ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Роль аминокислотных ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π±Π΅Π»ΠΊΠ° Sup35 Π² Π²Π°Ρ€ΠΈΠ°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ цитоплазматичСского Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚Π° (PSI+) Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠŸΡ€ΠΈΠΎΠ½Ρ‹ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ сущСствСнный интСрСс ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ, Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, сами ΠΏΠΎ ΡΠ΅Π±Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π½ΠΎΠ²ΠΎΠ΅ гСнСтичСскоС явлСниС, Π° Π²ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΡƒΠ΄ΠΎΠ±Π½ΠΎΠΉ модСлью для изучСния Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… свойств, присущих Ρ„Π΅Π½ΠΎΠΌΠ΅Π½Ρƒ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² Π² Ρ†Π΅Π»ΠΎΠΌ. Одним ΠΈΠ· Ρ‚Π°ΠΊΠΈΡ… свойств являСтся Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ²ΠΎΠ³ΠΎ разнообразия ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ². Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»Π° прСдпринята ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ° изучСния этого Ρ„Π΅Π½ΠΎΠΌΠ΅Π½Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚Π°… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Роль аминокислотных ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π±Π΅Π»ΠΊΠ° Sup35 Π² Π²Π°Ρ€ΠΈΠ°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ цитоплазматичСского Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚Π° (PSI+) Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™ И ΠžΠ‘ΠžΠ—ΠΠΠ§Π•ΠΠ˜Π™
  • ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
  • 1. ΠŸΡ€ΠΈΠΎΠ½Ρ‹ Π²Ρ‹ΡΡˆΠΈΡ… эукариот
    • 1. 1. ΠŸΡ€ΠΈΠΎΠ½Ρ‹ — ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π°Π³Π΅Π½Ρ‚Ρ‹ Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°
    • 1. 2. ΠŸΡ€ΠΈΠΎΠ½Π½Π°Ρ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° ΠŸΡ€ΡƒΠ·ΠΈΠ½Π΅Ρ€Π°
    • 1. 3. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠΉ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹
    • 1. 4. МСТвидовая ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π° ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ
    • 1. 5. Π¨Ρ‚Π°ΠΌΠΌΡ‹ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ²
    • 1. 6. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°
    • 1. 7. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ Ρ„ункция Π±Π΅Π»ΠΊΠ° Π Π³Π 
  • 2. ΠŸΡ€ΠΈΠΎΠ½Ρ‹ Π½ΠΈΠ·ΡˆΠΈΡ… эукариот
    • 2. 1. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅
    • 2. 2. ΠŸΡ€ΠΈΠΎΠ½ [URE3] S. cerevisiae
    • 2. 3. ΠŸΡ€ΠΈΠΎΠ½ [Het-s] Podospora anserina
    • 2. 4. ΠŸΡ€ΠΈΠΎΠ½ [PSt] S. cerevisiae
      • 2. 4. 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ Ρ„ункция Π±Π΅Π»ΠΊΠ° Sup
      • 2. 4. 2. Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Ρ… свойств Sup
      • 2. 4. 3. Π’ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ [PSt] de novo, ΠΏΡ€ΠΈΠΎΠ½ [TW4"]
      • 2. 4. 4. Роль ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠ² Π² Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠΈ ΠΈ Π½Π°ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
      • 2. 4. 5. МСТвидовая ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π° ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Ρ… свойств Sup35 ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ изгнания [PSt]
      • 2. 4. 6. Π’Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ [PSt]
      • 2. 4. 7. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Π°ΠΌΠΈΠ»ΠΎΠΈΠ΄Π½Ρ‹Ρ… Ρ„ΠΈΠ±Ρ€ΠΈΠ»Π»
  • 3. Π Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Ρ‘Π½Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅
  • 4. ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Ρ‹ лСчСния ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ
  • 5. БиологичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ²

Π’Π΅Ρ€ΠΌΠΈΠ½ «ΠΏΡ€ΠΈΠΎΠ½» появился ΠΏΡ€ΠΈ исслСдовании ряда Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ скрэйпи ΠΎΠ²Π΅Ρ†, Π±Ρ‹Ρ‡ΡŒΡ губчатая энцСфалопатия ΠΈ Π±ΠΎΠ»Π΅Π·Π½ΡŒ ΠšΡ€Π΅ΠΉΡ†Ρ„Π΅Π»ΡŒΠ΄Π°-Π―ΠΊΠΎΠ±Π° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ эти Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π±Ρ‹Π»ΠΈ извСстны ΡƒΠΆΠ΅ довольно Π΄Π°Π²Π½ΠΎ, ΠΈΡ… ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π° ΠΎΡΡ‚Π°Π²Π°Π»Π°ΡΡŒ Π·Π°Π³Π°Π΄ΠΊΠΎΠΉ Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π’ Ρ‡Π°ΡΡ‚ности, Π΄ΠΎΠ»Π³ΠΎΠ΅ врСмя Π±Ρ‹Π»ΠΎ нСпонятно, ΠΊΠ°ΠΊΠΎΠ² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ возникновСния этих Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Этиология этих Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ вСсьма Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Π°. Π­Ρ‚ΠΈ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒΡΡ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°Ρ‚ΡŒ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ ΠΏΡƒΡ‚Ρ‘ΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ спорадичСски. Π’Π°ΠΊΠΎΠ΅ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΏΡƒΡ‚Π΅ΠΉ возникновСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‡Π΅Π½ΡŒ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΉ для ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ этих Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π΄ΠΎΠ»Π³ΠΎΠ΅ врСмя Π½Π΅ Π΄Π°Π²Π°Π»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ исслСдоватСлям Π²Ρ‹ΡΡΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΆΠ΅ являСтся ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Ρ‚Π°ΠΊΠΈΡ… Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ. Π˜Π·Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ эти Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ вирусом, ΠΎΠ΄Π½Π°ΠΊΠΎ впослСдствии оказалось, Ρ‡Ρ‚ΠΎ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π°Π³Π΅Π½Ρ‚ Π½Π΅ ΡΠΎΠ΄Π΅Ρ€ΠΆΠΈΡ‚ Π”ΠΠš. Π’ 1967 Π³ΠΎΠ΄Ρƒ Π±Ρ‹Π»Π° Π²Ρ‹ΠΊΠ°Π·Π°Π½Π° «Π±Π΅Π»ΠΊΠΎΠ²Π°Ρ» Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π°, согласно ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π°Π³Π΅Π½Ρ‚ прСдставлял собой ΠΈΠ·ΠΌΠ΅Π½Ρ‘Π½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‰ΡƒΡŽΡΡ Π·Π° ΡΡ‡Ρ‘Ρ‚ аутокаталитичСского ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° (Griffith, 1967). ПозднСС этот Π°Π³Π΅Π½Ρ‚ Π±Ρ‹Π» Π½Π°Π·Π²Π°Π½ «ΠΏΡ€ΠΈΠΎΠ½ΠΎΠΌ» (Prusiner, 1982). Π•Π³ΠΎ Π½Π΅ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Π΅ свойства обусловлСны ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ Π±Π΅Π»ΠΊΠ° Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² ΠΎΡΠΎΠ±ΠΎΠΌ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ состоянии, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Ρ‚ΡŒΡΡ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ Ρ‚ΠΈΠΏΠ° ΠΏΡƒΡ‚Ρ‘ΠΌ Π±Π΅Π»ΠΎΠΊ-Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… взаимодСйствий.

