Помощь в написании студенческих работ
Антистрессовый сервис

Получение и физико-химические свойства протонообменных мембран на основе фторированных полимеров

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Другим перспективным подходом является создание новых мембран, в частности, введением протонгенерирующих добавок в матрицу фторированных полимеров (поливинилиденфторид (ПВДФ), тефлон и др.) путем инициируемой прививки мономеров, в основном стирола, с последующим сульфированием привитого материала. Широкое распространение получили методы инициируемой прививки (у-излучения, пучки ускоренных… Читать ещё >

Получение и физико-химические свойства протонообменных мембран на основе фторированных полимеров (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений
  • Глава 1. Литературный обзор
    • 1. 1. ПОМ — функции и требования
    • 1. 2. Перфторированные мембраны типа Нафион
      • 1. 2. 1. Синтез алкильных и ароматических мономеров и полимеров на их основе
      • 1. 2. 2. Транспортные и химические свойства мембран Нафион
      • 1. 2. 3. Модели строения мембран Нафион
      • 1. 2. 4. Механизмы протонной проводимости
      • 1. 2. 5. Основные недостатки мембран Нафион
      • 1. 2. 6. Модифицирование мембран Нафион неорганическими и полимерными компонентами
    • 1. 3. Сульфированные привитые сополимеры
    • 1. 4. Сульфированные ароматические полимеры
    • 1. 5. Фосфорилированные полимеры
    • 1. 6. Мембраны на основе полимеров и низкомолекулярных кислот
    • 1. 7. Области применения протонообменных мембран
      • 1. 7. 1. Электролиз и электродиализ
      • 1. 7. 2. Топливные элементы
      • 1. 7. 3. Сенсоры
      • 1. 7. 4. Ионисторы
      • 1. 7. 5. Органический синтез
  • Глава 2. Получение и исследование образцов и методики эксперимента
    • 2. 1. Исходные материалы и реактивы
    • 2. 2. Методики получения и модифицирования мембран
      • 2. 2. 1. Допирование мембран МФ-4СК углеродной фазой путем у-инициированной прививки винилиденхлорида
      • 2. 2. 2. Методика модифицирования мембран МФ-4СК углеродной фазой путем УФ-инициированной прививки винилиденхлорида
      • 2. 2. 3. Методика допирования углеродной фазой поверхностных слоев мембран МФ-4СК
      • 2. 2. 4. Методика модифицирования мембран МФ-4СК поливиниловым спиртом
      • 2. 2. 5. Методика модифицирования мембран МФ-4СК полиакриловой кислотой
      • 2. 2. 6. Методика модифицирования пленок ПВДФ сульфированным полистиролом
    • 2. 3. Методики исследования мембран
      • 2. 3. 1. Подготовка мембран к исследованиям
      • 2. 3. 2. Регистрация спектров ЯМР
      • 2. 3. 3. Определение обменной емкости протонпроводящих мембран
      • 2. 3. 4. Исследование термической стабильности
      • 2. 3. 5. ИК — спектроскопия
      • 2. 3. 6. Оптическая микроскопия
      • 2. 3. 7. Определение содержания воды в мембранах
      • 2. 3. 8. Определение протонной проводимости мембран
      • 2. 3. 9. Измерение коэффициентов самодиффузии воды в мембранах
      • 2. 3. 10. Определение коэффициентов проницаемости воды и метанола
      • 2. 3. 11. Определение коэффициента проницаемости водорода
      • 2. 3. 12. Определение физико-механических свойств мембран
  • Глава 3. Модифицирование протонпроводящих перфторированных мембран
  • МФ-4СК путем инициированной прививки виниловых мономеров
    • 3. 1. Допирование мембран МФ-4СК углеродной фазой
      • 3. 1. 1. Модифицирование мембран путем у — инициированной прививки
      • 3. 1. 2. Поверхностное у-инициируемое модифицирование мембран УГФ
      • 3. 1. 3. УФ- инициированная прививка винилиденхлорида
    • 3. 2. Допирование мембран МФ-4СК гидрофильными полимерами
      • 3. 2. 1. Мембраны МФ-4СК с привитым поливиниловым спиртом
      • 3. 2. 2. Мембраны МФ-4СК с привитой полиакриловой кислотой
  • Глава 4. Получение и свойства сульфированных мембран на основе ПВДФ
    • 4. 1. Синтез модифицированных мембран
    • 4. 2. Транспортные свойства мембран
  • Выводы

Актуальность работы. Полимерные протонообменные мембраны (ПОМ) являются основным компонентом среднеи низкотемпературных топливных элементов (ТЭ), которые обеспечивают высокую эффективность в преобразовании энергии химических связей в электрическую за счет разделения происходящих электрохимических реакций в анодной и катодной областях и низкого омического сопротивления. Протонная проводимость в таких материалах определяется наличием гидрофильных каналов, по которым происходит транспорт подвижных протонов. Источником последних являются кислотные группы полимерной матрицы. Наиболее распространенными и коммерчески реализованными ПОМ являются перфторированные сульфокислотные ионообменные мембраны Нафион фирмы Du Pont (российский аналог — МФ-4СК). Основными преимуществами таких мембран являются химическая и термическая стабильность, обусловленные перфторированной структурой, высокая протонная проводимость, достигаемая при высоком влагосодержании, и прочностные характеристики. Однако ряд недостатков, таких как неудовлетворительные характеристики протонного транспорта при низком влагосодержании, высокие значения проницаемости мембраны по топливу (водород и метанол), а также высокая стоимость мембран ограничивают их практическое применение. Таким образом, создание новых типов мембран, лишенных этих недостатков, а также усовершенствование эксплутационных характеристик ПОМ является актуальной и перспективной задачей.

