Помощь в написании студенческих работ
Антистрессовый сервис

Роль мембранных транспортных белков в регуляции продукции цефалоспорина C у Acremonium chrysogenum

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В ходе работы был определен характер хромосомного полиморфизма и выявлены закономерности экспрессии генов биосинтеза и транспорта цефС для штаммов А. chrysogenum, различающихся в 100 раз и более по уровню продукции антибиотика. Полученные данные расширяют существующие представления о механизмах регуляции биосинтеза (3-лактамных антибиотиков у А. chrysogenum, молекулярно-генетических отличиях… Читать ещё >

Роль мембранных транспортных белков в регуляции продукции цефалоспорина C у Acremonium chrysogenum (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Цефалоспорин С: открытие, химическая структура, механизм действия антибиотика, продуцируемого Асгетотит chrysogenum
    • 1. 2. Краткая характеристика, А сгетотит chrysogenum — продуцента цефалоспорина С
    • 1. 3. Биосинтез цефалоспорина С
      • 1. 3. 1. Кластеры генов биосинтеза цефалоспорина С
      • 1. 3. 2. «Ранние» стадии биосинтеза цефалоспорина С
      • 1. 3. 3. «Поздние» стадии биосинтеза цефалоспорина С
    • 1. 4. Роль мембранных белков в биосинтезе Р-лактамов
      • 1. 4. 1. Компартментализация реакций биосинтеза (3-лактамов
      • 1. 4. 2. Роль мембранного транспортера CefP в биосинтезе цефалоспорина С у А. chrysogenum
      • 1. 4. 3. Роль мембранного транспортера СеШ в биосинтезе цефалоспорина С у А. chrysogenum
      • 1. 4. 4. Роль мембранного транспортера СеП^ в биосинтезе цефалоспорина С у А. скгуз^епит
    • 1. 5. Молекулярные основы функционирования белков мультилекарственной устойчивости Се1Т, СеШ, Се1Р
      • 1. 5. 1. МБ8 МБЯ транспортеры
      • 1. 5. 2. Создание градиента Н+ Н±АТФазой РМА
  • 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Компьютерное моделирование
    • 2. 2. Штаммы и плазмиды
      • 2. 2. 1. Штаммы, используемые в работе
      • 2. 2. 2. Плазмиды
    • 2. 3. Микробиологические среды и условия культивирования штаммов
    • 2. 4. Генно-инженерные методики
      • 2. 4. 1. Общие молекулярно-генетические методы
      • 2. 4. 2. Выделение геномной ДНК
      • 2. 4. 3. Проведение ПЦР
    • 2. 5. Конструирование плазмид
      • 2. 5. 1. Создание кассет экспрессии CefT-TagCFP
      • 2. 5. 2. Создание кассет экспрессии РМА1-Т
  • §-УРР
    • 2. 6. Получение рекомбинантных штаммов
      • 2. 6. 1. Трансформация нативных клеток 5″. сегеушае плазмидной ДНК
      • 2. 6. 2. Приготовление и прямая трансформация компетентных клеток А. Ште/аЫет
      • 2. 6. 3. Трансформация Л. chrysogenwn
    • 2. 7. Анализ рекомбинантных штаммов 8. сегеу1 $ 1аеСъТ1-ТщСТР, Я. сегеУ1ыаеРМА1-ТавУБР
      • 2. 7. 1. Флуоресцентная микроскопия 5'. cerevisiaeCefT-TagCFP, сегеУ1Э1аеРМА1-ТавУБР
      • 2. 7. 2. Исследование функциональной активности 5. сегеушаеСе1Т-Т
  • §-УРР методом диффузии дисков в агар
    • 2. 7. 3. Исследование функциональной активности 5″. cerevшaeCefT-TagYFP методом спот-анализа
    • 2. 8. Анализ рекомбинантных штаммов А. chry. sogenumCefT-Ta.gCFP, А. chrysogenumPM. Al-Ta.gYFV
    • 2. 8. 1. Молекулярный анализ клонов
    • 2. 8. 2. ВЭЖХ-анализ
    • 2. 8. 3. Определение содержания внутриклеточного АТФ
    • 2. 9. Молекулярное кариотипирование А. chrysogenum
    • 2. 10. Анализ экпрессии генов
    • 2. 10. 1. Получение препаратов тотальной, матричной РНК
    • 2. 10. 2. ПЦР-анализ в реальном времени
  • 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 3. 1. Сравнительный молекулярно-генетический анализ штаммов А. chrysogenum -штамма дикого типа АТСС 11 550 и высокопродуктивного ВКМ Р-408Ш
      • 3. 1. 1. Хромосомный полиморфизм штаммов А. chrysogenum АТСС 11 550, ВКМ Р-408Ш
      • 3. 1. 2. Хромосомная локализация генов биосинтеза цефалоспорина С
      • 3. 1. 3. Анализ экспрессии генов биосинтеза и транспорта цефалоспорина С в штаммах А. сЬгуь^епит АТСС 11 550, ВКМ Р-408Ш
    • 3. 2. Создание систем экспрессии мембранных транспортеров Се1Т-Та?СРР, РМА1-TagYFP для модельного объекта 5. сегст/бше
    • 3. 3. Исследование субклеточной локализации РМА1-ТадУРР, СеГГ-ТавСРР в модельном объекте 5. сегеушае
    • 3. 4. Разработка системы функционального анализа белка-транспортера цефалоспорина С СеГГ-Т
  • §-СРР в 5. сегеушае
    • 3. 5. Создание систем экспрессии мембранных транспортеров Се: ГГ-Т
  • §-СРР, РМА1-Т
  • §-УРР для А. chrysogenum
    • 3. 6. Получение рекомбинантных штаммов A. chrysogenum ВКМ F-4081DCefT-TagCFP,
  • A. chrysogenum ВКМ F-4081DPMAl-TagYFP
    • 3. 7. Молекулярный анализ рекомбинантных клонов A. chrysogenum ВКМ F-408lDCefT-TagCFP, A. chrysogenum ВКМ F-4081DPMAl-TagYFP
    • 3. 8. Метаболическая инженерия A. chrysogenum: роль мембранного транспортера РМА1-TagYFP в регуляции продукции цефалоспорина С
    • 3. 9. Метаболическая инженерия A. chrysogenum: роль мембранного транспортера CefT-TagCFP в регуляции продукции цефалоспорина С
  • ВЫВОДЫ
  • СПИСОК СОКРАЩЕНИЙ

Актуальность темы

.

Цефалоспорины — обширный класс антибиотиков с мощным бактерицидным действием, низкой токсичностью, широким терапевтическим диапазоном. Субстанцией для получения более 30 наименований полусинтетических цефалоспоринов 5 поколений является природный (3-лактамный антибиотик цефалоспорин С (цефС), продуцируемый аскомицетом Acremonium chrysogenum.

