Помощь в написании студенческих работ
Антистрессовый сервис

Разработка биотехнологического метода получения водорода из CO-содержащих газов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Настоящая работа включает полный цикл исследований — от выделения новых микроорганизмов до исследования характеристик биореакторов с использованием выделенного штамма микроорганизмов в качестве биокатализатора. Успешное осуществление процесса переработки газов с парциальным давлением СО вплоть до 1 атм в течение длительного времени при значениях конверсии до 94% и производительности по водороду… Читать ещё >

Разработка биотехнологического метода получения водорода из CO-содержащих газов (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. Анализ научно-технической литературы, нормативно-технической документации и других материалов, относящихся к методам получения водорода
    • 1. 1. Биологические методы получения водорода с использованием энергии света или органических субстратов
    • 1. 2. Получение водорода из СО и воды с помощью каталитических процессов
    • 1. 3. Выделение водорода высокой чистоты из газовых смесей
    • 1. 4. Роль водорода в энергетике
    • 1. 5. Синтез-газ как сырье для получения водорода
    • 1. 6. Анаэробные микроорганизмы, использующие монооксид углерода в кач естве субстрата
      • 1. 6. 1. Термофильные гомоацетатные бактерии, способные к росту за счет окисления СО
    • 1. 6. ^2 Термофильные СО-использующие метанобразующие археи
      • 1. 6. 3. Термофильные СО-использующие сульфатредуцирующие бактерии и археи
    • 1. 7. Биохимия анаэробного окисления СО
  • 1-.7.1- СО-дегидрогеназа и ацетил-КоА-синтаза
    • 1. 7. 2. №-СООН/АС8 ферментные комплексы
    • 1. 7. 3. Каталитический цикл окисления СО в активном центре СО-дегидрогеназ
    • 1. 8. Известные методы микробиологической переработки синтез-газа
  • Выводы по главе 1
    • Глава 2. Экспериментальная часть. Методики проведения исследований
    • 2. 1. Методики выделения микроорганизмов из природных источников и культивирования их в статических условиях
    • 2. 2. Методики определения величины расхода газа и состава газообразных и жидких метаболитов микроорганизмов
    • 2. 3. Световая микроскопия.'
    • 2. 4. Электронная микроскопия
    • 2. 5. Выделение и анализ ДНК
    • 2. 6. Определение состава полярных липидов
    • 2. 7. Хромато-масс-спектрометрическое определение жирнокислотного состава клеток
    • 2. 8. Лабораторные установки
  • Выводы по главе 2
    • Глава 3. Результаты и обсуждение экспериментальных исследований
    • 3. 1. Выделение новых микроорганизмов^ являющихся биокатализаторами реакции водяного газа
    • 3. 2. Исследование фенотипических и филогенетических характеристик выделенного штамма СО-потребляющих микроорганизмов
    • 3. 3. Исследование некоторых хемотаксономических характеристик выделенного штамма СО-потребляющих микроорганизмов
    • 3. 4. Осуществление биотехнологического процесса получения водорода путем культивирования термофильных микроорганизмов в непрерывном режиме
    • 3. 4. 1. Ферментация монооксида углерода с помощью бактерий SET IS-9 на установке для культивирования термофильных карбоксидотрофных микроорганизмов в исполнении
    • 3. 4. 2. Ферментация монооксида углерода с помощью бактерий SET IS-9 на установке для культивирования термофильных карбоксидотрофных микроорганизмов в исполнении
    • 3. 4. 3. Ферментация монооксида углерода с помощью бактерий
  • С. hydrogenoformans Z-2901 на установке для культивирования термофильных карбоксидотрофных микроорганизмов в исполнении
    • 3. 4. 4. Ферментация монооксида углерода с помощью бактерий SET IS
    • 3. 4. 5. Ферментация модельной газовой смеси 25% СО + Н2 с помощью бактерий SET IS-9T
    • 3. 5. Исследование влияния заражения культуры на жирнокислотный состав клеток СО-потребляющих микроорганизмов
  • Выводы по главе 3

В современном мире бурное развитие промышленности породило проблемы, связанные с истощением ископаемого углеводородного сырья, прежде всего, нефти. Следствием использования ископаемых топлив являются серьезные экологические проблемы, главной из которых является глобальное потепление.

