Помощь в написании студенческих работ
Антистрессовый сервис

Спектроскопия ЯМР 1H и 13C гомо-и метанофуллеренов: структура и стереохимия

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

О фуллереновой сферы при естественном содержании изотопа С с использованием расчетных данных и подтверждена структура спиро-гомои метанофуллеренов, спиро-тошои метанофуллеренов с хиральными центрами в присоединенном адденде, а также гомои метанофуллеренов с содержанием атома серы в присоединенном адденде. Найдены характеристичные слабопольные сигналы в области 146−150 м.д., определяющие сайты… Читать ещё >

Спектроскопия ЯМР 1H и 13C гомо-и метанофуллеренов: структура и стереохимия (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. Литературный обзор
    • 1. 1. Структура и спектроскопия ЯМР 13С производных фуллерена С6о
    • 1. 2. Применение квантово-химических методов для расчета химических сдвигов ЯМР iJC производных фуллерена С
  • Глава 2. Результаты и их обсуждение
    • 2. 1. Обоснование выбора метода GIAO-PBE/З^ для расчета химических сдвигов ЯМР 'Ни 13С модельных органических соединений и производных С
    • 2. 2. Структура, стереохимия и спектроскопия ЯМР ]Н и 13С спиро-гомо- и метанофуллеренов
      • 2. 2. 1. Симметричные спиро-тошо- и метанофуллерены
      • 2. 2. 2. Спиро-тошо и метанофуллерены с хиральными центрами в присоединенном адденде
    • 2. 3. Гомо- и метанофуллерены с содержанием атома серы в присоединенном адденде
  • Глава 3. Экспериментальная часть
  • Выводы

Актуальность темы

.

Интерес к способам функционализации фуллеренового каркаса вследствие склонности его к различным реакциям радикального, нуклеофильного и циклоприсоединения вызван получением веществ с новыми свойствами. Так, полученный по реакции Бингеля в результате [2+1]-циклоприсоединения диад фуллерен-кверцетин, перспективен вследствие широко известной биологической активности флавоноидных структур, проявляющих антиоксидантные, актиканцерогенные, иммуномодуляторные и другие свойства [1]. Новые фуллерен-флавоноидные диады синтезированы для получения новых ловушек радикалов с потенциальным медицинским применением [2]. Получены растворимые в воде дендрофуллерены [3,4], фотоактивные поликомпонентные донорно-акцепторные системы, в которых хромофорные группы связаны фрагментами различных краун-эфиров. Роль донорной компоненты выполняют фталоциановые, тетратиафульваленовые [5] и порфириновые системы [6−12]. Синтезированы также новые органические лиганды на основе С6о [13]. Значительное внимание к обширному классу гомои метанофуллеренов обусловлено перспективой получения на их основе новых материалов, которые могут найти широкое практическое применение в области медицины, нелинейной оптики и техники. В этой связи становится актуальной проблема определения строения и физико-химических свойств новых фуллереновых производных. Среди существующих физико-химических методов установления структуры органических соединений одно из лидирующих положений занимает спектроскопия ЯМР. Однако, в подавляющем большинстве публикаций.

1 13 данные ЯМР Ни С синтезированных производных фуллерена приводятся без отнесений и сопровождаются, как правило, лишь перечислением характерных сигналов ЯМР с указанием значений их химического сдвига, а также величин наблюдаемых констант спин-спинового взаимодействия в случае наличия связанных с фуллереновым остовом молекулы магнитных 5 ядер. В особенности, это имеет место при идентификации фтор- [14−21] и фосфорпроизводных [22−25] фуллерена. Для первых из них, в молекулах которых атомы фтора непосредственно связаны с углеродным каркасом, однозначно определены мотивы их присоединения за счет прямого наблюдения не только в одномерном варианте, но и также с помощью двумерной гомоядерной методики 19F-19 °F COSY. Для фосфорилированных гомои метанофуллеренов, атом (ы) фосфора в которых локализуются в присоединенном адденде, возможно также не только непосредственное.

31 13 наблюдение Р, но и С, в одномерных спектрах которых характерны расщепления сигналов за счет спин-спинового взаимодействия 31Р-13С.

1 ^.

Однако, при идентификации соединений с необогащенным изотопом С фуллереновым каркасом отсутствуют какие-либо подходы к анализу и.

13 интерпретации спектров ЯМР С для оценки взаимного влияния присоединенного адденда и фулереновой сферы при естественном.

13 содержании изотопа С, составляющим, как известно, 1.1%. Таким образом, установление структуры и стереохимических особенностей новых гомои метанофуллеренов, а также анализ спектров ЯМР 13с с использованием.

1 ^ квантово-химических расчетов при естественном содержании изотопа С и установление взаимного влияния присоединенного адденда и фуллеренового.

1 13 каркаса на параметры спектров ЯМР Ни С является актуальной задачей органической химии фуллеренов.

Диссертационная работа выполнена в соответствии с научным направлением Института нефтехимии и катализа РАН по бюджетным темам.

Металлокомплексный катализ в химии металлорганических соединений и переходных металлов" (№ Гос. регистрации 01.200.2 4 378) и «Комплексные катализаторы в химии непредельных, металлорганических и кластерных соединений» (№ Гос. регистрации 0120.0 850 048) при финансовой поддержке.

Федеральной Целевой Программы «Научные и научно-педагогические кадры инновационной России» на 2009;2013 гг (ГК № П1218 и № 14.740.11.0014) и программы Президиума РАН «Фундаментальные науки — медицине». б.

Цель работы.

Целью настоящей работы является установление структуры, стереохимических особенностей и оценка взаимного влияния присоединенного адденда и фуллереновой сферы на параметры спектров ЯМР *Н и 13С с использованием квантово-химического метода GIAO в приближении РВЕ/3^ для ряда новых гомои метанофуллеренов. В этой связи были поставлены и решены следующие задачи:

1) сравнительный и статистический анализ зависимости экспериментальных и рассчитанных методом GIAO в приближении РВЕ/3^.

1 13 значений химических сдвигов ЯМР Ни С модельных органических соединений и фуллереновых производных с известными в литературе значениями химических сдвигов;

2) регистрация, интерпретация спектров ЯМР 'Н и 13С и выявление структурных особенностей ряда новых гомои метанофуллеренов, в том числе с хиральными центрами в присоединенном адденде.

Научная новизна и практическая значимость.

В работе установлена структура и выявлены стереохимические особенности ряда новых гомои метанофуллеренов, в том числе с хиральными элементами в присоединенном адденде, синтезированных циклоприсоединением линейных и циклических диазоалканов, с.

1 13 применением современных одно- (Ни С) и двумерных (НН COSY, NOESY, !Н-13С HSQC и НМВС) методик ЯМР. Предложен новый подход к.