Π’ Π½Π°Ρ‡Π°Π»Π΅ дСвяностых Π³ΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΎΡˆΠ»ΠΎΠ³ΠΎ Π²Π΅ΠΊΠ° ΠΏΡ€ΠΈΠΎΠ½Ρ‹ Π±Ρ‹Π»ΠΈ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ ΠΈ Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae. Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² Π½Π΅ ΡΠ²ΡΠ·Π°Π½ с ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚, скорСС всСго, Π°Π΄Π°ΠΏΡ‚ΠΈΠ²Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Π±Π΅Π»ΠΊΠΎΠ² Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π² ΠΏΡ€ΠΈΠΎΠ½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ опрСдСляСт наслСдованиС Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠ², связанных с Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠ΅ΠΉ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠ΅ΠΉ этих Π±Π΅Π»ΠΊΠΎΠ². Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Π΅ свойства Π±Π΅Π»ΠΊΠΎΠ² Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΎΠ±ΡƒΡΠ»Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ особый ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ эпигСнСтичСского наслСдования ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΡŽ экспрСссии Π³Π΅Π½ΠΎΠ² Π½Π° ΠΏΠΎΡΡ‚трансляционном ΡƒΡ€ΠΎΠ²Π½Π΅.

Π’ Π½Π°ΡΡ‚оящСС врСмя Ρƒ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… извСстСн ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ S. cerevisiae Π½Π°ΠΉΠ΄Π΅Π½ΠΎ Ρ‚Ρ€ΠΈ Ρ‚Π°ΠΊΠΈΡ… Π±Π΅Π»ΠΊΠ°. Π•Ρ‰Ρ‘ ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ выявлСн Ρƒ Π³Ρ€ΠΈΠ±Π° Podospora anserina. Однако, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° Π³Π΅Π½ΠΎΠΌΠΎΠ² Ρ€Π°Π·Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΏΠΎΠΈΡΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ, Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚Π°ΠΊΠΎΠ²Ρ‹ΠΌ ΡƒΠΆΠ΅ извСстных ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΎΠ½Ρ‹ распространСны Π² ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠ³Ρ€Π°Ρ‚ΡŒ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ физиологичСских процСссов Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ Π³ΠΎΡ€Π°Π·Π΄ΠΎ большСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Ρ‡Π΅ΠΌ извСстно сСйчас.

Одним ΠΈΠ· Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… свойств ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² являСтся сущСствованиС ΠΈΡ… Π½Π°ΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΡ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² (ΡˆΡ‚Π°ΠΌΠΌΠΎΠ²). Π­Ρ‚ΠΎ свойство проявляСтся ΠΊΠ°ΠΊ Ρƒ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…, Ρ‚Π°ΠΊ ΠΈ Ρƒ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ. Π‘Π΅Π»ΠΎΠΊ, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΉ ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ свойствами, способСн Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρƒ ΠΈΠ· Π½Π΅ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ состояния Π² ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ΅. По Π²ΡΠ΅ΠΉ видимости, ΠΎΠ½ ΡΠΏΠΎΡΠΎΠ±Π΅Π½ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Ρ‚ΡŒ мноТСство ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ сущСствованиС Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈΠΎΠ½Π°. Данная Ρ€Π°Π±ΠΎΡ‚Π° посвящСна исслСдованию молСкулярных основ возникновСния Ρ€Π°Π·Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ состояния Π±Π΅Π»ΠΊΠ° Sup35 Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ S. cerevisiae. Π‘ΠΎΠ»Π΅Π΅ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎ, Ρ€Π°Π±ΠΎΡ‚Π° прСдставляСт собой ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΡƒ изучСния Ρ€ΠΎΠ»ΠΈ аминокислотных ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² Π±Π΅Π»ΠΊΠ° Sup35 Π² ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈΠΎΠ½Π°, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ этим Π±Π΅Π»ΠΊΠΎΠΌ.

ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

118 Π’Π«Π’ΠžΠ”Π«.

1. ВстраиваниС Π±Π΅Π»ΠΊΠΎΠ² Sup35, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… мСньшС Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… аминокислотных ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ², Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Sup35 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ частоты ΠΏΠΎΡ‚Π΅Ρ€ΠΈ [PSI+].

2. Минимальная Π΄Π»ΠΈΠ½Π° ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Sup35, достаточная для поддСрТания «ΡΠΈΠ»ΡŒΠ½Ρ‹Ρ…» ΠΈ «ΡΠ»Π°Π±Ρ‹Ρ…» Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² [PSI+], Ρ€Π°Π²Π½Π° 64-ΠΌ ΠΈ 83-ΠΌ N-ΠΊΠΎΠ½Ρ†Π΅Π²Ρ‹ΠΌ аминокислотным остаткам, соотвСтствСнно.

3. АминокислотныС ΠΏΠΎΠ²Ρ‚ΠΎΡ€Ρ‹ Π±Π΅Π»ΠΊΠ° Sup35 ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚ΠΎΠ² узнавания ΡˆΠ°ΠΏΠ΅Ρ€ΠΎΠ½ΠΎΠΌ Hspl04.

4. Π‘Π΅Π»ΠΎΠΊ Sup35 с Ρ‡Π΅Ρ‚Ρ‹Ρ€ΡŒΠΌΡ аминокислотными ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π°ΠΌΠΈ области NR Π½Π΅ ΡΠΏΠΎΡΠΎΠ±Π΅Π½ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠΎΠ½Π½ΡƒΡŽ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΡƒΡŽ для «ΡΠΈΠ»ΡŒΠ½Ρ‹Ρ…» Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² [PSI+].

5. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Π²Π°Ρ€ΠΈΠ°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ свойств [PSI+] зависит ΠΎΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π² ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ области NR Π±Π΅Π»ΠΊΠ° Sup35.

5.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

.

ΠŸΡ€ΠΈΠΎΠ½Ρ‹ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ сущСствСнный интСрСс ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ, Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, сами ΠΏΠΎ ΡΠ΅Π±Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π½ΠΎΠ²ΠΎΠ΅ гСнСтичСскоС явлСниС, Π° Π²ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΡƒΠ΄ΠΎΠ±Π½ΠΎΠΉ модСлью для изучСния Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… свойств, присущих Ρ„Π΅Π½ΠΎΠΌΠ΅Π½Ρƒ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² Π² Ρ†Π΅Π»ΠΎΠΌ. Одним ΠΈΠ· Ρ‚Π°ΠΊΠΈΡ… свойств являСтся Ρ„Π΅Π½ΠΎΠΌΠ΅Π½ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ²ΠΎΠ³ΠΎ разнообразия ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ². Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»Π° прСдпринята ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ° изучСния этого Ρ„Π΅Π½ΠΎΠΌΠ΅Π½Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚Π° [PS/1″ ] Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось выяснСниС Ρ€ΠΎΠ»ΠΈ области NR ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π±Π΅Π»ΠΊΠ° Sup35 Π² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈΠΎΠ½Π° [PS74]. Для осущСствлСния этой Ρ†Π΅Π»ΠΈ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»ΠΈ поставлСны ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ: 1) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ поддСрТания [PST1-] Π±Π΅Π»ΠΊΠ°ΠΌΠΈ Sup35 с ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½Π½Ρ‹ΠΌ количСством аминокислотных ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² области NR ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π°, 2) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ поддСрТания Π²Π°Ρ€ΠΈΠ°Π½Ρ‚-спСцифичных свойств [PST1″ ] этими Π±Π΅Π»ΠΊΠ°ΠΌΠΈ.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ выполнСния этих Π·Π°Π΄Π°Ρ‡, Π½Π°ΠΌ ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ участок ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π°, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΉ для поддСрТания «ΡΠΈΠ»ΡŒΠ½Ρ‹Ρ…» ΠΈ «ΡΠ»Π°Π±Ρ‹Ρ…» Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² [PS/4-]. ΠœΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠ΅ довольно Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ области ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ с 65 ΠΏΠΎ 112 Π°. ΠΊ. Π½Π΅ ΠΏΡ€Π΅ΠΏΡΡ‚ствуСт ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ [PST4-]. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΡ‹ Π΄ΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ информация ΠΎ ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠΉ ΡƒΠΊΠ»Π°Π΄ΠΊΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ сохранСна ΠΎΡΡ‚Π°Π²ΡˆΠ΅ΠΉΡΡ Ρ‡Π°ΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π±Π΅Π»ΠΊΠ° Sup35.

ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° области NR ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π±Π΅Π»ΠΊΠ° Sup35 ΠΌΠΎΠΆΠ΅Ρ‚ Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° ΡΠΏΠ΅ΠΊΡ‚Ρ€ ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ, ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅ΠΌΡ‹Ρ… этим Π±Π΅Π»ΠΊΠΎΠΌ. Наши Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Π°Ρ€ΠΈΠ°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈΠΎΠ½Π° [PS/4] опрСдСляСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠΉ ΡƒΠΊΠ»Π°Π΄ΠΊΠΈ области NR ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° Π±Π΅Π»ΠΊΠ° Sup35. ΠœΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π΄Π΅Π»Π΅Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠ° Sup35 с Ρ€Π°Π·Π½Ρ‹ΠΌ количСством аминокислотных ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² области NR Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚-ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΡƒΡŽ ΡΠ»ΠΈΠΌΠΈΠ½Π°Ρ†ΠΈΡŽ [PS74] ΠΈ ΠΈΠ·ΡƒΡ‡ΠΈΠ»ΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ этих Π±Π΅Π»ΠΊΠΎΠ² Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Ρ‹, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΎΠΌ Sup35 Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°. Помимо этого, Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π» Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π°Π½Π°Π»ΠΈΠ·Π° распрСдСлСния Π±Π΅Π»ΠΊΠ° Sup35 ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ Π½Π΅ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈ. Π­Ρ‚ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Ρ‘Π½ для исслСдования ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ Π½Π΅ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Ρ… Π°ΠΌΠΈΠ»ΠΎΠΈΠ΄ΠΎΠ² ΠΊΠ°ΠΊ Π²Ρ‹ΡΡˆΠΈΡ…, Ρ‚Π°ΠΊ ΠΈ Π½ΠΈΠ·ΡˆΠΈΡ… эукариот.