Одним из подходов для решения данной задачи, позволяющим улучшать характеристики ПОМ, является модифицирование мембраны различными наполнителями. Наибольшее распространение получили подходы с введением неорганических добавок, в качестве которых чаще всего используют оксидные и солевые системы, прочно удерживающие адсорбированную воду (оксиды кремния, титана, циркония, алюминия, цеолиты и т. п.) и неорганические твердые протонпроводящие электролиты (чаще всего гетерополикислоты, фосфаты циркония, гидросульфат цезия). Представленные в литературе данные о полимерных наполнителях немногочисленны. Вместе с тем, их использование кажется не менее перспективным вследствие больших возможностей управления структурой и морфологией матрицы ПОМ. Существуют немногочисленные работы, посвященные, в основном, получению модифицированных ПОМ смешением полимерных компонентов на стадии формирования мембраны, а методы модифицирования ПОМ высокомолекулярными соединениями in situ путем полимеризации виниловых мономеров в матрице мембраны, практически, не представлены в литературе.

Другим перспективным подходом является создание новых мембран, в частности, введением протонгенерирующих добавок в матрицу фторированных полимеров (поливинилиденфторид (ПВДФ), тефлон и др.) путем инициируемой прививки мономеров, в основном стирола, с последующим сульфированием привитого материала. Широкое распространение получили методы инициируемой прививки (у-излучения, пучки ускоренных электронов и т. д.). При этом отсутствуют работы по более простому методу термического инициирования полимеризации мономеров в матрице мембран. С учетом вышесказанного была сформулирована следующая цель работы.

Цель работы. Получение новых протонообменных мембран путем модифицирования МФ-4СК различными полимерными компонентами и пленок ПВДФ сульфированным полистиролом и установление влияния полимерных наполнителей на их транспортные и физико-химические свойства.

Для достижения поставленной цели необходимо было решить следующие задачи:

— Создание методов и исследование процессов модифицирования перфторированных мембран МФ-4СК рядом высокомолекулярных соединений путем проведения радикальной полимеризации виниловых мономеров винилиденхлорида, винилацетата и акриловой кислоты) с последующим проведением полимераналогичных превращений привитых полимеров;

Получение протонообменных мембран путем термической полимеризации стирола в матрице ПВДФ с последующим сульфированием полученного полимерного композита;

— Исследование влияния полимерных добавок на транспортные (протонная проводимость, проницаемость реагентов), термические и физико-механические свойства мембран.

Научная новизна. В работе впервые применены методы инициируемой прививки мономеров винилового ряда для in situ модифицирования протонпроводящих мембран МФ-4СК. Исследовано влияние растворителя и природы полимерной матрицы на кинетику и степень прививки винилиденхлорида в матрицу МФ4-СК. Проведено исследование влияния модифицирования перфторированных ПОМ МФ-4СК углеродной фазой и гидрофильными полимерами (ПВС и ПАК) на транспортные свойства ПОМ. Исследована протонная проводимость в широком интервале влажности и проницаемость воды и метанола модифицированных мембран.

Впервые получены и исследованы сульфосодержащие ПОМ, синтезированные в отсутствие инициируемого излучения путем проведения термической полимеризации стирола, сорбированного в матрицу ПВДФ, и последующего сульфирования.

Практическая значимость. Разработанные в работе оригинальные методы и подходы модифицирования могут быть использованы для создания нового типа ПОМ путем их допирования полимерными и неорганическими наполнителями. Разработанный метод внедрения полистирола в матрицу поливинилиденфторида в отсутствии инициируемого излучения отличается от известных методов практичностью и доступностью.

Полученные в данной работе новые ПОМ обладают пониженной проницаемостью мембран по метанолу и водороду и представляют практический интерес для применения их в качестве протонпроводящих мембран для работы в составе водородно-воздушных и метанольных ТЭ.

Личный вклад автора. Участие в обсуждении целей исследования, подготовке и проведении экспериментов, обсуждении результатов и написании научных статей. Автором выполнены эксперименты по подготовке образцов к испытаниям, сульфированию мембран ПВДФ-ПС, определению обменной емкости мембран и влагосодержания, исследованию протонной проводимости. Синтез новых и модифицированных мембран, разработка методик и определение коэффициентов проницаемости мембран по метанолу, воде и водороду проведены в ФИНЭПХФ РАН в рамках совместных работ по грантам РФФИ. ЯМР-исследования проведены Волковым В. И. с сотр. (АЦКП ИПХФ РАН). ИК-спектры записаны Ю. А. Шульгой (АЦКП ИПХФ РАН) и А. П. Харитоновым (ФИНЭПХФ РАН). ДСК образцов записаны JI.H. Блиновой (ОФНМИПХФ РАН).

Апробация работы. Основные результаты работы были представлены в виде устных и стендовых докладов на Российских и международных конференциях: 33-я и 36-я Российские конференции с международным участием «Ионный перенос в органических и неорганических мембранах» (г. Туапсе, 2007, 2010), IV-ая Всероссийская конференция «Физико-химические процессы в конденсированных средах и на межфазных границах ФАГРАН-2008» (Воронеж, 2008), XV Всероссийская Конференция «Структура и динамика молекулярных систем» (г. Яльчик, 2008), 9-ое и 10-ое Совещания «Фундаментальные проблемы ионики твёрдого тела» (г. Черноголовка, 2008, 2010), IV Всероссийская конференция «Актуальные проблемы химии высоких энергий» (г. Москва, 2009), Пятая Российская конференция «Физические проблемы водородной энергетики» (г. Санкт-Петербург, 2009), 9-th International symposium on systems with fast ionic transport (г. Рига, Латвия, 2010).

Публикации. По материалам работы опубликовано 4 статьи в российских и зарубежных журналах, глава в монографии, 10 тезисов докладов в российских и международных конференциях, издано учебное пособие и 2 статьи приняты в печать.

Объем и структура работы. Диссертационная работа состоит из введения, литературного обзора, экспериментальной части, обсуждения результатов, выводов и списка цитируемой литературы. Работа изложена на 142 страницах, включает 53 рисунка, 10 таблиц.

Список литературы

содержит 180 ссылок.

Выводы.

1. Впервые получены новые протонообменные мембраны путем проведения объемного и поверхностного модифицирования перфторированных мембран МФ-4СК высокомолекулярными соединениями: углеродная фаза, ПВС и ПАК радикальной полимеризацией виниловых мономеров в матрице мембраны.

2. Исследовано влияние растворителя и природы полимерной матрицы на кинетику и степень прививки винилиденхлорида в матрицу МФ4-СК. Установлено, что наибольшая скорость прививки наблюдается в образцах, находящихся в Н4″ - форма, выдержанных в этиленгликоле, а самая низкая — во фторангидридной форме.