13 анализу спектров ЯМР С с применением квантово-химического метода GIAO в приближении РВЕ/3 С, для отнесения сигналов при естественном.

1 Ч содержании изотопа С. Показано, что углеродные атомы фуллеренового каркаса чувствительны к электронному окружению присоединенного адденда, отражающим симметрию фуллеренового каркаса и, как следствие, проявляются в определенном числе сигналов, их положении и относительной.

I о интенсивности в спектре ЯМР С. Установлено влияние фуллереновой 7.

1 13 сферы на параметры спектров ЯМР Ни С присоединенного адденда, которое заключается в сильнопольном смещении сигналов в случае расположения близлежащих его функциональных групп над гексагоном, вызванное анизотропным экранированием каркаса, и, наоборот, в слабопольном смещении сигналов — при расположении соответствующих групп над Пентагоном. Для оценки влияния хиральных центров присоединенного адденда предложено использовать значения.

1 о диастереотопных расщеплении химических сдвигов ЯМР С соответствующих углеродных атомов фуллеренового каркаса.

Предложенный подход к анализу спектров ЯМР может быть использован при интерпретации изменений в электронной плотности как присоединенного адденда, так и фуллеренового каркаса, а также при оценке реакционной способности вновь получаемых гомои метанофуллеренов.

Апробация работы.

Результаты работы доложены и обсуждены на XII-th International Youth Scientific School «Actual problems of magnetic resonance and its application» (r. Казань, 2009 г.) и V Всероссийской конференции «Новые достижения ЯМР в структурных исследованиях» (г. Казань, 2011).

Публикации.

По материалам диссертации опубликовано 6 статей в журналах, рекомендованных ВАК, и тезисы 2 докладов.

Структура и объем диссертации

.

Диссертационная работа изложена на 134 страницах машинописного текста, проиллюстрирована 44 таблицами, 43 рисунками и 4 схемами, и состоит из введения, литературного обзора «Структура, спектроскопия ЯМР 1.

С и применение квантово-химических методов для расчета химических сдвигов ЯМР 13С производных фуллерена Сбо", обсуждения результатов, 8 экспериментальной части, выводов, приложения и списка литературы. Список цитируемой литературы включает 170 наименований. В приложении приведены таблицы с параметрами спектров ЯМР и 13С изученных соединений.

выводы.

1. Предложен подход для отнесения химических сдвигов ЯМР 13С производных фуллерена С6о, основанный на использовании расчетных данных, полученных квантово-химическим методом GIAO в приближении РВЕ/3^. Получены удовлетворительные статистические характеристики корреляционного анализа расчетных данных и экспериментальных значений химических сдвигов ЯМР 13С для.

И 1 модельных органических соединений (N (S С) = 308, N (S Н) = 263, всего 51 соединение, доверительные интервалы для значений 'Н.

13 составляют дн, расч, и± 0.35, для С: b (^pac4jj± 6.05) и фуллереновых производных (R =0.98 и MAD=5.26 м.д.), отнесения сигналов которых выполнены в литературе методом INADEQUATE ЯМР на изотопно обогащенных образцах. Разработанный подход предложен для отнесения химических сдвигов ЯМР 13С при анализе структуры и стереохимии производных фуллерена С60.

2. Впервые выполнены отнесения сигналов ЯМР 13С углеродных атомов.

1 о фуллереновой сферы при естественном содержании изотопа С с использованием расчетных данных и подтверждена структура спиро-гомои метанофуллеренов, спиро-тошои метанофуллеренов с хиральными центрами в присоединенном адденде, а также гомои метанофуллеренов с содержанием атома серы в присоединенном адденде. Найдены характеристичные слабопольные сигналы в области 146−150 м.д., определяющие сайты присоединения адденда, а также сигналы в области 130−135 м.д., принадлежащие углеродным атомам в аи /^-положениях по отношению к сайту присоединения адденда.

3. Установлено влияние фуллеренового остова молекул на химические сдвиги симметричных аддендов в гомофуллеренах. Показано, что диастереотопные эффекты в заместителях, обусловленные анизотропным влиянием гексагона фуллеренового остова молекулы, имеют наибольшие значения для а, аметиленовых групп и убывают по.

95 мере удаления от сайта присоединения и увеличения размера спиро-цикла.

4. Показано, что наличие хиральных элементов в аддендах приводит к анизохронности химических сдвигов углеродных атомов фуллереновой сферы. Наибольший диастереотопный эффект {Аддиас порядка 3.00 м.д.) наблюдается для а-углеродных атомов в сайте присоединения адденда и существенно слабее (Аёдиас< 0.50 м.д.) для остальных среди геометрически эквивалентных углеродных углеродных атомов по отношению к хиральному центру.

5. Показано, что в спектрах ЯМР С серосодержащих гомофуллеренов наиболее слабопольные значения химических сдвигов принадлежат а-углеродным атомам по отношению к сайту присоединения адденда, тогда как наиболее сильнопольные значения — связанным с ними /?-углеродным атомам. Аналогичная закономерность наблюдается для метанофуллеренов. Наибольшие значения диастереотопных расщеплений характерны для аи ув-углеродных атомов фуллеренового каркаса по отношению к сайту присоединения адденда.

Параметры спектров ЯМР С сииро-гомофуллеренов 27−30.

27 28 29 30.

С> м.д. ^¡-иич м.д. м.д. М.Д. м.д. М.д. м.д. М.д.

14, 19 137.76 133.14 135.06 132.91 132.62 133.32 135.22 133.16.

7,11 137.95 136.30 136.51 136.34 132.85 136.22 137.38 136.31.

8, 10 138.87 138.51 137.82 138.43 135.97 138.51 138.60 138.51.

2,5 138,94 139.75 138.98 138.93 137.25 139.56 138.83 139.78.

6, 12 138,94 139.75 138.79 138.56 135.18 138.48 137.82 138.29.

35,36 139.48 140.51 140.18 140.54 138.71 140.56 140.80 140.73.

21,30 140.22 140.65 139.55 140.34 137.86 140.19 139.97 140.06.

31,40 141.39 141.27 141.10 140.73 138.86 140.74 140.28 140.48.

16, 17 141,76 141.57 141.98 141.53 141.38 142.11 142.06 142.01.

50, 54 141,76 141.57 142.00 141.74 140.85 141.80 141.77 141.95.

42, 47 141.80 141.75 141.53 141.40 140.32 141.35 141.33 141.19.

13,20 142,30 142.07 141.67 141.51 139.91 141.35 141.74 141.27.

57,58 142,30 142.07 142,22 142.34 141.68 142.13 142.06 142.01.

41,48 142.49 142.69 142,22 142.34 141.83 142.50 142.14 142.38.

25,26 142.89 142.69 142.76 142.83 142,06 142.67 142.89 142.94.

