz. rob. ipojazdy. 1987. — № 28 — C.21−28.
  203. Maciejewski, M. Geometryznie nieliniowa teoria pretow cienkosciennych о przekrojn zamknietym / M. Maciejewski, W. Osmolski, R. Razyk // Resr. nauk. prozn. Masz. zob. ipojazdy. 1987. — № 28 — C.5−20.
  204. Mahendran, M. Ultimate load behaviour of box-columus unde combined loading of axial compression and torsion./ M. Mahendran, N.W.Murray // Thin-Walled Struct. 1990. — № 1−4. — C.91−120.
  205. Maquoi, R. Teorie non-lineaire dela resistance postcritique des grandess pontresen caisson raidies / R. Maquoi, C. Massonet // Mem. Assoc. int. pontset charp. -1971.-№ 12.
  206. Mollmann, II. Theory of thin-walled elastic beams with finite displacements // H. Mollmann / Lect. Notes End. 1986 — № 19. — С. 195−209.
  207. Nayfeh, A.H., Noulinear oscillation of circular cylindrical shells // A.H.Nayfeh, RA. Raouf / Dyn. and Mater. Couf., San Antonio. Tex., May 19−21. -Collect. Techn. Pap. Pt.2″. New York. N.Y., 1986. s.a., 555−563.
  208. Omote, T. Finite displacement theory of curved and twisted thin-walled box girders //Omote Т., M. Hirashima, T. Yoda / Proc YSCE. 1999. — № 404. -C.239−248.
  209. Rao, С. Torsional post-buckling of thin walled open section beams resting on a continuous elastic foundation // C.Rao. M.S.Kamsswara / Thin-Wolled struct. -1989. -№ 11- C.55−62.
  210. Salmi, P. Bending strength of beams with non-linear analysis // P. Salmi, A. Talja / Rakenteid. mek. 1992. — № 4. — C.50−67.
  211. Sandhu, R.S. Ultimate strength analysis of symmetric laminates // R.S.Sandhu / AFFDL-TR-73−137, Fabruary 1974.
  212. Siepak, J.S. Past-buckling bahaviour of steel box-girders in beading and shear //J.S.Siepak, M. Piekarczyk / Arch. Civ. Eng. 1993. -№ 3. — C.275−295.
  213. Strutt, J. W. Some General Theorems relating to Vibrations // J.W.Strutt / Proceedings of the London Mathematical Sosiety. 1873. — vol. IV.
  214. Wn, J. Large displacement analysis for purem bending of thin-walled beams / J. Wn, P.L.Gould // J. Eng. Mech. 1987. — № 4. — C.522−528.
  215. Ye, M. Investigation on dynamical bifurcations of a nonlinear parametric excitation system./ M. Ye, Y. Cheu // Acta mech. Sch. 1993. — № 2.- C.169−175.1. Блок-схема программы
  216. В блок-схеме введены следующие обозначения: Q нагрузка- V — частота колебаний- С — степень физической нелинейности- Х (1) — начальные значения недостающих условий- DX (I) — шаг итерации-
  217. EPS (I) задаваемая точность вычисления невязки z- К&trade-&trade- - максимальное число итераций- AL — длина пластинчатой системы- Н — шаг интегрирования-
  218. DELTA задаваемая точность интегрирования- D — весовая функция-
  219. U-, Ult Vk, Vk обобщенные перемещения и их производные. gG gG
  220. Щ +77~тп)^2−52=(П2 + T7~m2 У?'. 1+v 1+v1. Ax Ax1. C3 = +S2-C4 + +y№ 2- j41d.(Cl+C4) + d2(C2+C3). a=-з-——-,
  221. Wl-dl) 3 b%}(k22d +k22d2) = ~32 '2 — 1 — d ab (3 ^ (k22C3-k22Ci)1 2(d +d2) 16 Jj2-^9 bA{k22dx+k22d2) 9 5А, 4(£12£22 q"l024 (dl-dlf + 256 dl-dl
Заполнить форму текущей работой