В качестве альтернативных топлив наибольшее значение приобрели биоэтанол, биобутанол и биодизелыюе топливо (метиловые или этиловые эфиры жирных кислот), а также водород. Значительным недостатком первых трех топлив является использование сельскохозяйственной продукции в качестве сырья для их производства.

В качестве сырья для производства водорода может служить синтез-газ, который в свою очередь может быть получен конверсией природного газа или попутного нефтяного газа, газификацией углеродсодержащих бытовых или промышленных отходов, а также низкосортных каменных углей, запасы которых значительно превосходят запасы ископаемых углеводородов.

Водород широко используется в химической, нефтехимической, нефтеперерабатывающей и других отраслях промышленности для производства аммиака, метанола, моторных топлив, для процессов гидроочистки, гидрокрекинга и т. д.

Объем мирового производства водорода составляет 50 млн. тонн и растет на 5−10% в год. Более 90% водорода и синтез-газа (Нг и СО), производимого и используемого, в промышленности, получают методами паровой, паровоздушной, пароуглекислотной или парокислородной каталитической конверсии углеводородного сырья.

Традиционные термокаталитические методы переработки синтез-газа в водород осуществляются при высоких температурах и давлениях, а также требуют тщательной сероочистки сырья, что приводит к снижению энергоэффективности процесса. Микробиологические методы по своей сути 4 лишены этих недостатков, что особенно актуально в свете последних разработок в области плазмохимической переработки природного газа.

Анаэробная ферментация синтез-газа микроорганизмами, изучаемыми в данной работе, представляет собой микробиологическую реакцию водяного газа, в результате которой монооксид углерода, содержащийся в синтез-газе, окисляется водой до углекислого газа с образованием эквимолярного количества водорода. Высокой степени конверсии при этом способствует низкая температура процесса. Остаточная концентрация СО в газовой фазе может снижаться до нескольких млн" 1, таким образом, полученный водород после очистки от углекислого газа удовлетворяет высоким требованиям по чистоте и пригоден для использования в низкотемпературных СО-чувствительных топливных элементах с протон-проницаемыми мембранами.

Объект исследования диссертагрш — культуры термофильных микроорганизмов, способных катализировать реакцию водяного газа, а также образцы воды, обрастаний и осадков из гидротерм Исландии, Байкальской рифтовой зоны и полуострова Камчатка.

Предметом диссертационного исследования выступают ферментативно катализируемая реакция водяного газа, системы конверсии газов, содержащих монооксид углерода.

Основной целью настоящего исследования явилась разработка метода получения водорода из СО-содержащих газов с использованием в качестве катализатора культур карбоксидотрофных гидрогеногенных микроорганизмов.

Для достижения поставленной цели в диссертации решены следующие основные задачи:

1. Выделение новых штаммов микроорганизмов, способных к эффективной трансформации монооксида углерода с получением водорода.

2. Разработка методики непрерывного культивирования микроорганизмов, способных к трансформации монооксида углерода с получением водорода.

3. Разработка методики контроля чистоты культуры микроорганизмов в условиях непрерывного культивирования в нестерильных условиях.

4. Определение конверсии и производительности по водороду биореакторов барботажного типа.

5. Проведение процесса микробиологического получения водорода в течение длительного времени для подтверждения стабильности культуры микроорганизмов.

Научная новизна представленной работы заключается в исследовании микробиологически катализируемой реакции водяного газа в реакторах барботажного типа.

Впервые определены зависимости конверсии и производительности по водороду от величины расхода газа для биореакторов барботажного типа с использованием различных штаммов микроорганизмов в качестве биокатализаторов.

Выделен новый штамм микроорганизмов SET IS-9, являющийся биокатализатором реакции водяного газа и обладающий сопоставимыми с лучшими известными штаммами гидрогеногенных микроорганизмов скоростью роста и биокаталитической активностью.

По результатам фенотипических и филогенетических исследований выделенный штамм микроорганизмов SET IS-9 отнесен к новому виду бактерий рода Carboxydothermus.

Впервые показана возможность продолжительной генерации водорода в лабораторной установке при использовании в качестве биокатализатора выделенного штамма микроорганизмов SET IS-9.