43,46 143.00 142.72 142.29 142.54 142,06 142.67 142.30 142.48.

56,59 143.09 143.13 142.97 143.16 142.35 143.27 143.08 143.18.

24, 27 143.19 143.51 143.28 143.76 143.62 143.83 143.77 143.92.

23,28 143,43 143.58 143.17 143.70 143.17 143.74 143.16 143.71.

51,53 143,43 143.58 143.16 143.70 142.91 143.73 143.64 143.83.

34,37 143,63 143.95 143.05 143.50 142.69 143.50 143.13 143.56.

49, 55 143,63 143.95 143.54 144.42 143.80 144.55 142.66 142.52.

32,39 143,87 144.59 143.86 144.80 143.97 144.77 143.81 144.75.

44,45 143,87 144.59 143.70 144.71 143.80 144.55 144.00 144.93.

15, 18 143,99 144.97 144.00 144.92 * 145.23 144.86 146.21.

22, 29 143,99 144.97 144.08 145.41 * 145.34 144.20 145.46.

33,38 144.54 147.82 144.90 147.71 * 147.68 145.30 147.58.

3,4 144.84 153.91 145.25 150.86 * 151.74 147.48 150.39.

9 * 138.01 135.89 137.19 * 136.94 * 137.06.

60 * 144.23 143.23 144.39 * 144.43 135.83 144.45.

52 * 144.44 143.78 144.60 * 144.63 142.96 144.63.

1 * 145.88 144.49 146.31 * 146.31 144.52 144.18.

1 <5.

Параметры спектров ЯМР С сииро-метанофуллеренов 31−34.

31 32 33 34.

С, м.д. м.д. м.д. ^/шсчС^), м.д. м.д. м.д. м.д. Зрасч^^'х)) м.д.

1,9 83.61 94.07 82.30 92.35 82.41 98.95 82.81 98.25.

6,7, 11, 12 137.11 138.04 137.70 138.55 137.60 138.54 137.66 138.61.

15, 18,24, 27 141.13 139.33 141.04 139.20 140.99 139.16 140.92 139.06.

34,37, 43,46 142.26 141.52 142.24 141.41 142.21 141.49 142.20 141.72.

16, 17, 44, 45 142.41 142.12 142.31 142.03 142.26 142.27 142.20 141.72.

20,22, 13,29 143.06 142.40 143.07 142.51 143.05 142.31 143.04 142.45.

35,36,57, С8 143.21 142.92 143.20 143.01 143.11 142.94 143.08 142.92.

31,40 141.56 143.39 * 143.67 143.20 143.60 143.21 143.67.

33,38,42, 47 143.66 143.74 143.75 143.86 143.77 143.84 143.78 143.88.

14, 19, 23,28 144.04 144.58 144.25 144.78 144.22 144.63 144.21 144.77.

52, 60 144.53 144.88 * 145.15 144.40 145.07 144.41 145.22.

49, 50, 54, 55 144.68 144.93 144.81 145.14 144.78 145.06 144.78 145.14.

21,30 148.77 145.32 н= 145.30 144.99 145.30 144.99 145.30.

32,39,41,48 144.92 145.80 145.13 146.08 145.11 145.97 145.12 146.10.

51,53,56, 59 145.11 146.00 145.24 146.25 145.24 146.17 145.24 146.28.

3,4,25, 26 145.65 146.49 145.84 146.67 145.72 146.60 145.70 146.59.

2,5, 8, 10 148.45 154.11 148.28 154.38 148.74 154.56 148.94 155.27.