3. Исследована протонная проводимость модифицированных мембран в широком интервале влажности и их проницаемость по воде и метанолу. Показано, что введение допирующих компонентов приводит к увеличению влагоемкости мембран при низкой влажности и снижению проницаемости по водороду и метанолу.

4. Впервые получены сульфосодержащие ПОМ на основе ПВДФ путем проведения термической полимеризации стирола и последующего сульфирования без применения ионизирующего излучения. Разработанный метод позволяет получать ПОМ с обменной емкостью до 2 мг-экв/г и протонной проводимостью до 0.008 См/см при 30 °C и 75% относительной влажности.

5. Показано, что по основным транспортным характеристикам мембраны ПВДФ-ПС-803Н близки мембранам МФ-4СК, однако, проницаемость метанола в них в 1.5 — 1.8 раз ниже, чем в мембранах МФ-4СК, что открывает перспективы использования таких мембран в метанольных ТЭ.

Показать весь текст

Список литературы

  1. Jannasch P. Recent developments in high-temperature proton conducting polymer electrolyte membranes // Current Opinion in Colloid and Interface Science2003. —V.8. -Nl. -P.96−102.
  2. Arico A.S., Srinivasan S., Antonucci V. DMFCs: from fundamental aspects to technology development//Fuel Cells. -2001. V.l. -No.l. — P. 133−161.
  3. Patent 3 041 317 US. Fluorocarbon sulfonyl fluorides/ Gibbs H.H., Griffin R.N. 1962 (DuPont de Nemours).
  4. Patent 3 282 875 US. Fluorocarbon vinyl ether polymers/ Connolly D.J., Gresham W.F. 1966 (DuPont de Nemours).
  5. Souzy R., Ameduri B. Functional fluoropolymers for fuel cell membranes // Prog. Polym. Sci. 2005. -V.30. -No.6.-P.644−687.
  6. Patent 5 602 185 US. Substituted trifluorostyrene compositions/Stone C., Steck A.E., Lousenberg R.D. 1997 (Ballard Power Systems, Inc.).
  7. Ю.А., Малкевич С. Г., Дунаевская Ц. С. Фторопласты. JI: Химия, 1978.-228с.
  8. Zawodzinski Т.А., Neeman Jr.M., Sillerud L.O., Cottesfeld S. Determination of water diffusion coeff icients in perfluorosulfonate ionomeric membranes // J. Phys. Chem. 1991, V.95. -No.l5-P.6040−6044.
  9. Almeida S.H., Kawano Y. Thermal behavior of Nafion membranes // J. Thermal Analysis and Calorimetry. 1999. — V.58. — P.569−577.
  10. Mauritz K.A., Moore R.B. State of understanding of Nafion // Chem. Rev.2004. V. l04. — No. 10. -P.4535−4585.
  11. Yang Y., Sill A., Peckham T.J., Holdcrof S. Structural and morphological features of acid-bearing polymers for pern fuel cells // Adv. Polym. Sci. —2008. — Y.215. P.55—126.
  12. Gierke T.D., Munn G.E., Wilson F.C. The morphology in Nafion perfluorinated membrane products, as determined by wide- and small- angle X-ray studies // Journal of Polymer Science: Polymer Physics Edition 1981. — V.19. -P.1687−1704.
  13. Hsu W.Y., Gierke T.D. Ion-transport and clustering in Nafion perfluorinated membranes // J. Membr. Sci. 1983. — V.13 -No.3. -P.307−326.
  14. Gebel G. Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution // Polymer 2000.- V.41. — No.15. — P.5829−5838.
  15. Kreuer K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells // J. Membr. Sci. 2001. — V. 185. — No.l. -P.29−39.
  16. McLean R.S., Doyle M., Sauer B.B. High-resolution imaging of ionic domains and crystal morphology in ionomers using AFM techniques // Macromolecules — 2000. — V.33. -No.17. -P.6541−6550.
  17. Cappadonia M., Erning J.W., Stimming U. Proton conduction of Nafion-117 membrane between 140 K and room-temperature // J Electroanal Chem. 1994. -V.376. -No.1−2. — P.189−193.
  18. Cappadonia M., Erning J.W., Niake S.M., Stimming U. Conductance of Nafion 117 membranes as a function of temperature and water content // Solid State Ionics 1995. — V.77. -P.65−69.
  19. Kreuer K.D. Proton conductivity: materials and applications // Chem. Mater. -1996. V.8. — No.3. -P.610−641.
  20. Eikerling M., Kornyshev A.A., Spohr E. Proton-conducting polymer electrolyte membranes: water and structure in charge // Adv. Polym. Sci. 2008. -V.215. -P.15−54.
  21. Carrette L., Friedrich K.A., Stimming U. Fuel cells fundamentals and applications I I Fuel Cells. — 2001. — V.l. — No.l. — P.5−39.
  22. Li Q. F, He R.H., Jensen J.O., Bjerrum N.J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C // Chem. Mater. 2003. — V.15. -No.26. — P.4896−4915.
  23. Rozi’ere J., Jones D.J. Non-fluorinated polymer materials for proton exchangemembrane fuel cells // Annu. Rev. Mater. Res. 2003. — V.33. -P.503−55.
  24. Ю.А., Писарева A.B., Леонова JI.C., Карелин А. И. Новые протонпроводящие мембраны для топливных элементов и газовых сенсоров // Альтернативная энергетика и экология. 2004. -Т.20. — № 12. — С.36−41.
  25. Ю.А., Волков Е. В., Писарева А. В., Федотов Ю. А., Лихачев Д. Ю., Русанов А. Л. Протонообменные мембраны для водородно-воздушных топливных элементов // Рос. Хим. Ж. 2006. -T.L. — № 6. -С.95−104.
  26. Mauritz К.А., Warren R.M. Microstructural Evolution of a Silicon Oxide Phase in a Perfluorosulfonic Acid Ionomer by an in Situ Sol-Gel Reaction. 1. Infrared Spectroscopic Studies // Macromolecules 1989. — V.22. — No.4. — P. 17 301 734.