На протяжении последних тридцати лет был достигнут значительный прогресс в селекции промышленных штаммов A. chrysogenum — суперпродуцентов данного антибиотика, идентификации генов, контролирующих биосинтез цефС и исследовании характера их регуляции.

Путь биосинтеза цефС хорошо изучен, насчитывает 6 ферментативных стадий, катализируемых продуктами генов «раннего» — pcbAB, pcbC, cefDl, cefD2 — и «позднего» — cefEF, cefG — кластеров биосинтеза антибиотика.

На внутриклеточном уровне биосинтез цефС строго компартментализован. Эффективность процессов внутриклеточного транспорта интермедиатов и экспорта цефС из клетки вносит существенный вклад в общий уровень продукции антибиотика, соотношение выхода конечного продукта и его промежуточных форм в процессе ферментации.

Гены мембранных транспортеров, вовлеченных в процессы транспорта цефС и его интермедиатов, являются перспективными мишенями для создания рекомбинантных штаммов A. chrysogenum с улучшенными производственными характеристиками. Особый интерес представляет белок CefT, относящийся к обширному классу MFS транспортеров. CefT осуществляет перенос (3-лактамов через плазматическую мембрану продуцента по принципу Н±антипортера.

Другой перспективной мишенью генетических манипуляций, направленных на улучшение биосинтеза цефС, является НГ^-АТФаза плазмалеммы РМА. Функцией белка является формирование на плазмалемме электрохимического градиента протонов, используемого для всех процессов транспорта метаболитов посредством Н+ -симпортного, н+ -антипортного механизмов. Таким образом, НАТФаза должна играть существенную роль в энергообеспечении процессов синтеза и транспорта цефС.

Цель и задачи исследования

.

Целью настоящей диссертационной работы является изучение роли мембранных транспортеров — КГ-АТФазы плазмалеммы РМА1 и предполагаемого транспортера цефалоспорина С Се1Т в регуляции продукции (3-лактамов у Асгетотит chrysogenum.

Исходя из поставленной цели, были сформулированы следующие задачи:

1. Определить хромосомную локализацию и характер экспрессии генов биосинтеза и транспорта цефалоспорина С у высокопродуктивного штамма А. chrysogenum ВКМ Р-408Ш и штамма дикого типа АТСС 11 550.

2. Создать системы экспрессии Се1Т из А. chrysogenum, РМА1 из БасскаготусеБ сегеу^ягае в виде их гибридов с флуоресцентными белками, изучить функциональную активность и субклеточную локализацию CefT-TagCFP и PMAl-TagYFP в модельном объекте & сегеугБгае.

3. Создать системы экспрессии CefГ-TagCFP и PMAl-TagYFP для А. chrysogenum, оптимизировать процедуру агробактериального переноса кассет экспрессии в штамм ВКМ Р-408Ш.

4. Получить рекомбинантные се/Г-клоны А. chrysogenum ВКМ Р-408Ш, провести их молекулярно-генетическую характеристику. Изучить влияние экспрессии CefT-TagCFP на биосинтез цефалоспорина С.

5. Получить рекомбинантные рта1 -клоны А. chrysogenum ВКМ Б-408Ш, провести их молекулярно-генетическую характеристику. Исследовать функциональную активность PMAl-TagYFP, изучить влияние экспрессии РМА1 на биосинтез цефалоспорина С.

Научная новизна и практическая значимость работы.

В ходе работы был определен характер хромосомного полиморфизма и выявлены закономерности экспрессии генов биосинтеза и транспорта цефС для штаммов А. chrysogenum, различающихся в 100 раз и более по уровню продукции антибиотика. Полученные данные расширяют существующие представления о механизмах регуляции биосинтеза (3-лактамных антибиотиков у А. chrysogenum, молекулярно-генетических отличиях промышленных штаммов А. chrysogenum, определяющих их способность к суперпродукции цефС.

Разработан подход для изучения функциональной активности и особенностей субклеточной локализации мембранного белка Се1Т в гетерологичной модельной системе б1. сегеушае. Метод универсален и может быть использован для структурно-функционального анализа других МБ 8 транспортеров грибов, участвующих в процессах экспорта биологически-активных вторичных метаболитов.

Разработана и оптимизирована процедура трансформации высокопродуктивного штамма А. chrysogenum ВКМ Р-408Ш методом агробактериального переноса (АТМТ). С помощью АТМТ впервые получены трансформанты высокопродуктивного штамма А. chrysogenum ВКМ Р-408Ш с конститутивной экспрессией функционально-активных гибридов мембранных транспортных белков СеГГ и РМА1, слитых с флуоресцентными белками TagCFP,.

Показано, что дополнительная экспрессия CefT-TagCFP в высокопродуктивном штамме А. chrysogenum ВКМ Р-408Ш приводит к изменению профиля биосинтеза цефС: повышению содержания в культуральной жидкости рекомбинантных штаммов интермедиатов биосинтеза цефалоспорина и снижению выхода конечного продукта, подтверждая тем самым данные о широкой субстратной специфичности СеГГ, установленные на модельной системе дрожжей-сахаромицетов.

В процессе экспериментальной работы были сконструированы новые универсальные экспрессионные вектора, позволяющие осуществлять агробактериальный перенос и конститутивную экспрессию целевых генов в клетках A. chrysogenum, а также других видов нитчатых грибов.

A. chrysogenum — перспективный объект исследований, как с прикладной, так и фундаментальной точки зрения. Описанные в данной работе подходы по изучению продуцента цефС могут быть использованы в экспериментах по улучшению продуктивности, стабильности и иных производственных характеристик промышленных штаммов других видов грибов — продуцентов широкого класса ферментов и соединений для нужд пищевой, микробиологической и фармацевтической промышленности.

Благодарности.

Автор выражает глубокую благодарность и сердечную признательность за чуткое наставничество, всестороннюю помощь в работе над диссертацией, ценные замечания, терпение и поддержку своим научным руководителямЭльдарову Михаилу Анатольевичу и Жгуну Александру Александровичу, а также коллективу лаборатории биоинженерии антибиотиков — Бартошевичу Юрию Эдуардовичу, Новак Марине Иоганновне, Домрачевой Алле Георгиевне, Чумаленко Ноэмии Львовне.

1 ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1. Хромосомный полиморфизм у высокоактивного штамма А. chrysogenum ВКМ Р-408Ш не связан с изменением локализации и копийности генов биосинтеза и транспорта цефалоспорина С.

2. Уровень транскрипции генов биосинтеза цефалоспорина С для А. chrysogenum ВКМ Р-408Ш повышен в 2−370 раз относительно штамма дикого типа А. chrysogenum АТСС 11 550.