Показать весь текст

Список литературы

  1. Wharton Т., Wilson L. J. Toward fullerene-based X-ray contrast agents: design and synthesis of non-ionic, highly-iodinated derivatives of Сбо // Tetrahedron Lett. — 2002.- V. 43.- № 4. — P. 561−564.
  2. Torre de la M. D. L., Tome A. C., Silva A. M. S., Cavaleiro J. A. S. Synthesis of 60. fullerene-quercetin dyads // Tetrahedron Lett. 2002 — V. 43 — № 26. — P. 4617−4620.
  3. Brettreich M., Hirsch A. A highly water-soluble dendro60. fullerene // Tetrahedron Lett. 1998, — V. 39.- №> 18. — P. 2731−2734.
  4. Nierengarten J.-F., Felder D., Nicoud J.-F. Methanofullerene-functionalized dendritic branches // Tetrahedron Lett. 2000.- V. 41- № 1. — P. 41−44.
  5. Gonzalez S., Martin N., Guldi D. M. Synthesis and Properties of Bingel-type Methanofullerene тг-Extended-TTF Diads and Triads // J. Org. Chem. — 2003-V. 68-№ 3. — P. 779−791.
  6. Cheng P., Wilson S. R., Schuster D. I. A novel parachute-shaped Сбо-porphyrin dyad // Chem. Commun. 1999.- № 1. — P. 89−90.
  7. Wedel M., Montforts F.-P. A facile synthetic access to porphyrin fullerene dyads and their optical properties // Tetrahedron Lett. 1999 — V. 40 — № 39. — P. 70 717 074.
  8. Safonov I. G., Baran P. S., Schuster D. I. Synthesis and photophysics of a novel porphyrin-Сбо hybrid // Tetrahedron Lett. 1997.- V. 38.- № 47. — P. 8133−8136.
  9. MacMahon S., Fong II R., Baran P. S., Safonov I., Wilson S. R., Schuster D. I. Synthetic Approaches to a Variety of Covalently Linked Porphyrin-Fullerene Hybrids // J. Org. Chem. 2001, — V. 66.- № 16. — P. 5449−5455.
  10. Armaroli N., Marconi G., Echegoyen L., Bourgeois J.-P., Diederich F. ChargeTransfer Interactions in Face-to-Face Porphyrin-Fullerene Systems: Solvent-Dependent Luminescence in the Infrared Spectral Region // Chem. Eur. J. 2000-V. 6,-№ 9.-p. 1629−1645.
  11. Armspach D., Constable E. C., Diederich F., Housecroff C. E., Nierengarten J.-F. Bucky-ligands: fullerene-substituted oligopyridines for metallosupramolecular chemistry // Chem. Commun. 1996.- № 17. — P. 2009−2010.
  12. Goryunkov A. A., Ioffe I. N., Khavrel P. A., Avdoshenko S. M., Markov V. Yu., Mazej Z., Sidorova L. N., Troyanov S. I. The former «CooFio» is actually a double-caged adduct: (C6oFi6)(C6o) // Chem. Commun. 2007.- № 7. — P. 704 706.
  13. Pimenova A. S., Kozlov A. A., Goryunkov A. A., Markov V. Yu., Khavrel P.
  14. A., Avdoshenko S. M., Ioffe I. N., Sakharov S. G., Troyanova S. I., Sidorov L. N.118
  15. Synthesis and characterization of difluoromethylene-homo60.fullerene, C6o (CF2) // Chem. Commun. 2007, — № 4. — P. 374−376.
  16. П. А. Применение спектроскопии ЯМР и квантово-химических расчетов для структурной характеристики фторсодержащих производных фуллеренов / Дисс.. канд. хим. наук. МГУ. — М. — 2008, 169 с.
  17. Jl. Ш. Синтез и свойства новых фосфорилированных метано-фуллеренов / Дисс.. канд. хим. наук. ИОФХ им. А. Е. Арбузова КазНЦ РАН. — Казань. — 2009, 145 с.
  18. И. П. Электроноакцепторные моно- и бмс-циклоаддукты фуллерена С6о- Синтез, структура и свойства / Дисс.. докт. хим. наук. -ИОФХ им. А. Е. Арбузова КазНЦ РАН. Казань. — 2008, 351 с.
  19. И. А., Губская В. П., Бережная Jl. III., Ильясов А. В., Азанчеев Н. М. Синтез фосфорилированных метанофуллеренов // Изв. АН., Сер. Хим. 2000.- Т. 12.- С. 2083−2085.
  20. И. А., Губская В. П., Шишикина Н. И., Фазлеева Г. М., Бережная JI. Ш., Карасева И. П., Сибгатуллина Ф. Г. Взаимодействие карбанионов бис(диалкоксифосфорил)бромметана с фуллеренамии Сбо и С70 // Изв. АН., Сер. Хим. 2000.- Т. 12, — С. 317−320.
  21. Smalley R. E. Discovering the Fullerenes (Nobel Lecture) // Angew. Chem. Int. Ed. 1997.-V. 36.-№ 15.-P. 1594−1601.
  22. Kroto H. Symmetry, Space, Stars, and C6o (Nobel Lecture) // Angew. Chem. Int. Ed. 1997.-V. 36.-№ 15.-P. 1578−1593.
  23. Curl R. F. Dawn of Fullerenes: Conjecture and Experiment (Nobel Lecture) // Angew. Chem. Int. Ed. 1997.-V. 36,-№ 15. — P. 1566−1576.
  24. Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F., Smalley R. E. C60: Buckminsterfullerene // Nature. 1985, — V. 318.- № 6042. — P. 162−163.
  25. Kroto H. W., Allaf A. W., Balm S. P. C60: Buckminsterfullerene // Chem. Rev. 1991.-V. 91-№ 6. — P. 1213−1235.
  26. Kratschmer W., Fostiropoulos. K., Huffman. D. R. The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule // Chem. Phys. Lett. 1990, — V. 170.- № 2−3. — P. 167−170.
  27. Johnson R. D., Meijer G., Bethune D. S. C6o Has Icosahedral Symmetry // J. Am. Chem. Soc. 1990, — V. 112.-№ 24. — P. 8983−8984.
  28. Johnson R., D. Bethune, C. Yannoni Fullerene structure and dynamics: a magnetic resonance potpourri // Acc. Chem. Res. 1992 — V. 25 — № 3. — P. 169 175.
  29. Yannoni C. S., Bernier P. P., Bethune D. S., Meijer G., Salem J. R. NMR Determination of the Bond Lengths in C60 // J. Am. Chem. Soc. 1991- V. 113-№ 8.-P. 3190−3192.
  30. Hawkins J. M., Meyer A., Loren S., Nunlist R. Statistical incorporation of carbon-13 13C2 units into C6o (buckminsterfullerene) // J. Am. Chem. Soc. -1991.-V. 113.-№ 24.'-P. 9394−9395.
  31. J. M., Loren S., Meyer A., Nunlist R. 2D Nuclear Magnetic Resonance Analysis of Osmylated C6o // J. Am. Chem. Soc. 1991- V. 113 — № 20.-P. 7770−7771.
  32. Hawkins J. M. Osmylation of C60: Proof and Characterization of the Soccer-Ball Framework // Acc. Chem. Res. 1992.- V. 25.- № 3. — P. 150−156.
  33. Wudl F. The chemical properties of buckminsterfullerene (C6o) and the birth and infancy of fulleroids // Acc. Chem. Res. 1992.- V. 25.- № 3. — P. 157−161.
  34. Suzuki T., Li Q, Khemani K. C., Wudl F., Almarsson O. Systematic Inflation of Buckminsterfillerene C60: Synthesis of Diphenyl Fulleroids C^i to C661 I Science. 1991.-V. 254.-№ 5035.-P. 1186−1188.