  27. Deng Q., Moore R.B., Mauritz K.A. Novel Nafion/ORMOSIL hybrids via in situ sol-gel reactions, 1. probe of ORMOSIL phase nanostructures by infrared spectroscopy // Chem. Mater. 1995. — V.7. -No.12. -P.2259−2268.
  28. Dene Q., Cable K.M., Moore R.B., Mauritz K.A. Small-angle Х-кау scattering studies of Nafion®/Silicon Oxide. and Nafion®/ORMOSIL nanocomposites // J. Polym. Sci.: Part B: Pol. Phys. 1996. — V.34. -No.ll. -P.1917−1923.
  29. Wang H.T., Holmberg B.A., Huang L.M., Wang Z.B., Mitra A., Norbeck J.M., Yan Y.S. Nafion-bifunctional silica composite proton conductive membranes // J. Mater. Chem. -2002. V.12. — No.4. — P. 834−837.
  30. Hagihara H., Uchida H., Watanabe M. Preparation of highly dispersed SiC>2 and Pt particles in Nafion®-l 12 for self-humidifying electrolyte membranes in fuel cells // Electrochim. Acta. -2006. V.51. — No. 19. —. 3979−3985.
  31. Adjemian K.T., Srinivasan S., Benziger J., Bocarsly A.B. Investigation of PEMFC operation above 100 degrees C employing perfluorosulfonic acid silicon oxide composite membranes // J. Power Sources -2002. V.109. — No.2. — P.356−364.
  32. Adjemian K.T., Lee S.J., Srinivasan S., Benziger J., Bocarsly A.B. Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80−140 degrees C // J. Electrochem. Soc. 2002. — V.149. — No.3. -P.A256-A261.
  33. Pereira F., Valle K., Belleville P., Morin A., Lambert S., Sanchez C. Advanced Mesostructured Hybrid Silica-Nafion Membranes for High-Performance PEM Fuel Cell // Chem. Mater. 2008. — V.20. -No.5. — P.1710−1718.
  34. Sacca A., Carbone A., Passalacqua E., D’Epifanio A., Licoccia S., Traversa E., Sala E., Traini F., Ornelas R. Nafion-Ti02 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)// J. Power Sources. -2005. -V.152. -No.l. -P.16−21.
  35. Rhee C.H., Kim Y., Lee J.S., Kim H.K., Chang H. Nanocomposite membranes of surface-sulfonated titanate and Nafion ® for direct methanol fuel cells // J. Power Sources. 2006. — V. 159. -No.2. P.1015−1024.
  36. Shao Z.G., Xu H.F., Li M.Q., Hsing I.M. Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell // Solid State Ionics 2006. — V.177. -No.7−8. P.779−785.
  37. Jalani N.H., Dunn K., Datta R. Synthesis and characterization of Nafion ®-M02 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells // Electrochim. Acta. 2005. — Vol.51. -No.3. — P.553−560.
  38. Patil Y., Mauritz K.A. Durability enhancement of Nafion® fuel cell membranes via in situ sol-gel-derived titanium dioxide reinforcement // J. Appl. Polym. Sci. -2009. -V. 113. -No.5. -P.3269−3278.
  39. Santiago E.I., Isidoro R.A., Dresch M.A., Matos B.R., Linardi M., Fonseca F.C. Nafion-Ti02 hybrid electrolytes for stable operation of PEM fuel cells at high temperature // Electrochim. Acta. 2009. — V.54. — No. 16. — P.4111−4117.
  40. Baglio V.5 Arico A.S., Di Blasi A., Antonucci P.L., Nannetti F., Tricoli V., Antonucci V. Zeolite-based composite membranes for high temperature direct methanol fuel cells // J. Appl. Electrochem. 2005.- V.35. — No.2. — P.207−212.
  41. Rhee C.H., Kim H.K., Chang H., Lee J.S. Nafion/sulfonated montmorillonite composite: A new concept electrolyte membrane for direct methanol fuel cells // Chem. Mater. -2005. -V. 17. -No.7. -P.1691−1697.
  42. Holmberg B.A., Wang X., Yan Y.S. Nanocomposite fuel cell membranes based on Nafion and acid functionalized zeolite beta nanocrystals // J. Membr. Sci. -2008. V.320. -No.1−2. — P.86−92.
  43. Choi Y. S., Kim T.K., Kim E.A., Joo S.H., Pak C., Lee Y.H., Chang H., Seung D. Exfoliated sulfonated poly (arylene ether sulfone)-clay nanocomposites // Adv. Mater. 2008. — V.20. -No.12. — P. 2341−2344.
  44. He X., Tang H., Pan M. Synthesis and performance of water-retention PEMs with Nafion-intercalating-montmorillonite hybrid // J. Appl. Polym. Sci. -2008. -V.IO8.-N0.L-529−534.
  45. Mohammad M. H.-S., Shahriar H. E., Reza G., Homayoun M. Nanocomposite membranes made from sulfonated poly (ether ether ketone) and montmorillonite clay for fuel cell applications // Energy & Fuels. 2008. — V.22. -No.4. — P.2539−2542.
  46. Holmberg B. A., Wang H., Yan, Y. S. High silica zeolite Y nanocrystals by dealumination and direct synthesis //Micropor. Mesopor. Mat. 2004. — V.74. -No.1−3.-P.189−198.
  47. Chen Z., Holmberg B., Li W., Wang X., Deng W., Munoz R., Yan Y. Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell // Chem. Mater. 2006. — V. 18. — No.24. — P.5669−5675.
  48. Liu Y.H., Yi B.L., Shao Z.G., Xing D.M., Zhang H.M. Carbon nanotubes reinforced nafion composite membrane for fuel cell applications // Electrochem. Solid. St. 2006. — V.9. -No.7. — P. A356-A359.
  49. Kannan R., Kakade B. A., Pillai V.K. Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes //Angew. Chem. Int. Ed. 2008. — V.47. — No.14. — P.2653−2656.
  50. Costamagna P., Yang C., Bocarsly A.B., Srinivasan S. Nafion ® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 degrees C // Electrochim. Acta. -2002. V.47. — No.7. — P.1023−1033.