3. Транспортный белок CefГ-TagCFP при экспрессии в модельной системе & сегеуише локализуется в районах плазмалеммы диаметром 200−1000 нм и способен комплементировать функции ортологичных МБ 8 транспортеров сахаромицетов.

4. Оптимизирован метод агробактериальной трансформации в высокоактивный штамм А. chrysogenum. Получена коллекция рекомбинантных штаммов ВКМ Р-408Ш с CefT-TagCFP из А. chrysogenum и PMAl-TagYFP из & cerevisiae.

5. PMAl-TagYFP локализуется в плазматической мембране А. chrysogenum ВКМ Р-408Ш, повышение уровня экспрессии РМА1 в трансформантах негативно коррелирует с уровнями внутриклеточного АТФ и продукцией цефалоспорина С.

6. Конститутивная экспрессия CefT-TagCFP в А. chrysogenum ВКМ Р-408Ш приводит к увеличению экспорта интермедиатов цефалоспорина С при сохранении базового уровня продукции бета-лактамов.

Показать весь текст

Список литературы

  1. Brotzu G. Richerche su di un nuovo antibiotico. // Lav. 1st. d’lgiene Cagliari. 1948. P. 1−11.
  2. Abraham E.P., Newton G.G.F. The structure of cephalosporin С // Biochem. J. 1961. Vol. 79. P. 393−402.
  3. Hodgkin D.C., Maslen E.N. The X-ray analysis of the structure of cephalosporin С // Biochem. J. 1961. Vol. 79. P. 393−402.
  4. W. Цефалоспорины: связь между химической структурой и эффектом Online. 1994. URL: http://www.infectology.ru/ruk/Cefalosp/z2ris.aspx.
  5. К.Р., Яхкинг М. И. Анализ технологий синтеза 7-аминоцефалоспорановой кислоты (7-АЦК) и выбор оптимальной безопасной промышленной технологии. Москва: Научный мир, 2009. Р. 216.
  6. Ныс П.С., Бартошевич Ю. Э. Основы разработки биокаталитических процессов трансформации и синтеза беталактамных антибиотиков // Антибиотики и химиотерапия. 1999. Vol. 44, № 12. Р. 19 36.
  7. В. Введение в химию природных соединений. Казань, 2001. Р. 376.
  8. Van Bambeke F. et al. Mechanisms of action // Cohen and Powderly: Infectious Diseases. 2nd ed. St. Louis, 2004.
  9. Livermore D.M. Mechanisms of resistance to cephalosporin antibiotics. // Drugs.1987. Vol. 34 Suppl 2. P. 64−88.
  10. Stan C., Dumitrache M., Diaconu D. Means of purification of cephalexin with a view to therapeutic use // Rev. Med. Chir. Soc. Med. Nat. Iasi. 2004. Vol. 108. P. 718−720.
  11. Neu H.C. Cephalosporins—cefotaxime 10 years later, a major drug with continued use. // Infection. 1991. Vol. 19 Suppl 6. P. S309-S315.
  12. Barber M. et al. Industrial enzymatic production of cephalosporin-based beta-lactams // Adv Biochem Eng Biotechnol. 2004. Vol. 88. P. 179−215.
  13. Elander R.P. Industrial production of beta-lactam antibiotics. // Applied Microbiology and Biotechnology. Springer Berlin / Heidelberg, 2003. Vol. 61, № 5−6. P. 385−392.
  14. Brakhage A.A. Molecular Regulation of (3-Lactam Biosynthesis in Filamentous Fungi // Microbiology and Molecular Biology Reviews. American Society for Microbiology, 1998. Vol. 62, № 3. p. 547−585.
  15. Shiffman D. et al. Cloning and comparative sequence analysis of the gene coding for isopenicillin N synthase in Streptomyces. // Molecular general genetics MGG.1988. Vol. 214, № 3. P. 562−569.
  16. Aharonowitz Y., Cohen G., Martin J.F. Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. // Annual Review of Microbiology. 1992. Vol. 46. P. 46195.
  17. Gams W. Cephalosporium-Artige Schimmelpilze (Hyphomycetes). G. Fischer, 1971. P. 262.
  18. Bartoshevich YuE et al. Acremonium chrysogenum differentiation and biosynthesis of cephalosporin. // Journal of Basic Microbiology. 1990. Vol. 30, № 5. P. 313−320.
  19. Mclntyre M., McNeil B. Morphogenetic and biochemical effects of dissolved carbon dioxide on filamentous fungi in submerged cultivation. // Applied Microbiology and Biotechnology. 1998. Vol. 50, № 3. P. 291−298.
  20. Harvey L.M. et al. Autolysis in batch cultures of Penicillium chrysogenum at varying agitation rates // Enzyme Microb. Technol. 1998. Vol. 22. P. 446158.
  21. Karaffa L. Cephalosporin C production, morphology and respiration of Acremonium chrysogenum in glucose limited chemostat. // Biotechnology letters. 1996. Vol. 18, № 6. P. 701−706.
  22. Queener S.W., Ellis L.F. Differentition of mutants of Cephalosporium acremonium in complex medium: the formation of unicellular arthrospores and their germination. // Canadian Journal of Microbiology. 1975. Vol. 21, № 12. P. 1981−1996.
  23. Crabbe M.J. The effect of thiols and the Ca2+ ionophore A23817 on growth and antibiotic production in Cephalosporium acremonium. // FEMS Microbiol. Lett. 1988. Vol. 56. P. 71−78.
  24. Sandor E. et al. Analysis of the relationship between growth, cephalosporin C production, and fragmentation in Acremonium chrysogenum. // Canadian Journal of Microbiology. 2001. Vol. 47, № 9. P. 801−806.
  25. Weigel B.J. et al. Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. // Journal Of Bacteriology. 1988. Vol. 170, № 9. P. 3817−3826.
  26. Landan G. et al. Evolution of isopenicillin N synthase genes may have involved horizontal gene transfer. // Mol. Biol. Evol. 1990. Vol. 7. P. 399−406.
  27. Penalva M.A. et al. Sequences of isopenicillin N synthetase genes suggest horizontal gene transfer from prokaryotes to eukaryotes. // Proceedings of the Royal Society B: Biological Sciences. 1990. Vol. 241, № 1302. P. 164−169.
  28. Teijeira F. et al. CefR modulates transporters of beta-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. // Metabolic Engineering. 2011. Vol. 13, № 5. P. 532−543.
  29. Martin J.F., Liras P. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites // Annu. Rev. Microbiol. 1989. Vol. 43. P. 173−206.
  30. Demain A.L. Biosynthesis of b-lactam antibiotics. // Antibiotics containing the b-lactam structure / ed. Demain A.L., Solomon N.A. New York: Springer-Verlag, 1983. P. 189−228.
  31. Martin J.F., Ullan R. V, Garcia-Estrada C. Regulation and compartmentalization of (3-lactam biosynthesis. // Microbial biotechnology. WILEY-BLACKWELL, 2010. Vol.3, № 3. P. 285−299.