  35. Suzuki T., Li Q. («Than»), Khemani K. C., Wudl F. Dihydrofulleroid H2C6i: Synthesis and Properties of the Parent Fulleroid // J. Am. Chem. Soc. 1992 — V. 114-№ 18.-P. 7301−7302.
  36. Smith A. B. Ill, R. M. Strongin, L. Brard, G. T. Furst, W. J. Romanow // J. Am. Chem. Soc. 1993,-V. 115.-№ 13.-P. 5829−5830.
  37. Vasella A. Uhlmann P. Waldraff C. A. A., Diederich F. Thilgin C. Fullerene Sugars: Preparation of Enantiomerically Pure, Spiro-Linked C-Glycosides of C60 // Angew. Chem, Int. Ed. Engl. 1992,-V. 31.-№ 10. — P. 1388−1390.
  38. Amz R, de M. Cameiro W. J, Klug W, Schmickler H, Vogel E, Breuckmann R, KlHmer F.-G. a-Homoacenaphthylene and 7i-Homoacenaphthene // Angew. Chem, Int. Ed. Engl. 1991.-V. 30,-№ 6. — P. 683−686.
  39. Weigert F. J, Roberts J. D. Nuclear magnetic resonance spectroscopy. Carboncarbon coupling in cyclopropane derivatives // J. Am. Chem. Soc. 1967 — V. 89-№ 23.-P. 5962−5963.
  40. Weigert F. J, Roberts J. D. Nuclear magnetic resonance spectroscopy. Carboncarbon coupling // J. Am. Chem. Soc. 1972.- V. 94, — № 17. — P. 6021−6025.1 -j
  41. Rol N. C, Clague A. D. H. 1JC NMR spectroscopy of cyclopropane derivatives. 1-monocyclic compounds // Org. Magn. Reson. 1981- V. 16 — № 3. -P. 187−194.1 1
  42. Stocker M. The structural dependence of C, C coupling constants incyclopropanes // Org. Magn. Reson. 1982.- V. 20, — № 3. — P. 175−179.121
  43. Ford W. T., Nishioka T., McCleskey S. C. Structure and Radical Mechanism of Formation of Copolymers of C6o with Styrene and with Methyl Methacrylat // Macromolecules. 2000.-V. 33.-№ 7. — P. 2413−2423.
  44. Ford W. T., Nishioka T., Qiu F., D’Souza F., Jai-pil Choi, Kutner W., Noworyta K. Structure Determination and Electrochemistry of Products from the Radical Reaction of C6o with Azo (bisisobutyronitrile) // J. Org. Chem. 1999.- V. 64.-№ 17.-P. 6257−6262.
  45. Ford W. T., Nishioka T., Qiu F. Dimethyl Azo (bisisobutyrate) and C6o Produce 1,4- and l, 16-Di (2-carbomethoxy-2-propyl)-l, x-dihydro60.fullerenes // J. Org. Chem. 2000,-V. 65,-№ 18.-P. 5780−5784.
  46. Burley G. A., Keller P. A., Pyne S. G., Ball G. E. Synthesis of a 1,2-dihydro60.fullerylglycine derivative by a novel cyclopropane ring opening of a methano[60]fullerene // Chem. Commun. 1998,-№ 22. — P. 2539−2540.
  47. Burley G. A., Keller P. A., Pyne S. G., Ball G. E. Unequivocal assignment of the fullerene carbons of diethyl l, 2-methano60. fullerene 61,61-dicarboxylate using 2D INADEQUATE NMR spectroscopy // Magn. Reson. Chem. 2001.- V. 39,-№ 8. -P. 466−470.
  48. Burley G. A., Keller P. A., Pyne S. G., Ball G. E. Tandem reductive ring opening-retro-Bingel reactions of bismethano60. fullerenes to give 1,2-dihydro[60]fullerylglycines // Chem. Commun. 2001.- № 7. p. 563−564.
  49. Burley G. A., Keller P. A., Pyne S. G., Ball G. E. Unexpected regiochemistry of a tethered bismethano60. fullerene // Chem. Commun. 2000 — № 18. — P. 1717−1718.
  50. Burley G. A., Keller P. A., Pyne S. G., Ball G. E. Synthesis and Characterization of Mono- and Bis-methano60.fullerenyl Amino Acid Derivatives and Their Reductive Ring-Opening Retro-Bingel Reactions // J. Org. Chem. -2002.- V. 67.- № 24. P. 8316−8330.
  51. Thilgen C., Herrmann A., Diederich F. Configurational Description of Chiral Fullerenes and Fullerene Derivatives with a Chiral Functionalization Pattern //
  52. Helv. Chim. Acta. 1997,-V. 80.-№ 1. — P. 183−199.122
  53. Paulus E. F., Bingel C. Diethyl Methano-C6o-fullerene-61,61-dicarboxylate Chloroform Solvate at 193 K, CeoQCOzCzHs^CHCls //Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1995, — V. 51 — № 1. — P. 143−146.
  54. Hirsch A. Principles of Fullerene Reactivity // Top. Curr. Chem. 1999 — V. 199/1999.-P. 1−65.
  55. Weedon B. R., Haddon R. C., Spielmann H. P., Meier M. S. Fulleroid Addition Regiochemistry Is Driven by Tt-Orbital Misalignment // J. Am. Chem. Soc. -1999.-V. 121-№ 2. -P. 335−340.
  56. Spielmann H. P., Wang G.-W., Meier M. S., Weedon B. R. Preparation of C70H2, C70H4, and CyoHg: Three Independent Reduction Manifolds in the Zn (Cu) Reduction of C70 // J. Org. Chem. 1998, — V. 63, — № 26. — P. 9865−9871.
  57. Bergosh R. G., Meier M. S., Laske Cooke J. A., Spielmann H. P., Weedon B. R. Dissolving Metal Reductions of Fullerenes // J. Org. Chem. 1997 — V. 62- № 22. — P. 7667−7672.
  58. Meier M. S., Weedon B. R., Spielmann H. P. Synthesis and Isolation of One Isomer ofC60H6//J. Am. Chem. Soc. 1996.-V. 118,-№ 46.-P. 11 682−11 683.
  59. Meier M. S., Spielmann H. P., Bergosh R. G., Haddon R. C. A 13C INADEQUATE and HF-GIAO Study of C60H2 and C60H6. Identification of Ring Currents in a 1,2-Dihydrofullerene // J. Am. Chem. Soc. 2002, — V. 124 — № 27. -P. 8090−8094.
  60. Darwish A. D., Abdul-Sada A. K., Langley G. J., Kroto H. W., Taylor R., Walton D. R. M. Polyhydrogenation of 60.- and [70]-fullerenes // J. Chem. Soc., Perkin Trans. 2. 1995.- № 12. — P. 2359−2365.
  61. Haufler R. E., Conceicao J., Chibante L. P. F., Chai Y., Byrne N. E., Flanagan
  62. S., Haley M. M., O’Brien S. C., Pan C., et al. Efficient production of C6o123buckminsterfullerene), C6oH36, and the solvated buckide ion // J. Phys. Chem. -1990.- V. 94.- № 24. P. 8634−8636.
  63. Henderson C. C., McMichael Rohlfmg C., Assink R. A., Cahill P. A. C60H4: Kinetics and Thermodynamics of Multiple Addition to C6o // Angew. Chem., Int. Ed. Engl. 1994.- V. 33, — № 7. — P. 786−788.
  64. Meier M. S., Corbin P. S., Vance V. K., Clayton M., Mollman M., Poplawska M. Synthesis of hydrogenated fullerenes by zinc/acid reduction // Tetrahedron Lett. 1994, — V. 35, — № 32. — P. 5789−5792.