Впервые определены хемотаксономические характеристики видов рода Car boxy dothermus, применимые для экспресс-идентификации представителей рода и для контроля чистоты культуры микроорганизмов.

Публикации и апробация результатов работы. По материалам диссертации опубликовано 6 работ, в том числе 3 статьи в журналах, рекомендованных ВАК.

Основные результаты исследований были представлены в докладах и презентациях на российских и международных научных конференциях: XVI Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2009 г.), а также на VIII Всероссийской конференции молодых ученых, специалистов и студентов «Новые технологии в газовой промышленности».

Благодарности. Автор выражает глубокую признательность научному руководителю проф., д.х.н. В. А. Винокурову и д.б.н. Т. Г. Соколовой за постоянное внимание и большую помощь в работе и обсуждении результатов.

Автор выражает искреннюю благодарность сотрудникам лаборатории гипертермофильных микробных сообществ ИНМИ РАН имени С. Н. Виноградского. Отдельную благодарность автор выражает к.б.н. A.B. Лебединскому за ценные советы и конструктивную критику. Искренняя благодарность всем коллегам, принимавшим участие в различных этапах работы: к.б.н. Т. В. Колгановой (Центр Биоинженерии РАН), д.м.н. Л. В. Диденко (НИИЭМ им. Н. Ф. Гамалеи РАМН), к.х.н. О. В. Поповой, А. Бердыевой и Д. Шариповой (РГУ нефти и газа имени И.М. Губкина).

Отдельная благодарность асп. М. С. Котелеву, без которого эта работа не могла бы быть выполнена, за неоценимую помощь и поддержку.

Работа выполнена при поддержке Федеральной Целевой Программы «Научные и научно-педагогические кадры инновационной России на 20 092 013 годы».

Выводы по главе 3.

1. Выделен новый штамм термофильных карбоксидотрофных т гидрогеногенных микроорганизмов SET IS-9, отнесенный к новому виду «Carboxydothermus islandicus» на основании результатов микробиологических и филогенетических исследований.

2. Впервые исследован жирнокислотный состав клеток бактерий рода Carboxydothermusвыявлены межвидовые различия, которые могут служить для различения видов в пределах данного рода.

3. Впервые исследованы зависимости конверсии и производительности биореактора по водороду при культивировании бактерий Carboxydothermus.

X X hydrogenoformans Z-2901 и SET IS-9. Установлено, что производительность.

3 3.

ПО водороду может достигать 2,0 М водорода/(м реакторл’Ч) при условном времени контакта менее 5,13 мин для бактерий Carboxydothermus hydrogenoformans Z.

Т* X.

2901 и менее 4,80 мин для бактерий SET IS-9 .

4. Впервые показано, что степень конверсии и производительность по водороду изменяются несущественно при изменении концентрации клеток.

8 8 микроорганизмов в реакторе с 2,6−10 до 5,1 10 кл/мл, что говорит о лимитировании реакции процессами массопереноса и, следовательно, о возможности дальнейшего увеличения производительности и конверсии за счет совершенствования аппаратурного оформления процесса.

5. Впервые показано, что осуществление реакции водяного газа с помощью бактерий рода Carboxydothermus возможно в нестерильных условиях в течение свыше 200 ч без потери активности биокатализатора и загрязнения культуры.

6. Показано, что обнаружение гидроксилированных жирных кислот при определении жирнокислотного состава клеток микроорганизмов рода.

СагЬохуЛоЖегтш может свидетельствовать о заражении культуры посторонними микроорганизмами.

ЗАКЛЮЧЕНИЕ

.

Настоящая работа включает полный цикл исследований — от выделения новых микроорганизмов до исследования характеристик биореакторов с использованием выделенного штамма микроорганизмов в качестве биокатализатора. Успешное осуществление процесса переработки газов с парциальным давлением СО вплоть до 1 атм в течение длительного времени при значениях конверсии до 94% и производительности по водороду до.

3 3.