  51. Sahu A.K., Pitchumani S., Sridhar P., Shukla A.K. Co-assembly of a Nafion-mesoporous zirconiumphosphate composite membrane for РЕМ fuel cells // Fuel Cells. 2009. — V.9. — No.2. — P. 139−147.
  52. Ramani V., Kunz H.R., Fenton J.M. Investigation of Nafion ®/HPA composite membranes for high temperature/low relative humidity PEMFC operation // J. Membr. Sci. 2004. — V.232. — No. 1−2. — P.31−44.
  53. Barthet C., Guglielmi M. Mixed electronic and ionic conductors a new route to Nafion®-doped polyaniline // J. Electroanal. Chem. — 1995. — V.388. — No. 1−2. -P.35−44.
  54. Barthet C., Guglielmi M. Aspects of the conducting properties of Nafion doped polyaniline // Electrochimica Acta. 1996. — V.41. — NO. 18. — P.2791−2798.
  55. Huang, Q.M., Zhang Q.L., Huang H.L., Li W.S., Huang Y.J., Luo J.L. Methanol permeability and proton conductivity of Nafion membranes modified electrochemically with polyaniline // J. Power Sources 2008. — V.184. — No.2. -P.338−343.
  56. Yang J.Y., Shen P.K., Yarcoe J., Wei Z.D. Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity // J. Power Sources 2009. — V.189. — No.2. — P.1016−1019.
  57. Н.П., Кубайси A.A.-P., Алпатова H.M., Андреев B.H., Грига Е. И. Химический темплатный синтез композитных мембран ПАН/МФ-4СК и их сорбционные и проводящие свойства // Электрохимия. 2004. — Т.40. — № 3. — С.325−333.
  58. Tan S., Belanger D. Characterization and transport properties of Nafion/polyaniline composite membranes // J. Phys. Chem. В — 2005. V.109. -No.49. — P.23 480−23 490.
  59. Choi B.G., Park H., Im H.S., Kim Y.J., Hong W.H. Influence of oxidation state of polyaniline on physicochemical and transport properties of Nafion/polyaniline composite membrane for DMFC // J. Membr. Sci. -2008. -V.324. —No.1−2. -P.102−110.
  60. Bahar В., Hobson A.R., Kolde J.A., U.S. Patent 5,547,551 (1996).
  61. Nouel К. K.M., Fedkiw P. S. Nafion ®-based composite polymer electrolyte membranes //Electrochim. Acta 1998. — V.43. -No.16−17. -P.2381−2387.
  62. Kyu T., Yang J.C. Kinetics of Phase-Separation of Perfluorinated Nafion Ionomer and Poly (Vinylidene Fluoride) Blends // Macromolecules 1990. — V.23. -No.l —P.182−186.
  63. Landis F.A., Moore R.B. Blends of a perfluorosulfonate ionomer with poly (vinylidene fluoride): effect of counterion type on phase separation and crystal morphology //Macromolecules. 2000. — V.33. -No.16. -P.6031−6041.
  64. Lin J.G., Ouyang M., Fenton J.M., Kunz H.R., Koberstein J.T., Cutlip M.B. Study of blend membranes consisting of Nafion ® and vinylidene fluoride hexafluoropropylene copolymer // J. Appl. Polym. Sci. 1998. — V.70. — No.l. -P.121−127.
  65. Song M.K., Kim Y.T., Fenton J.M., Kunz H.R., Rhee H.W. Chemically-modified Nafion®/poly (vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells // J. Power Sources 2003. — V. l 17. — No. 1−2. — P.14−21.
  66. Wycisk R., Chisholm J., Lee J., Lin J., Pintauro P.N. Direct methanol fuel cell membranes from Nafion-polybenzimidazole blends // J. Power Sources 2005. -V.163. -No. 1. — P.9−17.
  67. DeLuca N.W., Elabd Y.A. Nafion®/poly (vinyl alcohol) blends: Effect of composition and annealing temperature on transport properties // J. Membrane Sci. -2006.-V.282.-No.l-2.-P. 217−224.
  68. DeLuca N.W., Elabd Y.A. Direct methanol fuel cell performance of Nafion®/poly (vinyl alcohol) blend membranes // J. Power Sources 2006. — V.163 -No.l.-P. 386−391.
  69. Giirsel S.A., Gubler L., Gupta B., Scherer G.G. Radiation grafted membranes //Adv. Polym. Sci. -2008. Vol. 215. -P.157−217.
  70. Choi J.K., Kim Y.W., Koh J.H., Kim J.H. Proton conducting membranes based on poly (vinyl chloride) graft copolymer electrolytes // Polym. Adv. Techn. — 2008. V.19. -No.7. -P.915−921.
  71. Xiao S.Q., Chen Y.W., Zhou W.H. et al. Synthesis of proton-conducting electrolytes based on poly (vinylidene fluoride-co-hexafluoropropylene) via atom transfer radical polymerization // High Perform. Polym. 2009. — Vol.21. — No. 4. -P.484−500.
  72. Hubner G., Roduner E. EPR investigation of HO" radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes // J. Mater. Chem. 1999. — V.9. — No.2. — P.409−418.
  73. Lehtinen T., Sundholm G., Holmberg S., Sundholm F., Bjornbom P., Bursell M. Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells // Electrochim. Acta. 1998. — V.43. — No.12−13. — P.1881−1890.
  74. Youcef H. B, Gubler L., Yamaki T. et al. Cross-linker effect in ETFE-based radiation-grafted proton-conducting membranes // J. Electrochem. Soc. 2009. -V.156. -No.4. -P.B532-B539.
  75. Chen J., Asano M., Maekawa Y., Yoshida M. Chemically stable hybrid polymer electrolyte membranes prepared by radiation grafting, sulfonation, and silane-crosslinking techniques // J. Polym. Sci. Part A Polym. Chem. 2008. — V.46. -No.16. — P.5559−5567.
  76. Nolte R., Ledjeff K., Bauer M., Mulhaupt R. Partially sulfonated poly (arylene ether sulfone) a versatile proton conducting membrane material for modern energy-conversion technologies // J. Membr. Sci. — 1993. — V.83. -No.2. — P.211−220.