ΠœΡ‹ Π½Π°Π΄Π΅Π΅ΠΌΡΡ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΎ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹Ρ… основах Π²Π°Ρ€ΠΈΠ°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈΠΌΠ΅ΡŽΡ‚ нСсомнСнный общСбиологичСский интСрСс. НовыС Ρ„Π°ΠΊΡ‚Ρ‹, ΠΊΠ°ΡΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ, ΠΌΠΎΠ³ΡƒΡ‚ ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ исслСдования ΠΏΡ€ΠΈΠΎΠ½ΠΎΠ² ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ…. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ, способных ΡΠ»ΠΈΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ΅ состояниС, ΠΌΠΎΠΆΠ΅Ρ‚ Π΄Π°Ρ‚ΡŒ ΠΈΠΌΠΏΡƒΠ»ΡŒΡ ΠΊ ΠΏΠΎΠΈΡΠΊΡƒ Π½ΠΎΠ²Ρ‹Ρ… ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ ΠΏΡ€ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ для лСчСния ΠΏΡ€ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. ИнгС-Π’Π΅Ρ‡Ρ‚ΠΎΠΌΠΎΠ², Π‘.Π“. ΠΈ ΠΠ΄Ρ€ΠΈΠ°Π½ΠΎΠ²Π°, Π’.М. (1970) РСцСссивныС супСр-супрСссоры Ρƒ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ. Π“Π΅Π½Π΅Ρ‚ΠΈΠΊΠ°, 6,103−115.
  2. Aigle, M. and Lacroute, F. (1975) Genetical aspects of URE3., a non-mitochondrial, cytoplasmically inherited mutation in yeast. Mol. Gen. Genet., 136, 327−335.
  3. Allen, K.D., Si, K., Theis, M. and Kandel, E.R. (2005) Prion propagation of the translational regulator, CPEB: does it occur in the mammalian brain? In abstracts of
  4. Prion Biology" Joint Cold Spring Harbor Laboratory / Wellcome Trust Conference.
  5. Alper, T., Cramp, W.A., Haig, D.A. and Clarke, M.C. (1967) Does the agent of scrapie replicate without nucleic acid? Nature, 214, 764−766.
  6. Bach, S., Talarek, N., Andrieu, T., Vierfond, J.M., Mettey, Y., Galons, H., Dormont, D., Meijer, L., Cullin, C. and Blondel, M. (2003) Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat. Biotechnol., 21,10 751 081.
  7. Becker, J., Walter, W., Yan, W. and Craig, E.A. (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydjlp, in protein translocation in vivo. Mol. Cell Biol., 16, 4378−4386.
  8. Bellinger-Kawahara, C.G., Kempner, E., Groth, D., Gabizon, R. and Prusiner, S.B. (1988) Scrapie prion liposomes and rods exhibit target sizes of 55,000 Da. Virology, 164, 537−541.
  9. Bessen, R.A., Kocisko, D.A., Raymond, G.J., Nandan, S., Lansbury, P.T. and Caughey, B. (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature, 375, 698−700.
  10. Bessen, R.A. and Marsh, R.F. (1994) Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol., 68, 78 597 868.
  11. Blattler, T., Brandner, S., Raeber, AJ., Klein, M.A., Voigtlander, T., Weissmann, C. and Aguzzi, A. (1997) PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature, 389, 69−73.
  12. Boeke, J.D., Lacroute, F. and Fink, G.R. (1984) A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet., 197, 345−346.
  13. Bounhar, Y., Zhang, Y., Goodyer, C.G. and LeBlanc, A. (2001) Prion protein protects human neurons against Bax-mediated apoptosis. J. Biol. Chem., 276, 39 145−39 149.
  14. Brachmann, A., Baxa, U. and Wickner, R.B. (2005) Prion generation in vitro: amyloid of Ure2p is infectious. EMBOJ., 24, 3082−3092.
  15. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248−254.
  16. Bradley, M.E., Edskes, H. K" Hong, J.Y., Wickner, R.B. and Liebman, S.W. (2002) Interactions among prions and prion «strains» in yeast. Proc. Natl. Acad. Sci. U. S. A, 99,16 392−16 399.
  17. Bradley, M.E. and Liebman, S.W. (2004) The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast PS/*. prions. Mol. Microbiol., 51,16 491 659.
  18. Brandner, S., Isenmann, S., Raeber, A., Fischer, M., Sailer, A., Kobayashi, Y., Marino, S., Weissmann, C. and Aguzzi, A. (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature, 379, 339−343.
  19. Brown, J.C. and Lindquist, S.L. (2005) Characterization of the prion-like phenotype for glucosamine resistance in Saccharomyces cerevisiae. In abstracts of «Prion Biology» -Joint Cold Spring Harbor Laboratory / Wellcome Trust Conference.
  20. Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., Giese, A., Westaway, D. and Kretzschmar, H. (1997) The cellular prion protein binds copper in vivo. Nature, 390, 684−687.
  21. Brown, D.R., Wong, Π’.S., Hafiz, F., Clive, C., Haswell, S.J. and Jones, I.M. (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem. J., 344, 1−5.
  22. Bruce, M., Chree, A., McConnell, I., Foster, J., Pearson, G. and Fraser, H. (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos. Trans. R. Soc. bond Π’ Biol. Sci., 343, 405 411.
  23. Bueler, H., Fischer, M., Lang, Y., Bluethmann, H., Lipp, H.P., DeArmond, S.J., Prusiner, S.B., Aguet, M. and Weissmann, C. (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature, 356, 577−582.
  24. Carlton, W.W. (1969) Spongiform encephalopathy induced in rats and guinea pigs by cuprizone. Exp. Mol. Pathol., 10, 274−287.
  25. Castilla, J., Saa, P., Hetz, C. and Soto, C. (2005) In vitro generation of infectious scrapie prions. Cell, 121,195−206.
  26. Caughey, B., Kocisko, D.A., Raymond, G.J. and Lansbury, P.T.Jr., (1995) Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem. Biol., 2, 807−817.
  27. Caughey, B., Raymond, G.J. and Bessen, R.A. (1998) Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J. Biol. Chem., 273, 3 223 032 235.
  28. Chandler, R.L. (1961) Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet, 1, 1378−1379.
  29. Chernoff, Y.O., Derkach, I.L. and Inge-Vechtomov, S.G. (1993) Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet., 24,268−270.
  30. Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G. and Liebman, S.W. (1995) Role of the chaperone protein Hspl04 in propagation of the yeast prion-like factor psi+. Science, 268, 880−884.
  31. Chernoff, Y.O., Newnam, G.P., Kumar, J., Allen, K. and Zink, A.D. (1999) Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability and toxicity of the PSI prion. Mol. Cell Biol., 19, 8103−8112.