2,0 м водорода^(м реактора*ч) позволяет заключить, что поставленная цельразработка биотехнологического метода получения водорода из СО-содержащих газов — была достигнута. Применение биотехнологических методов в перспективе позволит создать высокоэффективные технологические системы, способные функционировать при различной загрузке производственных мощностей реакторов. Применение в качестве биокатализаторов быстрорастущих термофильных микроорганизмов, культуры которых устойчивы к заражению посторонними микроорганизмами, позволит повысить энергоэффективность биотехнологических процессов за счет элиминирования энергоемких стадий стерилизации реакторов и вносимых компонентов среды.

Показать весь текст

Список литературы

  1. D.B. Levin, L. Pitt, М. Love (2004) Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy 29 173.
  2. J.R. Benemann (1998) Process analysis and economics of biophotolysis of water. IEA/H2/10/TR2−98.
  3. S.A. Markov, A.D. Thomas, M.J. Bazin, D.O. Hall (1997) Photoproduction of hydrogen by Cyanobacteria under partial vacuum in batch culture or in a photobioreactor. International Journal of Hydrogen Energy 22, 521.
  4. A.S. Fedorov, A.A. Tsygankov, K.K. Rao, D.O. Hall (1998) Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam. Biotechnology Letters 20, 1007.
  5. H.G. Zhu, T. Suzuki, A.A. Tsygankov, Y. Asada, J. Miyake (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. International Journal of Hydrogen Energy 24, 305.
  6. M. Yetis, U. Gunduz, I. Eroglu, M. Yucel, L. Turker (2000) Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.OOl. International Journal of Hydrogen Energy 25, 1035.
  7. C.Y. Lin, C.H. Jo (2003) Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. Journal of Chemical Technology and Biotechnology 78, 678.
  8. H.H.P. Fang, H. Liu (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology 82, 87.
  9. E.W.J.V. Niel, P.A.M. Claassen, A.J.M. Stams (2003) Substrate and production inhibition of hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Biotechnology and Bioengineering 81, 255.
  10. Y. Ueno, S. Otsuka, M. Morimoto (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bio engineering 82, 194.
  11. Energy Information Administration. U.S. natural gas repressuring, U.S. natural gas vented and flared. Материалы сайта tonto.eia.doe.gov.
  12. CompactGTL, Associated gas. Материалы сайта www.compactgtl.com.
  13. ЗАО «Метапроцесс». Материалы сайта www.metaprocess.ru.
  14. Группа компаний «Энергосинтоп». Материалы сайта www.energosyntop.com
  15. Oil and Gas Conservation Commission of the State of Colorado, Cause No. 54 Order No. 54−2, March 18, 1955.
  16. Khalid Azzam, K. Seshan, I. V Babich, Water-gas-shift reaction in a catalytic membrane reactor for fuel-cell application, (www.cpm.tnw.utwente.nl).
  17. Greg Brinkman (2003) Economics and Environmental Effects of Hydrogen Production Methods. University of Maryland, School of Public Policy. http://www.publicpolicy.umd.edu/files.php/faculty/fetter/students/Brinkman.pdf
  18. Geoffrey Q. Miller, and Joerg Stocker (1999) Selection of a Hydrogen Separation Process. Материалы компании UOP LLC, http://www.uop.com/obiects/SelOfHydroSepProc.pdf
  19. Iwamoto et al., Membranes, 30, (5), 247−253 (2005).
  20. R.M. Prasad, Yuji Iwamoto, R. Riedel, A. Gurlo (2010) Multilayer АтофЬош^ьВ-С-Ы/у-АЬОз/а-АЬОз Membranes for Hydrogen Purification. Advanced Engineering Materials, 12 (6), 522−528.
  21. А. В., Лысов А. А., Тезисы докладов отчетной интернет-конференции за 2002 год, Москва, 30.12.2002 — 20.01.2003. М.:Изд-воРХТУ. 2003, с. 165−166.
  22. Д.И., Чистов Е. М., Рошан Н. Р. (2004) Производство чистого водорода, ISJAEE, 1 (9), 43 46.
  23. Ilias S. (2009) Development of Pd-Ag Composite Membrane for