  77. Kerres J., Cui W., Reichle S. New sulfonated engineering polymers via the metalation route .1. Sulfonated poly (ethersulfone) PSU Udel® via metalation-sulfination-oxidation // J. Polym. Sci. Part A Polym. Chem. 1996. — V.34. — No. 12. -P.2421−2438.
  78. Xing D., Kerres J. Improved performance of sulfonated polyarylene ethers for proton exchange membrane fuel cells // Polym. Adv. Technol. 2006. — Vol. 17. -No.7−8. — P.591−597.
  79. Heo K.B., Lee H.J., Kim H.J., Lee S.Y., Cho E., Oh I.H., Hong S.A., Lim T.H. Synthesis and characterization of cross-linked poly (ether sulfone) for a fuel cell membrane // J. Power Sources 2007. -V. 172. — No. 1. — P.215−219.
  80. Oh Y.S., Lee H.J., Yoo M., Kim H.J., Han J., Kim T.H. Synthesis of novel crosslinked sulfonatod poly (ether sulfone) s using bisazide and their properties for fuel cell application // J. Membr. Sci. 2008. — V.323. — No.2. — P.309−315.
  81. Feng S.G., Shang Y.M., Xie X.F., Wang Y.Z., Xu J.M. Synthesis and characterization of crosslinked sulfonated poly (arylene ether sulfone) membranes for DMFC applications //J. Membr. Sci. -2009. -V.335. No. 1−2. — P. 13−20.
  82. Roy A., Lee H.S., McGrath J.E. Hydrophilic-hydrophobic multiblock copolymers based on poly (arylene ether sulfone) s as novel proton exchange membranes Part B // Polymer. — 2008. — V.49. — No.23. — P.5037−5044.
  83. Liang C., Maruyama T., Ohmukai Y. Characterization of random and multiblock copolymers of highly sulfonated poly (arylene ether sulfone) for a protonexchange membrane // J. Applied Polym. Sci. 2009. — V.114. — No.3. — P.1793−1802.
  84. Takamuku S., Akizuki K., Abe, M., Kanesaka H. Synthesis and characterization of postsulfonated poly (arylene ether sulfone) diblock copolymers for proton exchange membranes // J. Polym. Sei., Part A Polym. Chem. 2009. — V.47. -No.3. -P.700−712.
  85. Matsumoto K., Higashihara T., Ueda M. Locally sulfonated poly (ether sulfone) s with highly sulfonated units as proton exchange membrane // J. Polym. Sei. Part A-Polym. Chem. 2009. — V.47. — No. 13. — P.3444−3453.
  86. Poppe D., Frey H., Kreuer K.D., Heinzel A., Mulhaupt R. Carboxylated and sulfonated poly (arylene-co-arylene sulfone) s: Therm. -No.21. -P.7936−7941.
  87. Liu B.J., Hu W., Robertson G.P., Guiver M.D. Poly (aryl ether ketone) s with carboxylic acid groups: synthesis, sulfonation and crosslinking // J. Mater. Chem. -2008. V. 18. -No.39. -P.4675−4682.
  88. Lafitte B., Karlsson L.E., Jannasch P. Sulfophenylation of polysulfones for proton-conducting fuel cell membranes // Macromol. Rapid Commun. 2002. -V.23. -No.15. -P.896−900.
  89. Karlsson L.E., Jannasch P. Polysulfone ionomers for proton-conducting fuel cell membranes 2. Sulfophenylated polysulfones and polyphenylsulfones // Electrochim. Acta. — 2005. — V.50. -No.9. — P. 1939−1946.
  90. Jorissen L., Cogel V., Kerres J., Garche J. New membranes for direct methanol fuel cells // J. Power Sources. 2002. — V. 105. — No.2. — P.267−273.
  91. Schonberger F., Hein M., Kerres J. Preparation and characterisation of sulfonated partially fluorinated statistical poly (arylene ether sulfone) s and their blends with PBI// Solid State Ionics. -2007. V. 178. -No.7−10. -P.547−554.
  92. Li X.F., Chen D.J., Xu D., Lu H., Na H. SPEEKK/polyaniline (PANI) composite membranes for direct methanol fuel cell usages // J. Membr. Sci. 2006. -V.275. -No.1−2. — P.134−140.
  93. Nagarale R.K., Gohil G.S., Shahi V.K. Sulfonated poly (ether ether ketone)/polyaniline composite proton-exchange membrane // J. Membr. Sci. — 2006. V.280. — No. 1−2. — P.3 89−396.
  94. Huang Q.M., Zhang Q.L., Huang H.L., Li W.S., Huang Y.J., Luo J.L. Methanol permeability and proton conductivity of Nafion membranes modified electrochemically with polyaniline // J. Power Sources. 2008. — V.184. — No.2. -P.338−343.
  95. Yang J.Y., Shen P.K., Varcoe J., Wei Z.D. Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity // J. Power Sources. 2009. — V.189. — No.2. — P. 10 161 019.
  96. Tan S., Belanger D. Characterization and transport properties of Nafion/polyaniline composite membranes // J. Phys. Chem. B. 2005. — V.109. -No.49. -P.23 480−23 490.
  97. Choi B.G., Park H., Im H.S., Kim Y.J., Hong W.H. Influence of oxidation state of polyaniline on physicochemical and transport properties of Nafion/polyaniline composite membrane for DMFC // J. Membr. Sci. 2008. -V.324.-No.1−2. -P.102−110.
  98. Jeong M.H., Lee K.S., Lee J.S. Synthesis and characterization of sulfonated poly (arylene ether ketone) copolymers containing crosslinking moiety // J. Membr. Sci. 2009. — V.337. — No. 1−2. — P.145−152.
  99. Bai Z., Shumaker J.A., Houtz M.D., Mirau P.A., Dang T.D. Fluorinated poly (arylenethioethersulfone) copolymers containing pendant sulfonic acid groups for proton exchange membrane materials // Polymer. 2009. — V.50. — No.6. -P.1463−1469.
  100. Jeong M.H., Lee K.S., Lee J.S. Cross-linking density effect of fluorinated aromatic polyethers on transport properties // Macromolecules 2009. — V.42. -No.5. -P.1652−1658.