  32. Bhattacharjee J.K. Evolution of a-aminoadipate pathway for the synthesis of lysine in fungi // The evolution of metabolic function. / ed. Mortlock R.P. Boca Raton: CRC Press, 1992. P. 47−80.
  33. Vogel H.J. Two modes of lysine synthesis among lower fungi: evolutionary significance // Biochim. Biophys. Acta. 1960. Vol. 41. P. 172−173.
  34. Novak J., Kopecky J., Vanek Z. Nitrogen source regulates expression of alanine dehydrogenase isoenzymes in Streptomyces avermitilis in a chemically defined medium // Canadian Journal Of Microbiology. 1997. Vol. 43, № 2. P. 189−193.
  35. Shapiro S. Nitrogen assimilation in actinomycetes and the influence of nitrogen nutrition on actinomycete secondary metabolism. // Regulation of secondary metabolism in actinoycetes. / ed. Shapiro S. Boca Raton: CRCPress, 1989. P. 135−211.
  36. Affenzeller K. et al. Lysine biosynthesis in Penicillium chrysogenum is regulated by feedback inhibition of alpha-aminoadipate reductase. // FEMS Microbiology Letters. 1989. Vol. 49, № 2−3. P. 293−297.
  37. Weidner G., Steffan B., Brakhage A.A. The Aspergillus nidulans lysF gene encodes homoaconitase, an enzyme involved in the fungus-specific lysine biosynthesis pathway. // Molecular general genetics MGG. 1997. Vol. 255, № 3. P. 237−247.
  38. Nuesch J., Heim J., Treichler H. The biosynthesis of sulfur containing b-lactam antibiotics. // Annu Rev Microbiol.. 1987. Vol. 41. P. 51−75.
  39. Treichler H.J. et al. Role of sulfur metabolism in cephalosporin C and penicillin biosynthesis // Genetics of industrial microorganisms / ed. Sebeck O.K., Laskin A.I. Washington: American Society for Microbiology, 1979. P. 97−104.
  40. Martin J.F., Aharonowitz Y. Regulation of biosynthesis of b-lactam antibiotics. // Antibiotics containing the b-lactam structure / ed. Demain A.L., Solomon N.A. Berlin: Springer-Verlag, 1983. P. 229−254.
  41. Banko G., Wolfe S., Demain A.L. Cell-free synthesis of delta-(L-alpha-aminoadipyl)-L-cysteine, the first intermediate of penicillin and cephalosporin biosynthesis. // Biochemical and Biophysical Research Communications. 1986. Vol. 137, № l.P. 528−535.
  42. Kleinkauf H. et al. Biosynthesis of peptides: a non-ribosomal system // Die Naturwissenschaften. 1992. Vol. 79, № 4. P. 153−162.
  43. Zhang J., Demain A.L. ACV synthetase. // Critical Reviews in Biotechnology. 1992. Vol. 12, № 3. P. 245−260.
  44. Zhang J.Y., Demain A.L. Purification from Cephalosporium acremonium of the initial enzyme unique to the biosynthesis of penicillins and cephalosporins. // Biochemical and Biophysical Research Communications. 1990. Vol. 169, № 3. P. 1145−1152.
  45. Van Der Lende T.R. et al. delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme. // Fungal genetics and biology FG B. 2002. Vol. 37, № l.P. 49−55.
  46. White R.L. et al. Stoichiometry of oxygen consumption in the biosynthesis of isopenicillin from a tripeptide. // The Biochemical journal. 1982. Vol. 203, № 3. P.791−793.
  47. O’Sullivan J. et al. Incorporation of 3H from delta-(L-alpha-amino (4,5−3H)adipyl)-L-cysteinyl-D-(4,4−3H)valine into isopenicillin N. // The Biochemical journal. 1979. Vol. 184, № 2. P. 421−426.
  48. Konomi T. et al. Cell-free conversion of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine into an antibiotic with the properties of isopenicillin N in Cephalosporium acremonium. // The Biochemical journal. 1979. Vol. 184, № 2. P. 427−430.
  49. Fawcett P.A. et al. Synthesis of delta-(alpha-aminoadipyl)cysteinylvaline and its role in penicillin biosynthesis. // The Biochemical journal. 1976. Vol. 157, № 3. P. 651−660.
  50. Roach P.L. et al. Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. // Nature. MACMILLAN MAGAZINES LTD, 1995. Vol. 375, № 6635. P. 700−704.
  51. Brakhage A.A., Turner G. Biotechnical genetics of antibiotic biosynthesis. // The Mycota. II. Genetics and biotechnology. / ed. Kuck U. Berlin: Springer-Verlag KG, 1995. P. 263−285.
  52. Samson S.M. et al. Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. //Nature. 1985. Vol. 318, № 6042. P. 191−194.
  53. Jayatilake G.S., Huddleston J.A., Abraham E.P. Conversion of isopenicillin N into penicillin N in cell-free extracts of Cephalosporium acremonium. // The Biochemical journal. 1981. Vol. 194, № 2. P. 645−647.
  54. Martin J.F., Ullan R. V, Casqueiro J. Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. // Advances in biochemical engineeringbiotechnology. 2004. Vol. 88. P. 91−109.
  55. Scheidegger A., Kuenzi M.T., Nuesch J. Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of beta-lactams in Cephalosporium acremonium. // The Journal of antibiotics. 1984. Vol. 37, № 5. P. 522−531.
  56. Dotzlaf J.E., Yeh W.K. Copurification and characterization of deacetoxycephalosporin C synthase/hydroxylase from Cephalosporium acremonium. //J. Bacteriol. 1987. Vol. 169. P. 1611−1618.
  57. Wu X.-B. et al. C-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs. // FEMS Microbiology Letters. 2005. Vol. 246, № l.P. 103 110.
  58. Chen H., Han H., Xu G.Z. Cloning, sequence analysis of deacetoxycephalosporin C synthetase/hydroxylase gene cefEF // Sheng wu gong cheng xue bao Chinese journal of biotechnology. 2001. Vol. 17, № 3. P. 297−299.
  59. Samson S.M. et al. Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. // Biotechnology. 1987. Vol. 5. P. 1207−1214.
  60. Van Den Berg M.A. et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. // Nature Biotechnology. Nature Publishing Group, 2008. Vol. 26, № 10. P. 1161−1168.
  61. Jami M.-S. et al. Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. // Molecular cellular proteomics MCP. 2010. Vol. 9, № 6. P. 1182— 1198.
  62. Fernandez-Aguado M. et al. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum. // Applied Microbiology and Biotechnology. 2012.
  63. Klionsky D.J., Herman P.K., Emr S.D. The fungal vacuole: composition, function, and biogenesis. // Microbiological reviews. 1990. Vol. 54, № 3. P. 266−292.