  24. Balachandran U. et al. (2001) Dense Ceramic Membranes for Hydrogen Separation, Energy Technology Division, Argonne National Laboratory, Argonne. http://www.netl.doe.gov/publications/proceedings/02/materials/Balachandran.pdf
  25. S.-J. Song, T.H. Lee, E.D. Wachsman, L. Chen, S.E. Dorris, and U. Balachandran (2005) Defect Structure and Transport Properties of Ni-SrCe03~ Cermet for Hydrogen Separation Membrane. J. Electrochem. Soc., 152 (11), J125-J129.
  26. U. Balachandran, S.E. Dorris, Y. Lu, J.E. Emerson, C.Y. Park, T.H. Lee, and J.J. Picciolo (2010) Hydrogen Separation Membranes. Annual report for FY 2009, Contract Number: AA-10−40−00−0/FWP 49 601.
  27. , J.W. (2002) Pathways to a more sustainable production of energy: sustainable hydrogen- a research objective for Shell. Int. J. Hydrogen Energy 27, 1125−1129.
  28. , J. (1995) Fuel cells. In: Encyclopedia of energy, technology and the environment, Vol. 2, Bisio, A and Boots, S. Eds. John Wiley and Sons, Inc., New York, pp. 1408−1437.
  29. , G. (1999) A panoramic overview of hydrogen storgae alloys from a gas reaction point of view. J. Alloys Comp. 293−295.
  30. Van Houten, R.T., Hulshoff Pol, L.W. and Lettinga, G. (1994) Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44, 586−594.
  31. Van Houten, R.T., Yu Yun, S. and Lettinga, G. (1997) Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H2/C02 as energy and carbon source. Biotechnol. Bioeng. 55, 807−814.
  32. Szekeres, S., Kiss, I., Bejerano, T.T. and Soares, M.I.M. (2001) Hydrogen-dependent denitrification in a two-reactor bio-electrochemical system. Wat. Res. 35, 715−719.
  33. Kurt, M., Dunn, I.J. and Bourne, J.R. (1987) Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor. Biotechnol. Bioeng. 29, 493−501.
  34. Ferguson, J.F. and Pietari, J.M.H. (2000) Anaerobic transformations and bioremediation of chlorinated solvents. Environ. Pollution 107, 209−215.
  35. Cortright, R.D., Sanchez-Castillo, M. and Dumesic, J.A. (2002) Conversion of biomass to 1,2-propanediol by selective catalytic hydrogenation of lactic acid over silica-supported copper. Appl. Catalysis B: Environmental 39, 353 359.
  36. Kyoto protocol to the United Nations framework convention on climate change, 1−10 December 1997, Kyoto, Japan.
  37. , J. N. (1999) The multiple roles for catalysis in the production of H2. Appl. Catal. A 176 (2), 159−176.
  38. Bartish, C.M. and Drissel, G.M. (1978) Carbon monoxide. In: Encyclopedia of chemical technology, 3rd edition (Kirk-Othmer Ed.) John Wiley & Sons, NY, pp 772−793.
  39. Van der Drift, A., Doom, J. van, and Vermeulen, J.W. (2001) Ten residual biomass fuels for circulating fluidized-bed gasification. Biomass and Bioenergy 20, 45−56.
  40. Belgiorno, V., De Feo, G., Delia Rocca, C. and Napoli, R.M.A. (2003) Energy from gasification of solid wastes. Waste Management 23, 1−15.
  41. Perry, R.H., Green, D.W. and Maloney, J.O. (1997) Perry’s chemical engineers' handbook 7th edition. McGraw — Hill, New York, USA.
  42. Maschio, G., Lucchesi, A., and Stoppato, G. (1994) Production of syngas from biomass. Biores. Technol. 48, 119−126.
  43. Faaij, A., Ree, R. van, Waldheim, L., Olsson, E., Oudhuis, A., Wijk, A. van, Daey-Ouwens, C. and Turkenburg, W. (1997) Gasification of biomass wastes and residues for electricity production. Biomass and Bioenergy 12 (6), 387 407.
  44. , Y. (2002) Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan. Energy Conv. Managem. 43, 1301−1310.
  45. Dellepiane, D., Bosio, B., Arato, E. (2003) Clean energy from sugarcane waste: feasibility study of an innovative application of bagasse and barbojo. J. Power Sources 122, 47−56.
  46. Young, L. and Pian, C.C.P. (2003) High-temperature, air blown gasification of dairy-farm wastes for energy production. Energy 28, 655−672.
  47. Midilli, A., Dogru, M., Akay, G. and Howarth, C.R. (2002) Hydrogen production from sewage sludge via a fixed bed gasifier product gas. Int. J. Hydrogen Energy 27 1035−1041.