  101. Genies C.5 Mercier R., Sillion B., Cornet N., Gebel G., Pineri M. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium //Polymer-2001. -V.42.-No.12.-P.5097−5105.
  102. Besse S., Capron P., Diat O., Gebel G, Jousse F., Marsacq D., Pineri M., Marestin C., Mercier R. Sulfonated polyimides for fuel cell electrode membrane assemblies (EMA) // J. New. Mater. Electrochem. Syst. 2002. — V.5. — No.2. -P.109−112.
  103. Gebel G., Aldebert P., Pineri M. Swelling study of perfluorosulphonated ionomer membranes // Polymer. 1993. — V. 34. — No.2. — P.333−339.
  104. Zhang F., Li N.W., Cui Z.M., Zhang S.B., Li S.H. Novel acid-base polyimides synthesized from binaphthalene dianhydrie and triphenylamine-containing diamine as proton exchange membranes //J. Membr. Sci. 4 2008. — Vol. 314. — No.1−2. -P.24−32.
  105. Lee C.H., Park C.H., Lee Y.M. Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications // J. Membr. Sci. 2008. — V.313. — No. 1−2. — P. 199−206.
  106. Hu Z.X., Yin Y., Yaguchi K., Endo N., Higa M., Okamoto K.I. Synthesis and properties of sulfonated multiblock copolynaphthalimides // Polymer 2009. — Y.50. -No. 13. -P.2933−2943.
  107. Chen K.C., Chen X.B., Yaguchi K., Endo N., Higa M., Okamoto K.I. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for fuel cell application//Polymer-2009. -V.50. -No.2. -P.510−518.
  108. Kawahara M., Rikukawa M., Sanui K. Relationship between absorbed water and proton conductivity in sulfopropylated poly (benzimidazole) // Polym. Adv. Technol. 2000. — V. 11. — No.8−12. — P.544−547.
  109. Bae J.M., Honma I., Yamamoto T., Rikukawa M., Ogata N. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells // Solid State Ionics. 2002. — V.147. — No. 1−2. — P. 189−194.
  110. Kang S., Zhang C.J., Xiao G.Y., Yan D.Y., Sun G.M. Synthesis and properties of soluble sulfonated polybenzimidazoles from 3,3 '-disulfonate-4,4 dicarboxylbiphenyl as proton exchange membranes // J. Membr. Sci. 2009. -V.334.-No.l-2.-P. 91−100.
  111. Wang L., Meng Y.Z., Wang S.J., Hay A.S. Synthesis and sulfonation of poly (arylene ether) s containing tetraphenyl methane moieties // J. Polym. Sci. Polym. Chem. 2004. — Vol. A42. -No.7. — P. 1779−1788.
  112. Miyatake K., Zhou H., Watanabe M. Synthesis and properties of novel sulfonated poly (phenylene ether) // J. Polym. Sci. Polym. Chem. 2005. — V. A43. -No.8. — P.1741−1744.
  113. Kim D.S., Kim Y.S., Guiver M.D., Pivovar B.S. High performance nitrile copolymers for polymer electrolyte membrane fuel cells // J. Membr. Sci. 2008. -V.321. -No.2. — P.199−208.
  114. Kim D.S., Robertson G.P., Kim Y.S., Guiver M.D. Copoly (arylene ether) s containing pendant sulfonic acid groups as proton exchange membranes // Macromolecules 2009. — V.42. — No.4. — P.957−963.
  115. Fujimoto C.H., Hickner M.A., Cornelius C.J., Loy D.A. Ionomeric poly (phenylene) prepared by diels-alder polymerization: Synthesis and physical properties of a novel polyelectrolyte // Macromolecules. 2005. — V.38. — No. 12. -P.5010−5016.
  116. Lee K.S., Jeong M.H., Lee J.P., Lee J.S. End-group cross-linked poly (arylene ether) for proton exchange membranes // Macromolecules. — 2009. V.42. — No.3. -P.584−590.
  117. Wycisk R., Pintauro P.N. Polyphosphazene membranes for fuel cells // Fuel Cells II. -2008. V.216. -P.157−183.
  118. Wycisk R., Pintauro P.N. Sulfonated polyphosphazene ion-exchange membranes//J. Membr. Sci. 1996. — V. 119. -No. 1. -P. 155−160.
  119. Tang H., Pintauro P.N. Polyphosphazene membranes. IV. Polymer morphology and proton conductivity in sulfonated polybis (3-methylphenoxy)phosphazene. films // J. Appl. Polym. Sci. 2001. — V.79. — No.l. -P.49−59.
  120. Halim J., Buchi F.N., Haas O., Stamm M., Scherer G.G. Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle x-ray-scattering // Electrochim. Acta. 1994. — V. 39. -No.8−9. — P.1303−1307.
  121. Zhou X.Y., Weston J., Chalkova E., Hofmann M.A., Ambler C.M., Allcock H.R., Lvov S.N. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells // Electrochim. Acta. — 2003. V.48. -No.14−16. -P.2173−2180.
  122. Wycisk R., Pintauro P.N., Wang W., O’Connor S. Polyphosphazene membranes .1. Solid-state photocrosslinking of poly (4-ethylphenoxy)(phenoxy)phosphazene. // J. Appl. Polym. Sci. 1996. — V.59. -No.10. -P.1607−1617.
  123. Graves R., Pintauro P.N. Polyphosphazene membranes. II. Solid-state photocrosslinking of poly (alkylphenoxy)(phenoxy)phosphazene. films // J. Appl. Polym. Sci. 1998. — V.68. — No.5. -P.827−836.
  124. Guo Q.H., Pintauro P.N., Tang H., O’Connor S. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes // J. Membr. Sci. 1999. -V.154. -No.2. -P.175−181.
  125. Wycisk R., Lee J.K., Pintauro P.N. Sulfonated polyphosphazene-polybenzimidazole membranes for DMFCs // J. Electrochem. Soc. 2005. — V.152.- No.5. P. A892-A898.
  126. Carter R., Wycisk R., Yoo H., Pintauro P.N. Blended polyphosphazene/polyacrylonitrile membranes for direct methanol fuel cells // Electrochem. Solid State Lett. 2002. — V.5. -No.9. -P.A195-A197.