  64. Honlinger C., Kubicek C.P. Regulation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the alpha-aminoadipate pool size. // FEMS Microbiology Letters. 1989. Vol. 53, № 1−2. P. 71−75.
  65. Kiel J.A.K.W. et al. Overproduction of a single protein, Pc-Pexllp, results in 2fold enhanced penicillin production by Penicillium chrysogenum. // Fungal genetics and biology FG B. 2005. Vol. 42, № 2. P. 154−164.
  66. Evers M.E. et al. Compartmentalization and transport in beta-lactam antibiotics biosynthesis. // Advances in biochemical engineeringbiotechnology. 2004. Vol. 88. P. 111−135.
  67. Heiland I., Erdmann R. Biogenesis of peroxisomes. Topogenesis of the peroxisomal membrane and matrix proteins. // The FEBS journal. 2005. Vol. 272, № 10. P. 2362−2372.
  68. Ullan R. V et al. Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cephalosporin C. // The Biochemical journal. 2010. Vol. 432, № 2. P. 227−236.
  69. Teijeira F. et al. The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. // The Biochemical journal. 2009. Vol. 418, № l.P. 113−124.
  70. Andrade A.C. et al. The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. // Molecular general genetics MGG. 2000. Vol. 263, № 6. P. 966−977.
  71. Ullan R. V et al. The cefT gene of Acremonium chrysogenum CIO encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. // Molecular genetics and genomics MGG. 2002. Vol. 267, № 5. P. 673−683.
  72. Nijland J.G. et al. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. // Fungal genetics and biology FG B. Elsevier Inc., 2008. Vol. 45, № 10. P. 1415−1421.
  73. Ullan R. V et al. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. // Chemistry & Biology. 2007. Vol. 14, № 3. P. 329−339.
  74. Ullan R. V, Teijeira F., Martin J.F. Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic beta-lactam transporter. // Current Genetics. 2008. Vol. 54, № 3. P. 153−161.
  75. Velasco J. et al. Cloning and characterization of the gene cahB encoding a cephalosporin C acetylhydrolase from Acremonium chrysogenum. // Applied Microbiology and Biotechnology. 2001. Vol. 57, № 3. P. 350−356.
  76. Liu Y. et al. Improvement of cephalosporin C production by recombinant DNA integration in Acremonium chrysogenum. // Molecular Biotechnology. 2010. Vol. 44, № 2. P. 101−109.
  77. Saier M.H. et al. The major facilitator superfamily. // Journal of Molecular Microbiology and Biotechnology. 1999. Vol. 1, № 2. P. 257−279.
  78. Neu H. The crisis in antibiotic resistance. // Science. 1992. Vol. 257. P. 10 641 073.
  79. Saier M.H. A functional-phylogenetic classification system for transmembrane solute transporters. // Microbiology and molecular biology reviews MMBR. 2000. Vol. 64, № 2. P. 354111.
  80. Pao S.S., Paulsen I.T., Saier M.H. Major facilitator superfamily. // Microbiology and Molecular Biology Reviews. American Society for Microbiology, 1998. Vol. 62, № 1. P. 1−34.
  81. Hirai T. et al. Structural Model for 12-Helix Transporters Belonging to the Major Facilitator Superfamily // Journal Of Bacteriology. American Society for Microbiology, 2003. Vol. 185, № 5. P. 1712−1718.
  82. Reddy V.S. et al. The Major Facilitator Superfamily (MFS) Revisited. // The FEBS journal. 2012. Vol. 279, № 11. P. 2022−2035.
  83. Paulsen I.T., Brown M.H., Skurray R.A. Proton-dependent multidrug efflux systems. // Microbiological reviews. American Society for Microbiology (ASM), 1996. Vol. 60, № 4. P. 575−608.
  84. De Rossi E. et al. mmr, a Mycobacterium tuberculosis Gene Conferring Resistance to Small Cationic Dyes and Inhibitors // Journal Of Bacteriology. American Society for Microbiology, 1998. Vol. 180, № 22. P. 6068−6071.
  85. Sa-Correia I. et al. Drug: H+ antiporters in chemical stress response in yeast. // Trends in Microbiology. Elsevier Ltd, 2009. Vol. 17, № 1. P. 22−31.
  86. Guan L., Kaback H.R. Lessons from lactose permease. // Annual Review of Biophysics and Biomolecular Structure. NIH Public Access, 2006. Vol. 35, № 1. P. 67−91.
  87. Law C.J., Maloney P.C., Wang D.-N. Ins and outs of major facilitator superfamily antiporters. // Annual review of microbiology. 2008. Vol. 62. P. 289−305.
  88. Kaback H.R. et al. Site-directed alkylation and the alternating access model for LacY. // Proceedings of the National Academy of Sciences of the United States of America. National Acad Sciences, 2007. Vol. 104, № 2. P. 491194.
  89. Zheleznova E.E. et al. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. // Cell. 1999. Vol. 96, № 3. P. 353−362.
  90. Schumacher M.A. et al. Structural mechanisms of QacR induction and multidrug recognition // Science. 2001. Vol. 294, № 5549. P. 2158−2163.
  91. Abramson J. et al. Structure and mechanism of the lactose permease of Escherichia coli. // Science. AAAS, 2003. Vol. 301, № 5633. P. 610−615.
  92. Inoue H. et al. Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli. // FEBS Letters. 1995. Vol. 363, № 3. P. 264−268.
  93. Muth T.R., Schuldiner S. A membrane-embedded glutamate is required for ligand binding to the multidrug transporter EmrE // the The European Molecular Biology Organization Journal. Oxford University Press, 2000. Vol. 19, № 2. P. 234−240.
  94. Hunte C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. //Nature. 2005. Vol. 435, № 7046. P. 1197−1202.
  95. Rouch D.A. et al. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. // Molecular Microbiology. 1990. Vol. 4, № 12. P. 2051−2062.
  96. Paulsen I.T., Skurray R.A. Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes—an analysis. // Gene. 1993. Vol. 124, № 1. P. 1−11.
  97. Marger M.D., Saier M.H. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. // Trends in Biochemical Sciences. 1993. Vol. 18, № l.P. 13−20.
  98. Griffith J.K. et al. Membrane transport proteins: implications of sequence comparisons. // Current Opinion in Cell Biology. Elsevier, 1992. Vol. 4, № 4. P. 684−695.