  48. Werther, J. and Ogada, T. (1999) Sewage sludge combustion. Progr. Energy and Combustion Sc. 25, 55−116.
  49. Sutton, D., Kelleher, B. and Ross, J.R.H. (2001) Review of literature on catalysts for biomass gasification. Fuel Processing Technol. 73, 155−173.
  50. Ledjeff-Hey, K., Roes, J. and Wolters, R. (2000) C02-scrubbing and methanation as purification system for PEFC. J. Power Sources 86, 556−561.
  51. Bredwell, M.D., Srivastava, P. and Worden, R.M. (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol. Prog. 15, 834−844.
  52. J., Naveau H., Nyns E.J. (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol, 161: 345−351.
  53. R.S., Miller L.M., Yang D. (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial ribosomal-RNA homology group-I. Int J Syst Bacteriol, 43: 232−236.
  54. L.R., Bryant M.P. (1985) Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Syst Bacteriol, 35: 454−456.
  55. W.H., Bryant M.P. (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol, 47: 961−964.
  56. Sharak Genthner B.R., Bryant M.P. (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol, 53: 471−476.
  57. Sharak Genthner B.R., Bryant M.P. (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol, 43: 70−74.
  58. Grethlein A J., Worden R.M., Jain M.K., Datta R. (1991) Evidence for production of n-butanol from carbon monoxide by Butyribacterium methylotrophicum. J Ferment Bioeng, 72: 58−60.
  59. L., Kerby R., Zeikus J.G. (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol, 149: 255−263.
  60. G.J., Shieh J.S., Grethlein A.J., Jain M.K., Zeikus J.G. (1999) Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum. Appl Microbiol Biotechnol, 51: 827−832.
  61. R.L. (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl AcadSci USA, 73: 3298−3302.
  62. M.P., Uffen R.L. (1979) Identification of a carbon monoxide metabolizing bacterium as a strain of Rhodopseudomonas gelatinosa (Molisch). Int J Syst Bacteriol, 29:145−148.
  63. Jung G.Y., Jung H.O., Kim J.R., Ahn Y., Park S. (1999) Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol Lett, 21: 525−529.
  64. R.L., Ludden P.W., Roberts G.P. (1995) Carbon monoxide dependent growth of Rhodospirillum rubrum. J Bacteriol, 177: 2241−2244.
  65. F.S., Conrad R., Zeikus J.G. (1984) CO metabolism of Desidfovibrio vulgaris strain Madison physiological function in the absence or presence of exogenous substrates. FEMS Microbiol Lett, 23: 263−268.
  66. R., Cypionka H., Widdel F. & Pfennig N. (1985) Growth with hydrogen, and further physiological characteristics of Desidfotomaculum' species. Arch Microbiol, 143:203−208
  67. M., Metcalf W.W. (2004) Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA, 101: 16 929−16 934.
  68. Daniel S.L., Hsu T., Dean S.I., Drake H.L. (1990) Characterization of the hydrogen- and carbon monoxide-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol, 172: 4464−4471.
  69. Savage M.D., Wu Z.G., Daniel S.L., Lundie L.L., Drake H.L. (1987) Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol, 53: 1902−1906.
  70. Henstra A.M., Sipma J., Rinzema A., Stams A.J.M. (2007) Microbiology of synthesis gas fermentation for biofuel production. Current Opinion in Biotechnology, 18: 200−206.
  71. Т.Н., Иванова A.E., Канчавели Jl.П., Розанова Е. П. (1988) Новая спорообразующая термофильная метилотрофная сульфатредуцирующая бактерия, Desulfotomaculum kuznetsovii sp. nov. Микробиология, 57: 823−827.
  72. Plugge С., Balk M., Stams A.J.M. (2002) Desidfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic syntrophic propionate-oxidizing spore-forming bacterium. Int J Syst Evol Microbiol, 52: 391−399.
  73. L., Fuchs G., Thauer R.K., Zeikus J.G. (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol, 132: 118−126.