  32. Chesebro, B., Race, R., Wehrly, K., Nishio, J., Bloom, M., Lechner, D., Bergstrom, S., Robbins, K., Mayer, L., Keith, J.M., et al. (1985) Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature, 315, 331−333.
  33. Chiarini, L.B., Freitas, A.R., Zanata, S.M., Brentani, R.R., Martins, V.R. and Linden, R. (2002) Cellular prion protein transduces neuroprotective signals. EMBOJ., 21,33 173 326.
  34. Chisholm, V.T., Lea, H.Z., Rai, R. and Cooper, T.G. (1987) Regulation of allantoate transport in wild-type and mutant strains of Saccharomyces cerevisiae. J. Bacteriol., 169, 1684−1690.
  35. Chiti, F., Stefani, M., Taddei, N., Ramponi, G. and Dobson, C.M. (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature, 424, SOS-SOS.
  36. Clarke, A.R., Jackson, G.S. and Collinge, J. (2001) The molecular biology of prion propagation. Philos. Trans. R. Soc. bond Π’ Biol. Sci., 356, 185−195.
  37. Collin, P., Beauregard, P.B., Elagoz, A. and Rokeach, L.A. (2004) A non-chromosomal factor allows viability of Schizosaccharomyces pombe lacking the essential chaperone calnexin. J. Cell Sci., 117, 907−918.
  38. Collinge, J., Palmer, M.S., Sidle, K.C., Gowland, I., Medori, R., Ironside, J. and Lantos, P. (1995) Transmission of fatal familial insomnia to laboratory animals. Lancet, 346, 569−570.
  39. Collinge, J., Sidle, K.C., Meads, J., Ironside, J. and Hill, A.F. (1996) Molecular analysis of prion strain variation and the aetiology of’new variant' CJD. Nature, 383, 685−690.
  40. Cooper, T.G. (1982) The regulation of yeast gene expression by multiple control elements. Basic Life Sci., 19, 143−161.
  41. Cooper, T.G., Ferguson, D., Rai, R. and Bysani, N. (1990) The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae. J. Bacteriol., 172,1014−1018.
  42. Coschigano, P.W. and Magasanik, B. (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione s-transferases. Mol. Cell Biol., 11, 822−832.
  43. Courchesne, W.E. and Magasanik, B. (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J. Bacteriol., 170, 708−713.
  44. Coustou-Linares, V., Maddelein, M.L., Begueret, J. and Saupe, S.J. (2001) In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol. Microbiol., 42, 1325−1335.
  45. Coustou, V., Deleu, C., Saupe, S. and Begueret, J. (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Nad. Acad. Sci. U. S. A, 94, 9773−9778.
  46. Cox, B. (1965) PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity, 20, 505−521.
  47. Π‘ΠΎΡ…, Π’., Ness, F. and Tuite, M. (2003) Analysis of the generation and segregation of propagons: entities that propagate the PSI*. prion in yeast. Genetics, 165, 23−33.
  48. Cox, B.S., Tuite, M.F. and McLaughlin, C.S. (1988) The psi factor of yeast: a problem in inheritance. Yeast, 4, 159−178.
  49. Crozet, C., Lin, Y.L., Mettling, C., Mourton-Gilles, C., Corbeau, P., Lehmann, S. and Perrier, V. (2004) Inhibition of PrPSc formation by lentiviral gene transfer of PrP containing dominant negative mutations. J. Cell Sci., 117, 5591−5597.
  50. Cyr, D.M., Lu, X. and Douglas, M.G. (1992) Regulation of Hsp70 function by a eukaryotic DnaJ homolog. J. Biol. Chem., 267, 20 927−20 931.
  51. DePace, A.H., Santoso, A., Hillner, P. and Weissman, J.S. (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell, 93, 1241−1252.
  52. DePace, A.H. and Weissman, J.S. (2002) Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nat. Struct. Biol., 9, 389−396.
  53. Derkatch, I.L., Bradley, M.E., HongJ.Y. and Liebman, S.W. (2001) Prions affect the appearance of other prions: the story of PIN (+). Cell, 106,171−182.
  54. Derkatch, I.L., Bradley, M.E., Masse, S.V., Zadorsky, S.P., Polozkov, G.V., Inge-Vechtomov, S.G. and Liebman, S.W. (2000) Dependence and independence of PSI (+). and [PIN (+)]: a two-prion system in yeast? EMBOJ., 19, 1942−1952.
  55. Derkatch, I.L., Bradley, M.E., Zhou, P., Chernoff.Y.O. and Liebman, S.W. (1997) Genetic and environmental factors affecting the de novo appearance of the Π Π‘Π“. prion in Saccharomyces cerevisiae. Genetics, 147, 507−519.
  56. Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., Inge-Vechtomov, S.G. and Liebman, S.W. (1996) Genesis and variability of RS7. prion factors in Saccharomyces cerevisiae. Genetics, 144, 1375−1386.
  57. Dobson, C.M. (1999) Protein misfolding, evolution and disease. Trends Biochem. Sci., 24, 329−332.
  58. Dobson, C.M. (2001) The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. bond Π’ Biol. Sci., 356,133−145.
  59. Doel.S.M., McCready, S.J., Nierras, C.R. and Cox, B.S. (1994) The dominant PNM2-mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics, 137, 659−670.
  60. Dos Reis, S., Coulary-Salin, B., Forge, V., Lascu, I., Begueret, J. and Saupe, S J. (2002) The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J. Biol. Chem., 277, 5703−5706.
  61. Eaglestone, S.S., Cox, B.S. and Tuite, M.F. (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J., 18,1974−1981.
  62. Eaglestone, S.S., Ruddock, L.W., Cox, B.S. and Tuite, M.F. (2000) Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant PSI (+). of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A, 97, 240−244.
  63. Edskes, H.K., Gray, V.T. and Wickner.R.B. (1999) The URE3. prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc. Natl. Acad. Sci. U. S. A, 96, 1498−1503.
  64. Elghetany, M.T. and Saleem, A. (1988) Methods for staining amyloid in tissues: a review. Stain Technol., 63, 201−212.
  65. Enari, M., Flechsig, E. and Weissmann, C. (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl. Acad. Sci. U. S. A, 98, 9295−9299.
  66. Ferreira, P.C., Ness, F., Edwards, S.R., Cox, B.S. and Tuite.M.F. (2001) The elimination of the yeast PSf. prion by guanidine hydrochloride is the result of Hspl04 inactivation. Mol. Microbiol., 40, 1357−1369.
  67. Forloni, G., Angeretti, N., Chiesa, R., Monzani, E., Salmona, M., Bugiani, 0. and Tagliavini, F. (1993) Neurotoxicity of a prion protein fragment. Nature, 362, 543−546.