  65. Becker L., Evans T. P., Bada J. L. Synthesis of hydrogenated fullerene. C60H2 by rhodium-catalyzed hydrogenation of C60 // J- Org. Chem. 1993- V. 58 — № 27.-P. 7630−7631.
  66. Henderson C. C., Cahill P. A. C6oH2: Synthesis of the Simplest C6o Hydrocarbon Derivative // Science. 1993.- P. 1885−1887.
  67. David W. I. F., Ibberson R. M., Matthewman J. C., Prassides K., Dennis T. J. S., Hare, J. P., Kroto H. W., Taylor R, Walton D. R. M. Crystal structure and bonding of ordered C60 // Nature. 1991.- V. 353.- № 6340. — P. 147−149.
  68. R. C., Scott L. T. 7u-Orbital conjugation and rehybridization in bridged annulenes and deformed molecules in general: 7i-orbital axis vector analysis // Pure Appl. Chem.- 1986.-V. 58,-№ l.-P. 137−142.
  69. Schulman J. M., Disch R. L. Bowl-shaped hydrocarbons related to C6o // J-Comput. Chem.- 1998.-V. 19.-№ 2.-P. 189−194.124
  70. Ferrer S. M., Molina J. M. Theoretical calculations on C30H12 bowl-shaped hydrocarbons: NMR shielding constants, stability, and aromaticity // J. Comput. Chem. 1999- V. 20-№ 13.-P. 1412−1421.
  71. Heine T., Seifert G., Fowler P. W., Zerbetto F. A Tight-Binding Treatment for 13C NMR Spectra of Fullerenes // J. Phys. Chem. A. 1999.- V. 103.- № 43. — P. 8738−8746.
  72. Schneider A., Richard S., Kappes M. M., Ahlrichs R. Ab initio I3C NMR shifts of several C84 isomers // Chem. Phys. Lett. 1993.- V. 210.- № 1−3. — P. 165−169.
  73. Kutzelnigg W. Relativistic corrections to magnetic properties // J. Comput. Chem. 1999, — V. 20.- № 12. — P. 1199−1327.
  74. T., Zerbetto F., Seifert G., Fowler P. W. 13C NMR Patterns of Odd-Numbered C119 Fullerenes // J. Phys. Chem. A. 2000.- V. 104.- № 17. — P. 38 653 868.
  75. Heine T., Buhl M., Fowler P. W., Seifert G. Modelling the 13C NMR chemical shifts of C84 fullerenes // Chem. Phys. Lett. 2000, — V. 316.- № 5−6. — P. 373−380.
  76. Buhl M., Kaupp M., Malkina O. L., Malkin V. G. The DFT route to NMR chemical shifts // J. Comput. Chem. 1999, — V. 20.- № 1. — P. 91−105.
  77. Grossman J. C., Cote M., Louie S. G., Cohen M. L. Electronic and structural properties of molecular C36 // Chem. Phys. Lett. 1998, — V. 284, — № 5−6. — P. 344−349.
  78. Baker J., Fowler P. W., Lazzeretti P., Malagoli M., Zanasi R. Structure and properties of C70//Chem. Phys. Lett. 1991.- V. 184.-№ 1−3.-P. 182−186.
  79. Fowler P. W., Lazzeretti P., Malagoli M., Zanasi R. Anisotropic nuclear magnetic shielding in footballene (C6o) // J- Phys. Chem. 1991- V. 95 — № 17. -P. 6404−6405.
  80. Kitagawa T., Sakamoto H., Takeuchi K. Electrophilic Addition of Polychloroalkanes to C60: Direct Observation of Alkylfullerenyl Cation Intermediates // J. Am. Chem. Soc. 1999.- V. 121, — № 17. — P. 4298−4299.
  81. Sato N., Tou H., Maniwa Y., Kikuchi K., Suzuki S., Achiba Y., Kosaka M.,
  82. Tanigaki K. Analysis of I3C-NMR spectra in Coo superconductors: Hyperfme125coupling constants, electronic correlation effect, and magnetic penetration depth // Phys. Rev. B: Condens. Matter Mater. Phys. 1998.- V. 58, — № 18. — P. 1 243 312 440.
  83. Buhl M, Curoni A, Andreoni W. Chemical shifts of diamagnetic azafullerenes: (C59N)2 and C59HN // Chem. Phys. Lett. 1997.- V. 274, — № 1−3. -P. 231−234.
  84. Buhl M, Hirsch A. Spherical Aromaticity of Fullerenes // Chem. Rev. 2001-V. 101-№ 5.-P. 1153−1183.
  85. Pasquarello A, Schluter M, Haddon R. C. Ring currents in topologically complex molecules: Application to C6o, C7o, and their hexa-anions // Phys. Rev. A. 1993.-V. 47,-№ 3. — P. 1783−1789.
  86. Steiner E, Fowler P. W, Jenneskens L. W. Counter-Rotating Ring Currents in Coronene and Corannulene // Angew. Chem, Int. Ed. Engl. 2001- V. 40 — № 2. -P. 362−366.
  87. Kaplan M. L, Haddon R. C, Schilling F. C, Marshall J. H, Bramwell F. B. Naphthol, 8-c, d:4,5-c', d'.bis[l, 2,6]selenadiazine // J. Am. Chem. Soc. 1979.- V. 101.-№ 12.-P. 3306−3308.
  88. Haddon R. C, Kaplan M. L, Marshall J. H. Naphthol, 8-cd:4,5-c'd'.bis[l, 2,6]thiadiazine. A compound of ambiguous aromatic character // J. Am. Chem. Soc. 1978, — V. 100, — № 4. — P. 1235−1239.
  89. Meier M. S., Spielmann H. P., Bergosh R. G., Tetreau M. C. Trends in Chemical Shift Dispersion in Fullerene Derivatives. Local Strain Affects the Magnetic Environment of Distant Fullerene Carbons // J. Org. Chem. 2003- V. 68.-№ 20.-P. 7867−7870.
  90. Hoke II S. H., Molstad J., Dilettato D., Jay M. J., Carlson D., Kahr B., Cooks R. G. Reaction of fullerenes and benzyne // J. Org. Chem. 1992 — V. 57 — № 19. -P. 5069−5071.
  91. Meier M. S., Wang G.-W., Haddon R. C., Brock C. P., Lloyd M. A., Selegue J. P. Benzyne Adds Across a Closed 5−6 Ring Fusion in C7c>: Evidence for Bond Derealization in Fullerenes // J. Am. Chem. Soc. 1998 — V. 120 — № 10. — P. 2337−2342.
  92. Maggini M., Scorrano G., Prato M. Addition of azomethine ylides to C6o: synthesis, characterization, and functionalization of fullerene pyrrolidines // J. Am. Chem. Soc. 1993.- V. 115.- № 21. — P. 9798−9799.
  93. Taylor R., Hare J. P., Abdul-Sada A. D., Kroto H. W. Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon // J. Chem. Soc., Chem. Commun. 1990.-№ 20. — P. 1423−1424.
  94. Diederich F., Whetten R. L. Beyond C6o: the higher fullerenes // Acc. Chem. Res. 1992,-V. 25,-№ 3.-P. 119−126.
  95. Haddon R. C., Brus L. E., Raghavachari K. Rehybridization and Tt-orbital alignment: the key to the existence of spheroidal carbon clusters // Chem. Phys. Lett.- 1986,-V. 131-№ 3. P. 165−169.