  127. Kotov S.V., Pedersen S.D., Qiu W.M., Qiu Z.M., Burton D.J. Preparation of perfluorocarbon polymers containing phosphonic acid groups// J. Fluorine Chem. -1997.-V.82.-No.l-- P.13−19.
  128. Lassegues J.C., Grondin J., Hernandez M., Maree B. Proton conducting polymer blends and hybrid organic inorganic materials // Solid State Ionics. 2001.- V.145. No. 1−4. -P.37−45.
  129. Yamabe M., Akiyama K., Akatsuka Y., Kato M. Novel phosphonated perfluorocarbon polymers // Eur. Polym. J. 2000. — V.36. — No.5. — P. 1035−1041.
  130. Stone C., Daynard T.S., Hu L.Q., Mah C., Steck A.E. Phosphonic acid functionalized proton exchange membranes for PEM fuel cells // J. New Mater. Electrochem. Syst. 2000. — V. 3.-No.l. -P.43−50.
  131. Meng Y.Z., Tjong S.C., Hay A.S., Wang S.J. Proton-exchange membrane electrolytes derived from phosphonic acid containing poly (arylene ether) s// Eur. Polym. J. 2003. — V.39. — No.3. — P.627−631.
  132. Meng Y.Z., Tjong S.C., Hay A.S., Wang S.J. Synthesis and proton conductivities of phosphonic acid containing poly-(arylene ether) s // J. Polym. Sci. Part. A.: Polym. Chem. 2001. — V.39. — No. 19. — P.3218−3226.
  133. Miyatake K., Hay A.S. New poly (arylene ether) s with pendant phosphonic acid groups // J. Polym. Sci. Part A.: Polym. Chem. 2001. — V.39. -No.21. P.3770−3779.
  134. Lafitte B., Jannasch P. Phosphonation of polysulfones via lithiation and reaction with chlorophosphonic acid esters // J. Polym. Sci. Part A.: Polym. Chem. -2005. V.43. -No.2. — 4 P.273−286.
  135. Jakoby K, Peinemann K.V., Nunes S.P. Palladium-catalyzed phosphonation of polyphenylsulfone // Macromol. Chem. Phys. 2003. — V.204. — No.l. — P.61−67.
  136. Allcock H.R., Hofmann M.A., Ambler C.M., Morford R.V. Phenylphosphonic acid functionalized poly aryloxyphosphazenes. // Macromolecules. 2002. — V.35. — No.9. — P.3484−3489.
  137. Li S., Zhou Z., Abernathy H., Liu M.L., Li W., Ukai J., Hase K., Nakanishi M. Synthesis and properties of phosphonic acid-grafted hybrid inorganic-organic polymer membranes // J. Mater. Chem. 2006. — V.16. — No.9. — P.858−864.
  138. Yanagimachi S., Kaneko K., Takeoka Y., Rikukawa M. Synthesis and evaluation of phosphonated poly (4-phenoxybenzoyl-l, 4-phenylene) // Synth. Met. — 2003. V.13S. -No.1−3. -P.69−70.
  139. Schmidt-Naake G., Bohme M., Cabrera A. Synthesis of proton exchange membranes with pendent phosphonic acid groups by irradiation grafting of VBC // Chem. Eng. Technol. 2005. — V.28. -No.6. -P.720−724.
  140. Kaltbeitzel A., Schauff S., Steininger H., Bingol B., Brunklaus G., Meyer W.H., Spiess H.W. Water sorption of poly (vinylphosphonic acid) and its influence on proton conductivity // Solid State Ionics. 2007. — V.178. — No.7−10. — P.469−474.
  141. Parvole J., Jannasch P. Poly (arylene ether sulfone) s with phosphonic acid and bis (phosphonic acid) on short alkyl side chains for proton-exchange membranes // J. Mater. Chem. -2008. V. 18. -No.45. -P.5547−5556.
  142. Subianto S., Choudhury N.R., Dutta N.K. Palladium-catalyzed phosphonation of SEBS block copolymer // J. Polym. Sci. Part A: Polym. Chem. 2008. — V. 46. -No. 16. -P.5431−5441.
  143. Anis A., Banthia A.K., Bandyopadhyay S. Synthesis & characterization of PVA/STA composite polymer electrolyte membranes for fuel cell application // J. Mater. Eng. Performance. 2008. — V.17. — No.5. — P.772−779.
  144. Cui Z.M., Xing W., Liu C.P., Liao J.H., Zhang H. Chitosan/heteropolyacid composite membranes for direct methanol fuel cell // J. Power Sources. — 2009. — V .188. — No. 1. — P.24−29.
  145. Kumar G.G., Uthirakumar P., Nam K.S., Elizabeth R.N. Fabrication and electro chemical properties of poly vinyl alcohol/para toluene sulfonic acid membranes for the applications of DMFC // Solid State Ionics. 2009. — V. 80. -No. -3. — P.282−287.
  146. Ю.А., Писарева A.B., Леонова JI.C., Карелин А. И. Новые протонпроводящие мембраны для топливных элементов и газовых сенсоров // Альтернативная энергетика и экология. 2004. — Т. 20. — № 12. — С.36−41.
  147. Ю.А., Джаннаш П., Лаффит Б., Беломоина Н. М., Русанов А. Л., Лихачев Д. Ю. Успехи в области протонпроводящих полимерных электролитных мембран // Электрохимия. 2007. — Т.43. — № 5. — С.515−527.
  148. Mader J., Xiao L., Schmidt T.J., Benicewicz B.C. Polybenzimidazole/acid complexes as high-temperature membranes // Adv. Polym. Sci. 2008. — V.216. -P.63−124.
  149. Li Q.F., Hjuler H.A., Bjerrum N.J. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications // J. Appl. Electrochem. 2001. Vol. 31, No. 7. P. 773−779.
  150. Asensio J.A., Borros S., Gomez-Romero P. Proton-conducting membranes based on poly (2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting // J. Membr. Sci. 2004. — V.241. — No. 1. — P.89−93.
  151. Zhai Y.F., Zhang H.M., Liu G., Hu J.W., Yi B.L. Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test // J. Electrochem. Soc. 2007. -V. 154. — No. 1. — P. B72-B76.
Заполнить форму текущей работой