  68. Gabriel, J.M., Oesch, B., Kretzschmar, H., Scott, M. and Prusiner, S.B. (1992) Molecular cloning of a candidate chicken prion protein. Proc. Natl. Acad. Sci. U. S. A, 89, 90 979 101.
  69. Gajdusek, D.C., Gibbs, C.J. and Alpers, M. (1966). Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature, 209, 794−796.
  70. Gietz, R.D., Schiestl, R.H., Willems, A.R. and Woods, R.A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast, 11, 355−360.
  71. Gietz, R.D. and Sugino, A. (1988) New yeast -Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene, 74, 527−534.
  72. Glatzel, M. and Aguzzi, A. (2000) PrP© expression in the peripheral nervous system is a determinant of prion neuroinvasion. J. Gen. Virol., 81, 2813−2821.
  73. Glover, J.R., Kowal, A.S., Schirmer, E.C., Patino, M.M., Liu, J.J. and Lindquist, S. (1997) Self-seeded fibers formed by Sup35, the protein determinant of PSf., a heritable prion-like factor of S. cerevisiae. Cell, 89, 811−819.
  74. Glover, J.R. and Lindquist, S. (1998) Hspl04, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell, 94, 73−82.
  75. Gorodinsky, A. and Harris, D.A. (1995) Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J. Cell Biol., 129, 619−627.
  76. Griffith, J.S. (1967) Self-replication and scrapie. Nature, 215, 1043−1044.
  77. Grimminger, V., Richter, K., Imhof, A., Buchner, J. and Walter, S. (2004) The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hspl04. J. Biol. Chem., 279, 7378−7383.
  78. Hawthorne, D.C. and Leupold, U. (1974) Suppressors in yeast. Curr. Top. Microbiol. Immunol., 64,1−47.
  79. Hill, A.F., Desbruslais, M., Joiner, S., Sidle, K.C., Gowland, I., Collinge, J., Doey, L.J. and Lantos, P. (1997) The same prion strain causes vCJD and BSE. Nature, 389, 448−50, 526.
  80. Hoshino, S., Hosoda, N., Araki, Y., Kobayashi, T., Uchida, N., Funakoshi, Y. and Katada, T. (1999) Novel function of the eukaryotic polypeptide-chain releasing factor 3 (eRF3/GSPT) in the mRNA degradation pathway. Biochemistry (Mosc.), 64, 13 671 372.
  81. Hosoda, N., Kobayashi, T., Uchida, N., Funakoshi, Y., Kikuchi, Y., Hoshino, S. and Katada, T. (2003) Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J. Biol. Chem., 278, 38 287−38 291.
  82. Inoue, H., Nojima, H. and Okayama, H. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23−28.
  83. Jarrett, J.T. and Lansbury, P.T.Jr. (1993) Seeding «one-dimensional crystallization» of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell, 73,10 551 058.
  84. Jung, G., Jones, G. and Masison, D.C. (2002) Amino acid residue 184 of yeast Hspl04 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc. Natl Acad. Sci. U. S. A, 99, 9936−9941.
  85. Kajava, A.V., Baxa, U., Wickner, R.B. and Steven, A.C. (2004) A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure. Proc. Natl. Acad. Sci. U. S. A, 101, 7885−7890.
  86. King, C.Y. and Diaz-Avalos, R. (2004) Protein-only transmission of three yeast prion strains. Nature, 428, 319−323.
  87. King, C.Y., Tittmann, P., Gross, H., Gebert, R., Aebi, M. and Wuthrich, K. (1997) Prion-inducing domain 2−114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl. Acad. Sci. U. S. A, 94, 6618−6622.
  88. Kishimoto, A., Hasegawa, K., Suzuki, H., Taguchi, H., Namba, K. and Yoshida, M. (2004) beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem. Biophys Res. Commun., 315, 739−745.
  89. Kochneva-Pervukhova, N.V., Chechenova, M.B., Valouev, I.A., Kushnirov, V.V., Smirnov, V.N. and Ter-Avanesyan, M.D. (2001) Psi (+). prion generation in yeast: characterization of the 'strain' difference. Yeast, 18,489−497.
  90. Komar, A.A., Lesnik, T., Cullin, C., Merrick, W.C., Trachsel, H. and Altmann, M. (2003) Internal initiation drives the synthesis of Ure2 protein lacking the prion domain and affects URE3. propagation in yeast cells. EMBO J., 22,1199−1209.
  91. Kramer, M.L., Kratzin, H.D., Schmidt, Π’., Romer, A., Windl, 0., Liemann, S., Hornemann, S. and Kretzschmar, H. (2001) Prion protein binds copper within the physiological concentration range. J. Biol. Chem., 276, 16 711−16 719.
  92. Krishnan, R. and Lindquist, S.L. (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature, 435, 765−772.
  93. Kryndushkin, D.S., Alexandrov, I.M., Ter-Avanesyan, M.D. and Kushnirov, V.V. (2003) Yeast PSf. prion aggregates are formed by small Sup35 polymers fragmented by Hspl04. J. Biol. Chem., 278,49 636−49 643.
  94. Kushnirov, V.V., Kryndushkin.D.S., Boguta, M., Smirnov.V.N. and Ter-Avanesyan, M.D. (2000) Chaperones that cure yeast artificial PS/1-. and their prion-specific effects. Curr. Biol., 10,1443−1446.
  95. Kushnirov, V.V. and Ter-Avanesyan, M.D. (1998) Structure and replication of yeast prions. Cell, 94,13−16.
  96. Kuwahara, C., Takeuchi, A.M., Nishimura, T., Haraguchi.K., Kubosaki, A., Matsumoto, Y., Saeki, K., Matsumoto, Y., Yokoyama, T., Itohara, S. and Onodera, T. (1999) Prions prevent neuronal cell-line death. Nature, 400, 225−226.
  97. Lacroute, F. (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacterid, 106, 519−522.
  98. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680−685.
  99. Lee, S., Hisayoshi, M., Yoshida, M. and Tsai, F.T. (2003) Crystallization and preliminary X-ray crystallographiс analysis of the HsplOO chaperone ClpB from Thermus thermophilus. Acta Crystallogr. D. Biol. Crystallogr., 59, 2334−2336.
  100. Legname, G., Baskakov, I.V., Nguyen, H.O., Riesner, D., Cohen, F.E., DeArmond.S.J. and Prusiner, S.B. (2004) Synthetic mammalian prions. Science., 305, 673−676.
  101. Liebman, S.W. and Sherman, F. (1979) Extrachromosomalpsi+ determinant suppresses nonsense mutations in yeast. J. Bacteriol., 139, 1068−1071.
  102. Lindquist, S. (1997) Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell, 89, 495−498.
  103. Liu, J.J. and Lindquist, S. (1999) Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature, 400, 573−576.