  99. Levy S. Active efflux mechanisms for antibiotic resistance // Antimicrob. Agents Chemother. 1992. Vol. 36. P. 695−703.
  100. Rubin R.A. et al. Gene duplication in the evolution of the two complementing domains of gram-negative bacterial tetracycline efflux proteins. // Gene. 1990. Vol. 87, № l.P. 7−13.
  101. Paulsen I.T. et al. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. // Molecular Microbiology. 1996. Vol. 19, № 6. P. 1167−1175.
  102. Jessen-Marshall A.E., Paul N.J., Brooker R.J. The conserved motif, GXXX (D/E)(R/K)XGX.(R/K)(R/K), in hydrophilic loop 2/3 of the lactose permease. // The Journal of Biological Chemistry. 1995. Vol. 270, № 27. P. 16 251−16 257.
  103. Kimura T. et al. Roles of conserved arginine residues in the metal-tetracycline/H+ antiporter of Escherichia coli // Biochemistry. 1998. Vol. 37, № 16. P. 5475−5480.
  104. Mazurkiewicz P., Driessen A.J.M., Konings W.N. Energetics of wild-type and mutant multidrug resistance secondary transporter LmrP of Lactococcus lactis. // Biochimica et Biophysica Acta. 2004. Vol. 1658, № 3. P. 252−261.
  105. Adler J., Lewinson O., Bibi E. Role of a conserved membrane-embedded acidic residue in the multidrug transporter MdfA. // Biochemistry. 2004. Vol. 43, № 2. P. 518−525.
  106. Mitchell B.A. et al. Bioenergetics of the staphylococcal multidrug export protein QacA. Identification of distinct binding sites for monovalent and divalent cations. // The Journal of Biological Chemistry. 1994. Vol. 269, № 45. P. 3541−3548.
  107. Fluman N., Bibi E. Bacterial multidrug transport through the lens of the major facilitator superfamily. // Biochimica et Biophysica Acta. Elsevier B.V., 2009. Vol. 1794, № 5. P. 738−747.
  108. Rotem D., Schuldiner S. EmrE, a multidrug transporter from Escherichia coli, transports monovalent and divalent substrates with the same stoichiometry. // The Journal of Biological Chemistry. 2004. Vol. 279, № 47. P. 48 787−48 793.
  109. Ueda K., Taguchi Y., Morishima M. How does P-glycoprotein recognize its substrates? // Seminars in Cancer Biology. Elsevier, 1997. Vol. 8, № 3. P. 151 159.
  110. Higgins C., Gottesman M. Is the multidrug transporter a flippase? // Trends Biochem Sci.. 1992. Vol. 17, № 1. P. 18−21.
  111. Bolhuis H. et al. Multidrug resistance in Lactococcus lactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. // the The European Molecular Biology Organization Journal. 1996. Vol. 15, № 16. P. 4239−4245.
  112. Bolhuis H. et al. Energetics and mechanism of drug transport mediated by the lactococcal multidrug transporter LmrP // Journal of Biological Chemistry. ASBMB, 1996. Vol. 271, № 39. P. 24 123−24 128.
  113. Yin Y. et al. Structure of the multidrug transporter EmrD from Escherichia coli. // Science. 2006. Vol. 312, № 5774. P. 741−744.
  114. Langton KP, Henderson PJ, Herbert RB. Antibiotic resistance: multidrug efflux proteins, a common transport mechanism // Nat Prod Rep. 2005. Vol. 22, № 4. P. 439−451.
  115. Bapna A. et al. Two proton translocation pathways in a secondary active multidrug transporter. // Journal of Molecular Microbiology and Biotechnology. 2007. Vol. 12, № 3−4. P. 197−209.
  116. Sigal N., Molshanski-Mor S., Bibi E. No Single Irreplaceable Acidic Residues in the Escherichia coli Secondary Multidrug Transporter MdfA // Journal Of Bacteriology. American Society for Microbiology, 2006. Vol. 188, № 15. P. 5635−5639.
  117. Yerushalmi H., Lebendiker M., Schuldiner S. EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents // The Journal of Biological Chemistry. 1995. Vol. 270, № 12. P. 68 566 863.
  118. Brown M.H., Skurray R.A. Staphylococcal multidrug efflux protein QacA. // Journal of Molecular Microbiology and Biotechnology. 2001. Vol. 3, № 2. P. 163−170.
  119. Neyfakh A.A. Natural functions of bacterial multidrug transporters. // Trends in Microbiology. 1997. Vol. 5, № 8. P. 309−313.
  120. Lewinson O., Padan E., Bibi E. Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. // Proceedings of the National Academy of Sciences of the United States of America. 2004. Vol. 101, № 39. P. 1 407 314 078.
  121. Padan E. et al. Alkaline pH homeostasis in bacteria: new insights. // Biochimica et Biophysica Acta. Elsevier, 2005. Vol. 1717, № 2. P. 67−88.
  122. Sa-Correia I., Tenreiro S. The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. // Journal of Biotechnology. 2002. Vol. 98, № 2−3. P. 215−226.
  123. Ambesi A. et al. Biogenesis and function of the yeast plasma-membrane H (+)-ATPase. // Journal of Experimental Biology. 2000. Vol. 203, № Pt 1. P. 155−160.
  124. Ferreira T, Mason AB, Slayman CW. The yeast Pmal proton pump: a model for understanding the biogenesis of plasma membrane proteins. // J Biol Chem.. 2001. Vol. 276, № 32. P. 29 613−29 616.
  125. Scarborough G.A. Crystallization, structure and dynamics of the proton-translocating P-type ATPase. // Journal of Experimental Biology. 2000. Vol. 203, №Pt 1. P. 147−154.
  126. Portillo F., De Larrinoa I.F., Serrano R. Deletion analysis of yeast plasma membrane H±ATPase and identification of a regulatory domain at the carboxyl-terminus. // FEBS Letters. 1989. Vol. 247, № 2. P. 381−385.
  127. Morth J.P. et al. REVIEWS A structural overview of the plasma membrane Na +, K + -ATPase and H + -ATPase ion pumps // Nature Reviews Molecular Cell Biology. Nature Publishing Group, 2011. Vol. 12, № 1. P. 60−70.
  128. Jorgensen P.L., Andersen J.P. Structural basis for E 1-E 2 conformational transitions in Na, K-pump and Ca-pump proteins // Journal of Membrane Biology. 1988.
  129. Zolotarjova N. et al. Functional coupling of phosphorylation and nucleotide binding sites in the proteolytic fragments of Na+/K (+)-ATPase. // The Journal of Biological Chemistry. 2001. Vol. 276, № 24. P. 3989−3995.
  130. Buch-Pedersen M.J., Palmgren M.G. Mechanism of proton transport by plant plasma membrane proton ATPases. // Journal of Plant Research. 2003. Vol. 116, № 6. P. 507−515.