  96. Haddon R. C. Measure of nonplanarity in conjugated organic molecules: which structurally characterized molecule displays the highest degree of pyramidalization? // J. Am. Chem. Soc. 1990, — V. 112, — № 9. — P. 3385−3389.
  97. Haddon R. C. Comment on the Relationship of the Pyramidalization Angle at a Conjugated Carbon Atom to the a Bond Angles // J. Phys. Chem. A. 2001 — V.105,-№ 16.-P. 4164−4165.
  98. Gomes J. A. N. F., Mallion R. B. Aromaticity and Ring Currents // Chem.
  99. Rev.-2001.-V. 101- № 5. P. 1349−1383.127
  100. Mitchell R. H. Measuring Aromaticity by NMR // Chem. Rev. 2001, — V. 101-№ 5. — P. 1301−1315.
  101. Wannere C. S., Schleyer P. v. R. How Do Ring Currents Affect! H NMR Chemical Shifts? // Org. Lett. 2003, — V. 5.- № 5. — P. 605−608.
  102. Gooding K. R, — Jackson W. R., Pincomb C. F., Rash D. The effect of ring strain on 13C chemical shifts // Tetrahedron Lett. 1979, — V. 20.- № 3. — P. 263 264.
  103. Canle L. M., Clegg W., Demirtas I., Elsegood M. R. J., Maskill H. Preparations, X-ray crystal structure determinations, and base strength measurements of substituted tritylamines // J. Chem. Soc., Perkin Trans. 2. -2000,-№ l.-P. 85−92.
  104. Wang G.-W., Weedon B. R., Meier M. S., Saunders M., Cross R. J. 3He NMR Study of 3He@C60H6 and 3He@C70H2.10 // Org. Lett. 2000.- V. 2, — № 15. — P. 2241−2243.
  105. Cross R. J., Jime’nez-Va'zquez H. A., Lu Q., Saunders M., Schuster D. I., Wilson S. R., Zhao H. Differentiation of Isomers Resulting from Bisaddition to C6o Using 3He NMR Spectrometry // J. Am. Chem. Soc. 1996.- V. 118.- № 46. — P.1. H454−11 459.
  106. Hauke F., Chen Z.-F., Hirsch A. Complete Assignment of all !3C NMR signals Of Cs Symmetric Monoazafullerene Derivatives by Comparison of Experimental and Calculated Spectra // Polsih J. Chem. 2007.- V. 81, — P. 971 983.
  107. Fileti E. E., Rivelino R. The 13C NMR properties of low hydroxylated fullerenes with density functional theory // Chem. Phys. Lett. 2009 — V. 467 — № 4−6.-P. 339−343.
  108. Porezag D., Frauenheim T., Ko"hler T., Seifert G., Kaschner R. Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon // Phys. Rev. B. 1995.- V. 51 — № 19. — P. 12 947−12 957.
  109. Seifert G., Porezag D., Frauenheim T. Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme // Int. J. Quantum Chem. -1996,-V. 58.-№ 2.-P. 185.
  110. Seifert G., Jones R. O. Geometric and electronic structure of clusters // Z. Phys. D. 1991.- V. 20.- № 1−4. — P. 77.
  111. Kutzelnigg W. Theories of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities // Isr. J. Chem. 1980 — V. 19 — P. 193.
  112. Schindler M., Kutzelnigg W. Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. II. Application to some simple molecules // J. Chem. Phys. 1982, — V. 76.- № 4. — P. 1919.
  113. Sun G., Kertesz M. Theoretical 13C NMR Spectra of IPR Isomers of Fullerenes C6o, C70, C72, C74, C76, and C78 Studied by Density Functional Theory // J. Phys. Chem. A. 2000.- V. 104, — № 31. — P. 7398−7403.
  114. Sun G., Kertesz M. Identification for IPR Isomers of Fullerene C82 by1 'i .
  115. Theoretical C NMR Spectra Calculated by Density Functional Theory // J. Phys.
  116. Chem. A.-2001,-V. 105.-№ 22.-P. 5468−5472.
  117. Sun G., Kertesz M. Theoretical evidence for the major isomers of fullerene C84 based on 13C NMR chemical shifts // New J. Chem. 2000.- V. 24, — № 10. -P. 741−743.1
  118. Sun G., Kertesz M. Theoretical C NMR spectra of IPR isomers of fullerene C80: a density functional theory study // Chem. Phys. Lett. 2000, — V. 328, — № 4−6.-P. 387−395.
  119. Ziegler Т. Approximate density functional theory as a practical tool in molecular energetics and dynamics // Chem. Rev. 1991- V. 91- № 5. — P. 651 667.
  120. Rajagopal A. K., Callaway J. Inhomogeneous Electron Gas // Phys. Rev. B. -1973.-V. 7-№ 5.-P. 1912−1919.
  121. Vignale G., Rasolt M. Current- and spin-density-functional theory for inhomogeneous electronic systems in strong magnetic fields // Phys. Rev. B. -1988.- V. 37.- № 18. P. 10 685−10 696.
  122. Lee A. M., Handy N. C., Colwell S. M. The density functional calculation of nuclear shielding constants using London atomic orbitals // J. Chem. Phys. -1995,-V. 103.-№ 23. P. 10 095−10 109.
  123. Becke A. D. Current-density dependent exchange-correlation functionals // Can. J. Chem. 1996.- V. 74.- № 6. — P. 995−997.
  124. Capelle К., Gross E. K. U. Spin-Density Functionals from Current-Density Functional Theory and Vice Versa: A Road towards New Approximations // Phys. Rev. Lett.- 1997.-V. 78.-№ 10.-P. 1872−1875.
  125. Helgaker Т., Jaszunski M., Ruud K. Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constant // Chem. Rev. 1999 — V. 99.-№ l.-P. 293−352.
  126. P. M. Квантовохимические методы вычисления констант ядерного магнитного экранирования // Химия и компьютерное моделирование. Бутлеровские сообщения 2002 — Т. 2 — № 6. — С. 11−30.
  127. Eds. Kaupp М., Buhl М., Malkin V. G. Calculation of NMR and EPR Parameters: Theory and Applications. Wiley-VCH, Weinheim. — 2004.
  128. Forsyth D. A., Sebag A. B. Computed 13C NMR Chemical Shifts via
  129. Empirically Scaled GIAO Shieldings and Molecular Mechanics Geometries.1 ^
  130. Conformation and Configuration from С Shifts // J. Am. Chem. Soc. 1997 — V. 119.-№ 40.-P. 9483−9494.
  131. Patchkovskii S., Thiel W. NMR chemical shifts in MNDO approximation: Parameters and results for H, C, N, and О // J. Comput. Chem. 1999 — V. 20 — № 12.-P. 1220−1245.
  132. Wu A., Zhang Y., Xu X., Yan Y. Systematic studies on the computation of nuclear magnetic resonance shielding constants and chemical shifts: The density functional models // J. Comput. Chem. 2007, — V. 28, — № 15. — P. 2431−2442.