  104. Liu, J.J., Sondheimer, N. and Lindquist, S.L. (2002) Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion PS/1-. Proc. Natl, Acad. Sci. U. S. A, 99, 16 446−16 453.
  105. Lopez, N. Aron, R. and Craig, E. A. (2003) Specificity of class II Hsp40 Sisl in maintenance of yeast prion RNQ+. Mol. Biol. Cell, 14, 1172−1181.
  106. Lund, P.M. and Cox, B.S. (1981) Reversion analysis of psi. mutations in Saccharomyces cerevisiae. Genet. Res., 37, 173−182.
  107. Ma, J. and Lindquist, S. (1999) De novo generation of a PrPSc-like conformation in living cells. Nat. Cell Biol., 1, 358−361.
  108. Maddelein, M.L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B- and Saupe, S.J. (2002) Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl. Acad. Sci. U. S. A, 99, 7402−7407.
  109. Maddelein, M.L. and Wickner, R.B. (1999) Two prion-inducing regions of Ure2p are nonoverlapping. Mol. Cell Biol., 19,4516−4524.
  110. Masison, D.C. and Wickner, R.B. (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science, 270, 93−95.
  111. McKinley, M.P., Bolton, D.C. and Prusiner, S.B. (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell, 35, 57−62.
  112. Michelitsch, M.D. and Weissman, J.S. (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. U. S. A, 97, 11 910−11 915.
  113. Moriyama, H., Edskes, H.K. and Wickner, R.B. (2000) URE3. prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hspl04 and curing by overexpressed chaperone Ydjlp. Mol. Cell Biol., 20, 8916−8922.
  114. Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R. and Eisenberg, D. (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature, 435, 773−778.
  115. Ness, F., Ferreira, P., Cox, B.S. and Tuite, M.F. (2002) Guanidine hydrochloride inhibits the generation of prion «seeds» but not prion protein aggregation in yeast. Mol. Cell Biol., 22, 5593−5605.
  116. Newnam, G.P., Wegrzyn, R.D., Lindquist, S.L. and Chernoff, Y.O. (1999) Antagonistic interactions between yeast chaperones Hspl04 and Hsp70 in prion curing. Mol. Cell Biol., 19,1325−1333.
  117. Oesch, B., Westaway, D., Walchli, M., McKinley, M.P., Kent, S.B., Aebersold, R., Barry, R.A., Tempst, P., Teplow, D.B., Hood, L.E., et al. (1985) A cellular gene encodes scrapie PrP 27−30 protein. Cell, 40, 735−746.
  118. Ohba, M. (1997) Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae. FEBSLett., 409, 307−311.
  119. Oka, M., Nakai, M., Endo, T., Lim, C.R., Kimata, Y. and Kohno, K. (1998) Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrantmicrotubule formation in M-phase of Saccharomyces cerevisiae. J. Biol. Chem., 273, 29 727−29 737.
  120. Osherovich, L.Z., Cox, B.S., Tuite, M.F. and Weissman, J.S. (2004) Dissection and design of yeast prions. PLoS. Biol., 2, E86.
  121. Parham, S.N., Resende, C.G. and Tuite, M.F. (2001) Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J., 20,2111−2119.
  122. Parsell, D.A., Kowal, A.S. and Lindquist, S. (1994a) Saccharomyces cerevisiae Hspl04 protein. Purification and characterization of ATP-induced structural changes. J. Biol. Chem., 269, 4480−4487.
  123. Parsell, D.A., Kowal, A.S., Singer, M.A., and Lindquist, S. (1994b) Protein disaggregation mediated by heat-shock protein Hspl04. Nature, 372, 475−478.
  124. Patino, M.M., Liu, J.J., Glover, J.R. and Lindquist, S. (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science, 273, 622−626.
  125. Pattison, I.H. and Jebbett, J.N. (1973) Clinical and histological recovery from the scrapie-like spongiform encephalopathy produced in mice by feeding them with cuprizone. J. Pathol., 109, 245−250.
  126. Pauly, P.C. and Harris, D.A. (1998) Copper stimulates endocytosis of the prion protein. J. Biol. Chem., 273, 33 107−33 110.
  127. Paushkin, S.V., Kushnirov, V.V., Smirnov, V.N. and Ter-Avanesyan, M.D. (1996) Propagation of the yeast prion-like psi+. determinant is mediated by oligomerization of the iS<7P35-encoded polypeptide chain release factor. EMBOJ., 15, 3127−3134.
  128. Paushkin, S.V., Kushnirov, V.V., Smirnov, V.N. and Ter-Avanesyan, M.D. (1997) In vitro propagation of the prion-like state of yeast Sup35 protein. Science, 277, 381−383.
  129. Perutz, M.F. (1999) Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem. Sci., 24, 58−63.
  130. Perutz, M.F., Finch, J.T., Berriman, J. and Lesk, A. (2002a) Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. U. S. A, 99, 5591−5595.
  131. Perutz, M.F., Johnson, Π’., Suzuki, M. and Finch, J.T. (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. U. S. A, 91, 5355−5358.
  132. Prusiner, S.B. (1982) Novel proteinaceous infectious particles cause scrapie. Science, 216,136−144.
  133. Prusiner, S.B. (1991) Molecular biology of prion diseases. Science, 252, 1515−1522.
  134. Prusiner, S.B., Garfin, D.E., Cochran, S.P., Baringer, J.R., Hadlow, W.J., Eklund, C.M. and Race, R.E. (1978) Evidence for hydrophobic domains on the surface of the scrapie agent. Trans. Am. Neurol. Assoc., 103, 62−64.
  135. Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R. and Wuthrich, K. (1996) NMR structure of the mouse prion protein domain PrP (121−321). Nature, 382, 180−182.
  136. Rivera-Milla, E., Stuermer, C.A. and Malaga-Trillo, E. (2003) An evolutionary basis for scrapie disease: identification of a fish prion mRNA. Trends Genet., 19, 72−75.
  137. Saborio.G.P., Permanne, B. and Soto, C. (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature, 411, 810−813.
  138. Salnikova, A.B., Kryndushkin, D.S., Smimov, V.N., Kushnirov, V.V. and Ter-Avanesyan, M.D. (2005) Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids. J. Biol. Chem., 280, 8808−8812.
  139. Sambrook, J., Fritsch.E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  140. Santoso, A., Chien, P., Osherovich, L.Z. and Weissman, J.S. (2000) Molecular basis of a yeast prion species barrier. Cell, 100, 277−288.
  141. Saupe, S.J. (2000) Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol. Mol. Biol. Rev., 64, 489−502.