  131. Post RL, Hegyvary C, Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. // J Biol Chem.. 1972. Vol. 247, № 20. P. 6530−6540.
  132. Olesen C. et al. The structural basis of calcium transport by the calcium pump. // Nature. 2007. Vol. 450, № 7172. P. 1036−1042.
  133. Olesen C. et al. Dephosphorylation of the calcium pump coupled to counterion occlusion // Science. 2004. Vol. 306, № 5705. P. 2251−2255.
  134. Toyoshima C., Mizutani T. Crystal structure of the calcium pump with a bound ATP analogue. //Nature. 2004. Vol. 430, № 6999. P. 529−535.
  135. Miranda M., Pardo J.P., Petrov V. V. Structure-function relationships in membrane segment 6 of the yeast plasma membrane Pmal H (+)-ATPase. // Biochimica et Biophysica Acta. 2011. Vol. 1808, № 7. P. 1781−1789.
  136. Serrano R. In vivo glucose activation of the yeast plasma membrane ATPase. // FEBS Letters. 1983. Vol. 156, № 1. P. 11−14.
  137. Eraso P., Gancedo C. Activation of yeast plasma membrane ATPase by acid pH during growth. // FEBS Letters. 1987. Vol. 224, № 1. P. 187−192.
  138. Rao R., Drummond-Barbosa D., Slayman C.W. Transcriptional regulation by glucose of the yeast PMA1 gene encoding the plasma membrane H (+)-ATPase. // Yeast Chichester England. 1993. Vol. 9, № 10. P. 1075−1084.
  139. Garcia-Arranz M. et al. Transcriptional control of yeast plasma membrane H (+)-ATPase by glucose. Cloning and characterization of a new gene involved in thisregulation. // The Journal of Biological Chemistry. 1994. Vol. 269, № 27. P. 18 076−18 082.
  140. Arst H.N., Bignell E., Tilburn J. Two new genes involved in signalling ambient pH in Aspergillus nidulans. // Molecular general genetics MGG. 1994. Vol. 245, № 6. P. 787−790.
  141. Tilburn J. et al. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. // the The European Molecular Biology Organization Journal. 1995. Vol. 14, № 4. P. 779 790.
  142. Orejas M. et al. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. // Genes & Development. 1995. Vol. 9, № 13. p. 1622−1632.
  143. Reoyo E. et al. The essential Aspergillus nidulans gene pmaA encodes an homologue of fungal plasma membrane H (+)-ATPases. // Fungal genetics and biology FG B. 1998. Vol. 23, № 3. P. 288−299.
  144. Lecchi S. et al. Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H±ATPase leads to glucose-dependent activation. // The Journal of Biological Chemistry. 2007. Vol. 282, № 49. P. 35 471−35 481.
  145. Romero I., Maldonado A.M., Eraso P. Glucose-independent inhibition of yeast plasma-membrane H±ATPase by calmodulin antagonists. // The Biochemical journal. 1997. Vol. 322 (Pt 3, № pt 3. P. 823−828.
  146. Brandao R.L. et al. Glucose-induced activation of the plasma membrane H (+)-ATPase in Fusarium oxysporum. // Journal of General Microbiology. 1992. Vol. 138 Pt 8. P. 1579−1586.
  147. Campetelli A.N. et al. Activation of H (+)-ATPase by glucose in Saccharomyces cerevisiae involves a membrane serine protease // Biochim Biophys Acta.. 2013. Vol. 1830, № 6. P. 3593−3603.
  148. Campetelli A.N. et al. Activation of the plasma membrane H-ATPase of Saccharomyces cerevisiae by glucose is mediated by dissociation of the H (+)
  149. ATPase-acetylated tubulin complex. // The FEBS journal. Wiley Online Library, 2005. Vol. 272, № 22. P. 5742−5752.
  150. Monk B.C., Niimi M., Shepherd M.G. The Candida albicans plasma membrane and H (+)-ATPase during yeast growth and germ tube formation. // Journal Of Bacteriology. 1993. Vol. 175, № 17. P. 5566−5574.
  151. Keniya M. V et al. Heterologous expression of Candida albicans Pmalp in Saccharomyces cerevisiae. // FEMS yeast research. 2013. Vol. 13, № 3. P. 302 311.
  152. Lu G., Moriyama E.N. Software review Vector NTI, a balanced all-in-one sequence analysis suite // Software Review. 2004. Vol. 5, № 4. P. 378−388.
  153. Newton G., Abraham E. Isolation of cephalosporin C, a penicillin-like antibiotic containing D-alpha-aminoadipic acid // Biochem J.. 1956. Vol. 62, № 4. P. 651 658.
  154. Бартошевич Юрий Эдуардович (RU) et al. СПОСОБ БИОСИНТЕЗА ЦЕФАЛОСПОРИНА С С ИСПОЛЬЗОВАНИЕМ НОВОГО ШТАММА ACREMONIUM CHRYSOGENUM ВКМ F-4081D: letter 2 426 793 USA. Russia, 2009. P. 1−8.
  155. Lazo G.R., Stein P.A., Ludwig R.A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. // Biotechnology Nature Publishing Company. Nature Publishing Company, 1991. Vol. 9, № 10. P. 963 967.
  156. Spencer F. et al. Yeast karl mutants provide an effective method for YAC transfer to new hosts. // Genomics. 1994. Vol. 22, № 1. P. 118−126.
  157. Nakamoto R.K., Rao R., Slayman C.W. Expression of the yeast plasma membrane H+.ATPase in secretory vesicles. A new strategy for directed mutagenesis. // The Journal of Biological Chemistry. 1991. Vol. 266, № 12. P. 7940−7949.
  158. Decottignies A. et al. ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yorlp. // The Journal of Biological Chemistry. 1998. Vol. 273, № 20. P. 12 612−12 622.
  159. Mortimer R.K., Johnston J.R. Genealogy of Principal Strains of the Yeast Genetic Stock Center // Genetics. Genetics Soc America, 1986. Vol. 113, № 1. P. 35−43.
  160. Carroll A.M., Sweigard J.A., Valent B. Improved vectors for selecting resistance to hygromycin // Fungal Genetics Newsletter. 1994. Vol. 41. P. 22.
  161. Pall M.L., Brunelli J.P. A series of six compact fungal transformation vectors containing polylinkers with multiple unique restriction sites. Fungal Genet. Newslett. 40: 59−62 // Fungal Genet. Newslett. .1993. Vol. 40. P. 59−62.
  162. Hajdukiewicz P., Svab Z., Maliga P. The small, versatile Ppzp family of Agrobacterium binary vectors for plant transformation // Plant Molecular Biology. 1994. Vol. 25, № 6. P. 989−994.
  163. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor laboratory press // New York. Cold Spring Harbor, 1989. P. 931−957.
  164. Harju S., Fedosyuk H., Peterson K.R. Rapid isolation of yeast genomic DNA: Bust n' Grab // BMC Biotechnology. BioMed Central, 2004. Vol. 4, № 1. P. 8.