  133. Aliev A. E., Courtier-Murias D., Zhou S. Scaling factors for carbon NMR chemical shifts obtained from DFT B3LYP calculations // J. Mol. Struc.: THEOCHEM. 2009, — V. 893.- № 1−3. — p. 1−5.
  134. Dybiec K., Gryff-Keller A. Remarks on GIAO-DFT predictions of 13C chemical shifts // Magn. Reson. Chem. 2009, — V. 47.- № 1. — P. 63−66.
  135. Jain R., Bally Т., Rablen P. R. Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets // J. Org. Chem. 2009, — V. 74, — № 11. — P. 4017−4023.
  136. Costa F. L. P., de Albuquerque A. C. F., dos Santos Jr. F. M., de Amorim M. B. GIAO-HDFT scaling factor for 13C NMR chemical shifts calculation // J. Phys. Org. Chem. 2010, — V. 23.- № 10. — P. 972−977.
  137. Д. H., Устынюк Ю. А. Система квантовохимических программ «ПРИРОДА-О4м. Новые возможности исследования молекулярных систем с применением параллельных вычислений // Изв. АН, Сер. хим. 2005 — Т. 54,-№ 3.-С. 804−810.
  138. Perdew J. P., Burke К., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996.- V. 11.- № 18. — P. 3865−3868.
  139. Д. H. Развитие экономного подхода к расчёту молекул методом функционала плотности и его применение к решению сложных химических задач / Дис.. канд. физ.-мат. наук. МГУ. — М. — 2000, 103 с.
  140. Laikov D. N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets // Chem. Phys. Lett. 1997.-V. 281,-№ 1−3.-P. 151−156.
  141. Н. М. Спектроскопия ЯМР (для химиков-органиков). М.: Изд-во Моск. ун-та. — 1991.- 279 с.
  142. Е., Voelter W. 13С NMR Spectroscopy. High Resolution Methods and Applications in Organic Chemistry and Biochemistry. Wiley VCH, Weinheim, New York. — 1990.
  143. Pretsch E., Buhlmann P. Structure Determination of Organic Compounds -Table of Spectral Data. Springer-Verlag, Berlin. — 2009.
  144. А. В. Ill, Strongin R. M., Brard L., Furst G. Т., Romanow W. J., Owens K. G., King R. С. 1,2-Methanobuckminsterfullerene (Q1H2), the parent fullerene cyclopropane: synthesis and structure // J. Am. Chem. Soc. 1993- V. 115-№ 13.-P. 5829−5830.
  145. Pankratyev E. Yu., Tulyabaev A. R., Khalilov L. M. How reliable are GIAO1 13calculations of H and С NMR chemical shifts? A statistical analysis and empirical corrections at DFT (PBE/3z) level // J. Comput. Chem. 2011- V. 32-№ 9.-P. 1993−1997.
  146. Wolff S. K., Ziegler T. Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling // J. Chem. Phys. 1998.- V. 109, — № 3. — P. 895 905.
  147. Godly E. W., Taylor R. Nomenclature and terminology of fullerenes: A preliminary study // Pure Appl. Chem. 1997.- V. 69.- № 7. — P. 1411−1434.
  148. Powell W. H., Cozzi F., Moss G. P., Thilgen C., Hwu R. J.-R., Yerin A. Nomenclature for the Сбо-Ih and C7o-D5h (6) fullerenes (IUPAC Recommendations 2002) // Pure. Appl. Chem. 2002.- V. 74.- № 4. — P. 629−695.
  149. Cozzi F., Powell W. H., Thilgen, C. Numbering of Fullerenes (IUPAC
  150. Recommendations 2004) // Pure Appl. Chem. 2005.- V. 11.- № 5. — P. 843−923.132
  151. Taylor R. C6o, C70, C76, C7g and C84: numbering, тг-bond order calculations and addition pattern considerations // J. Chem. Soc., Perkin Trans. 2. 1993- № 5. -P. 813−824.
  152. Levy G. C., Lichter R. L., Nelson G. L. Carbon-13 Nuclear Magnetic Resonance Spectroscopy (2nd edn). John Wiley & Sons, Inc., New York. — 1980.
  153. Tulyabaev A. R., Khalilov L. M. On accuracy of the 13C NMR chemical shift GIAO calculations of fullerene Сбо derivatives at PBE/3z approach // Comput. Theor. Chem.-201 l.-V. 976.-№ 1−3.-P. 12−18.
  154. JI.H., Юровская М. А., Борщевский А. Я., Трушков И. В., Иоффе И. Н. Фуллерены. М.: Экзамен. — 2005. — 688 с.
  155. L. М., Tulyabaev A. R., Yanybin V. М., Tuktarov A. R. *Н and 13С NMR chemical shift assignments of spfro-cycloalkylidenehomo- and methanofullerenes by the DFT-GIAO method // Magn. Reson. Chem. 2011- V. 49,-№ 6.-P. 378−384.
  156. Tuktarov A. R., Korolev V. V., Tulyabaev A. R., Popod’ko N. R., Khalilov L. M., Dzhemilev U. M. Synthesis of optically active spiro homo- and methanofullerenes // Tetrahedron Lett. 2011, — V. 52, — № 7. — P. 834−836.
  157. Kawasumi M., Ishida Т., Nogami T. Synthesis And Characterization Of Dialkyl-C6.+ // Full. Sci. Tech. 1996, — V. 4, — № 3. — P. 357−367.
  158. Prato M., Suzuki Т., Wudl F. Experimental evidence for segregated ring currents in С60 // J- Am. Chem. Soc. 1993.- V. 115.- № 17. — P. 7876−7877.
  159. Thilgen C., Diederich F. Structural Aspects of Fullerene Chemistry A Journey through Fullerene Chirality // Chem. Rev. — 2006 — V. 106 — № 12. — P. 5049−5135.
  160. Balandina A., Kalinin A., Mamedov V., Figadere B., Latypov S. Structure-NMR chemical shift relationships for novel fimctionalized derivatives of quinoxalines // Magn. Reson. Chem. 2005, — V. 43.- № 10. — P. 816−828.
  161. Suzuki T., Li Q., Khemani K. C., Wudl F. Dihydrofulleroid H3C6i: synthesis and properties of the parent fulleroid // J. Am. Chem. Soc. 1992 — V. 114 — № 18.-P. 7301−7302.
  162. Khalilov L. M., Tulyabaev A. R. and Tuktarov A. R. Homo- and methano60. fullerenes with chiral attached moieties: *H and 13C NMR chemical shift assignments and diastereotopicicty effects // Magn. Reson. Chem. 2011- V. 49,-№ 12.-P. 768−774.
  163. Tuktarov A. R., Akhmetov A. R., Korolev V. V., Khuzin A. A., Khasanova L. L., Popod’ko N. R., Khalilov L. M. Palladium-catalyzed selective cycloaddition of diazo compounds to 60. fullerene // Arkivoc. 2011- V. 2011- № viii. — P. 5466.
  164. Laikov D. N. A new class of atomic basis functions for accurate electronic structure calculations of molecules // Chem. Phys. Lett. 2005 — V. 416 — № 1−3. -P. 116−120.
Заполнить форму текущей работой