  142. Schwimmer, C. and Masison, D.C. (2002) Antagonistic interactions between yeast PSI (+). and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssalp but not by Ssa2p. Mol. Cell Biol., 22, 3590−3598.
  143. Selkoe, D.J. (2003) Folding proteins in fatal ways. Nature, 426, 900−904.
  144. Sherman, F., Fink, G.R. and Hicks, J.B. (1986) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  145. Shorter, J. and Lindquist, S. (2004) Hspl04 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science, 304,1793−1797.
  146. Si, K., Lindquist, S., and KandeI, E.R. (2003b) A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell, 115, 879−891.
  147. Sigurdsson, E.M., Sy, M.S., Li, R., Scholtzova, H., Kascsak, R.J., Kascsak, R., Carp, R., Meeker, H.C., Frangione, B. and Wisniewski, T. (2003) Anti-prion antibodies for prophylaxis following prion exposure in mice. Neurosci. Lett., 336, 185−187.
  148. Sikorski, R.S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19−27.
  149. Sipe, J.D. and Cohen, A.S. (2000) Review: history of the amyloid fibril. J. Struct. Biol., 130, 88−98.
  150. Smith, D.F., Sullivan, W.P., Marion, T.N., Zaitsu, K., Madden, Π’., McCormick, D.J. and Toft, D.O. (1993) Identification of a 60-kilodalton stress-related protein, p60, which interacts with hsp90 and hsp70. Mol. Cell Biol., 13, 869−876.
  151. Sondheimer, N. and Lindquist, S. (2000) Rnql: an epigenetic modifier of protein function in yeast. Mol. Cell, 5, 163−172.
  152. Sondheimer, N., Lopez, N., Craig, E.A. and Lindquist, S. (2001) The role of Sisl in the maintenance of the RNQ+. prion. EMBO J., 20, 2435−2442.
  153. Stahl, N., Baldwin, M.A., Teplow, D.B., Hood, L., Gibson, B.W., Burlingame, A.L. and Prusiner, S.B. (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry, 32, 1991−2002.
  154. Stansfield, I., Jones, K.M., Kushnirov, V.V., Dagkesamanskaya, A.R.,
  155. Poznyakovski, A.I., Paushkin, S.V., Nierras, C.R., Cox, B.S., Ter-Avanesyan, M.D. and Tuite, M.F. (1995) The products of the SUP45 (eRFl) and SUP35 genes interact tomediate translation termination in Saccharomyces cerevisiae. EMBO J., 14, 43 654 373.
  156. Sunde, M. and Blake, C. (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem., 50, 123−159.
  157. Tanaka, M., Chien, P., Naber, N., Cooke, R. and WeissmanJ.S. (2004) Conformational variations in an infectious protein determine prion strain differences. Nature, 428, 323−328.
  158. Taraboulos, A., Raeber, AJ., Borchelt, D.R., Serban, D. and Prusiner, S.B. (1992) Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell, 3, 851 863.
  159. Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L. and Prusiner, S.B. (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell Biol., 129,121 132.
  160. Ter-Avanesyan, M.D., Dagkesamanskaya, A.R., Kushnirov, V.V. and Smirnov, V.N. (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant psi+. in the yeast Saccharomyces cerevisiae. Genetics, 137, 671−676.
  161. Thackray, A.M., Knight, R., Haswell, S.J., Bujdoso, R. and Brown, D.R. (2002) Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem. J., 362,253−258.
  162. Theis, M., Si, K. and Kandel, E.R. (2003) Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc. Natl. Acad. Sci. U. S. A., 100, 9602−9607.
  163. Towbin.H., Staehelin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U. S. A., 16, 4350−4354.
  164. True, H.L. and Lindquist, S.L. (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature, 407,477−483.
  165. Tuite, M.F., Mundy, C.R. and Cox, B.S. (1981) Agents that cause a high frequency of genetic change from psi+. to psi~ in Saccharomyces cerevisiae. Genetics, 98, 691 711.
  166. Turoscy, V. and Cooper, T.G. (1987) Ureidosuccinate is transported by the allantoate transport system in Saccharomyces cerevisiae. J. Bacteriol., 169, 2598−2600.
  167. Uptain, S.M., Sawicki, G.J., Caughey, B. and Lindquist, S. (2001) Strains of PSI (+)J are distinguished by their efficiencies of prion-mediated conformational conversion. EMBOJ., 20, 6236−6245.
  168. Valouev, I.A., Kushnirov, V.V. and Ter-Avanesyan, M.D. (2002) Yeast polypeptide chain release factors eRFl and eRF3 are involved in cytoskeleton organization and cell cycle regulation. CellMotil. Cytoskeleton, 52, 161−173.
  169. Wegrzyn, R.D., Bapat, K., Newnam, G.P., Zink, A.D. and Chemoff, Y.O. (2001)
  170. Mechanism of prion loss after Hspl04 inactivation in yeast. Mol. Cell Biol., 21, 46 564 669.
  171. White, A.R., Enever, P., Tayebi, M., Mushens, R., Linehan, J., Brandner, S., Anstee, D., Collinge, J. and Hawke, S. (2003) Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature, 422, 80−83.
  172. Wickner, R.B. (1994) URE3. as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science, 264, 566−569.
  173. Zhou, P., Derkatch, I.L., Uptain, S.M., Patino, M.M., Lindquist, S. and Liebman, S.W. (1999) The yeast non-Mendelian factor ETA+. is a variant of [PST*], a prion-like form of release factor eRF3. EMBO J., 18,1182−1191.
  174. Π’Ρ‹Ρ€Π°ΠΆΠ°ΡŽ Π³Π»ΡƒΠ±ΠΎΠΊΡƒΡŽ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ΅ΠΌΡƒ Π½Π°ΡƒΡ‡Π½ΠΎΠΌΡƒ Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŽ М. Π”. Π’Π΅Ρ€-АванСсяну Π·Π° Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΉ интСрСс ΠΊ ΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΈ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ руководство.
  175. ΠžΡ‡Π΅Π½ΡŒ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½Π° Π’. Π’. ΠšΡƒΡˆΠ½ΠΈΡ€ΠΎΠ²Ρƒ Π·Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΠΎΡΠ²ΠΎΠ΅Π½ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π³Π΅Π½Π½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ ΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ Ρ†Π΅Π½Π½Ρ‹Ρ… совСтов ΠΏΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡŽ экспСримСнтов.
  176. ΠžΡ‡Π΅Π½ΡŒ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»ΡŒΠ½Π° М. F. Tuite Π·Π° ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