  165. Al-Samarrai Т.Н., Schmid J. A simple method for extraction of fungal genomic DNA. // Letters in Applied Microbiology. 2000. Vol. 30, № 1. P. 53−56.
  166. Gietz R.D., Schiestl R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. // Nature Protocols. Nature Publishing Group, 2007. Vol. 2, № 1. P. 31−34.
  167. Holsters M. et al. Transfection and transformation of Agrobacterium tumefaciens. // Molecular general genetics MGG. 1978. Vol. 163, № 2. P. 181−187.
  168. Khang C.H. et al. Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum). // Methods In Molecular Biology Clifton Nj. 2006. Vol. 344, № 1. P. 403−420.
  169. Жгун A.A. et al. Генетическая трансформация мицелиальных грибов Acremonium chrysogenum // Прикладная биохимия и микробиология. 2008. Vol. 44, № 6. Р. 663−670.
  170. Smriti, Krishnamurthy S.S., Prasad R. Membrane fluidity affects functions of Cdrlp, a multidrug ABC transporter of Candida albicans. // FEMS Microbiology Letters. 1999. Vol. 173, № 2. P. 475−481.
  171. Puchkov E.O. et al. Cytoplasmic membrane of a sensitive yeast is a primary target for Cryptococcus humicola mycocidal compound (microcin). // Biochimica et Biophysica Acta. 2001. Vol. 1512, № 2. P. 239−250.
  172. Thykaer J., Nielsen J. Metabolic engineering of |3-lactam production // Metabolic Engineering. 2003. Vol. 5, № 1. P. 56−69.
  173. Sokolovsky V. et al. Fast and reliable mini-prep RNA extraction from Neurospora crassa // Fungal Genet Newsl. 1990. Vol. 37. P. 41—43.
  174. Diez В. et al. The gene encoding gamma-actin from the cephalosporin producer Acremonium chrysogenum. // Applied Microbiology and Biotechnology. 2000. Vol. 54, № 6. P. 786−791.
  175. Калебина T.C. et al. Особенности структуры клеточных стенок Acremonium chrysogenum продуцента цефалоспорина С // Прикладная биохимия и микробиология. 2010. Vol. 46, № 6. Р. 666−671.
  176. Walz М., Kuck U. Polymorphic karyotypes in related Acremonium strains. // Current Genetics. 1991. Vol. 19, № 2. P. 73−76.
  177. Skatrud P.L., Queener S.W. An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. // Gene. 1989. Vol. 78, № 2. P. 331−338.
  178. Gutierrez S. et al. Gene organization and plasticity of the beta-lactam genes in different filamentous fungi. // Antonie van Leeuwenhoek. 1999. Vol. 75, № 1−2. P. 81−94.
  179. Smith A.W. et al. Chromosome rearrangements in improved cephalosporin C-producing strains of Acremonium chrysogenum. // Current Genetics. 1991. Vol. 19, № 3. P. 235−237.
  180. Gutierrez S. et al. Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. // Applied Microbiology and Biotechnology. 1997. Vol. 48, № 5. P. 606−614.
  181. Simons K., Ikonen E. Functional rafts in cell membranes // Nature. 1997. Vol. 387, № 6633. P. 569−72.
  182. Jacobson K., Dietrich C. Looking at lipid rafts? // Trends in Cell Biology. 1999. Vol. 9, № 3. P. 87−91.
  183. Lee M.C.S., Hamamoto S., Schekman R. Ceramide biosynthesis is required for the formation of the oligomeric H±ATPase Pmalp in the yeast endoplasmic reticulum. // The Journal of Biological Chemistry. 2002. Vol. 277, № 25. P. 22 395−22 401.
  184. Malinska K. et al. Visualization of protein compartmentation within the plasma membrane of living yeast cells. // Molecular Biology of the Cell / ed. Riezman H. The American Society for Cell Biology, 2003. Vol. 14, № 11. P. 4427^1436.
  185. Steffensen L., Pedersen P. A. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae // Society. 2006. Vol. 5, № 2. P. 248−261.
  186. Salcedo-Sora J.E., Ward S.A., Biagini G.A. A yeast expression system for functional and pharmacological studies of the malaria parasite Ca2+/H+ antiporter. // Malaria journal. 2012. Vol. 11. P. 254.
  187. Joubert O. et al. Heterologous expression of human membrane receptors in the yeast Saccharomyces cerevisiae. // Methods In Molecular Biology Clifton Nj / ed. Mus-Veteau I. Humana Press, 2010. Vol. 601. P. 87−103.
  188. Froissard M. et al. Heterologous expression of a plant uracil transporter in yeast: improvement of plasma membrane targeting in mutants of the Rsp5p ubiquitin protein ligase. // Biotechnology Journal. 2006. Vol. 1, № 3. P. 308−320.
  189. Jungwirth H., Kuchler K. Yeast ABC transporters— a tale of sex, stress, drugs and aging. //FEBS Letters. 2006. Vol. 580, № 4. p. 1131−1138.
  190. Tomitori H. et al. Multiple polyamine transport systems on the vacuolar membrane in yeast. // The Biochemical journal. 2001. Vol. 353, № Pt 3. P. 681 688.
  191. Uemura T. et al. Characteristics of the polyamine transporter TPOl and regulation of its activity and cellular localization by phosphorylation. // The Journal of biological chemistry. 2005. Vol. 280, № 10. P. 9646−9652.
  192. Gwynne D., Devchand M. Expression of foreign proteins in the genus Aspergillus //Biotechnology. 1992. Vol. 23. P. 203−214.
  193. Olmedo-Monfil V., Cortes-Penagos C., Herrera-Estrella A. Three decades of fungal transformation: key concepts and applications. // Methods In Molecular Biology Clifton Nj. 2004. Vol. 267, № 3. P. 297−313.
  194. Casas-Flores S., Rosales-Saavedra T., Herrera-Estrella A. Three decades of fungal transformation: novel technologies. // Methods In Molecular Biology Clifton Nj. Springer, 2004. Vol. 267, № Key Concepts and Applications. P. 315−325.
  195. Rodriguez-Saiz M. et al. Strain improvement for cephalosporin production by Acremonium chrysogenum using geneticin as a suitable transformation marker. // FEMS Microbiology Letters. 2004. Vol. 235, № 1. P. 43−49.
  196. Velasco J. et al. Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. // Nature Biotechnology. Nature America Inc., 2000. Vol. 18, № 8. P. 857−861.
  197. Валиахметов А.Я. et al. Динамика содержания неорганических полифосфатов при синтезе цефалоспорина с у Acremonium chrysogenum // Прикладная биохимия и микробиология .2010. Vol. 46, № 2. Р. 198−204.
Заполнить форму текущей работой