  74. K.O., Lauerer G., Thomm M., Neuner A. (1987) Isolation of extremely thermophilic sulfate reducers: Evidence for a novel branch of archaebacteria. Science, 236: 822−824.
  75. K.O. (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol, 10: 172−173.
  76. Henstra A.M., Dijkema C., Stams A.J.M. (2007) Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. Environ Microbiol, 9: 1836−1841.
  77. G.M. (2003) Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by Mycobacteria. Appl Environ Microbiol 69(12): 7266−7272.
  78. Balk M., van Gelder T., Weelink S.A., Stams A.J. (2008) (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Appl Environ Microbiol, 74: 403−409.
  79. G.B., Thauer R.K. (1978) Carbon-monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol, 136: 597−606.
  80. H.C., Drake H.L. (1990) Differential effects of sodium on hydrogen and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl Environ Microbiol, 56(1): 81—86.
  81. H.L., Daniel S.L. (2004) Physiology of the thermophilicacetogen Moorella thermoacetica. Research in Microbiology, 155: 422−436.110
  82. J., Braun M., Gottschalk G. (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol, 5: 255−260.
  83. J.G., Wolfe R.S. (1972) Methanobacterium thermoautotrophicus sp. п., an anaerobic, autotrophic, extreme thermophile. J Bacteriol, 109: 707−713.
  84. O’Brien J.M., Wolkin R.H., Moench T.T., Morgan J.B., Zeikus J.G. (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol, 158: 373−375.
  85. , K.A., Ward D.M. (1982) Temperature adaptations in the terminal processes of anaerobic decomposition of Yellowstone NationaLPark and Icelandic hot spring microbial mats. Appl Environ Microbiol 44: 844−851.
  86. , Т. (1959) Enzymic oxidation of carbon monoxide. II. J Biochem (Tokyo), 46: 949−955.
  87. M.N., Tarasova N.B., Mukhitova F.K., Karpilova I.U. (1994) Carbon monoxide in metabolism of anaerobic bacteria. Can J Microbiol, 40:417125.
  88. Min H., Zinder S.H. (1990) Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomacidum thermoacetoxidans sp.nov. Arch Microbiol, 153: 399−404.
  89. K.O., Huber R., Blochl E., Kurr M., Eden R.D., Fielder M., Cash H., Vance I. (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 365: 743−745.
  90. SchinkB. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol. Biol Rev 61:262−280.
  91. B.E., Mclnerney M.J. (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415: 454−456.
  92. Uffen RL (1983) Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidation system. JBacterioL 155(3), 956−965.
  93. R.L. (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl AcadSci USA, 73: 3298−3302.
  94. B.A., Соколова Т. Г., Герхардт M., Заварзин Г. А. (1990) Новая группа анаэробных термофильных карбоксидобактерий, выделяющих водород. Докл АН СССР, 314: 742−745.
  95. В.А., Соколова, Т.Г., Кострикина, Н.А., Лысенко A.M. (1994) Carboxydothrmus resti’ictus sp.nov. — новая термофильная анаэробная карбоксидотрофная бактерия. Микробиология, 63: 523−528.
  96. R.L., Ludden P.W., Roberts G.P. (1995) Carbon monoxide dependent growth of Rhodospirillum rubrum. J Bacterid, 177: 2241−2244.
  97. Jung G.Y., Jung H.O., Kim J.R., Ahn Y., Park S. (1999) Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol Lett, 21: 525−529.
  98. Henstra A.M., Sipma J., Rinzema A., Stams A.J.M. (2007) Microbiology of synthesis gas fermentation for biofuel production. Current Opinion in Biotechnology, 18: 200—206
  99. S.W. (2004) Life with carbon monoxide. Crit Rev Biochem MolBiol, 39(3): 165−95.
  100. , S.W., Kumar M. (1996) Ni containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chem Rev, 96: 2515−2539.
  101. E.L., Lindahl P.A. (2001) Catalytic coupling of the active sites in acetyl-CoA synthase, a bifunctional CO-channeling enzyme. Biochemistry 40(44): 13 262−13 267.
  102. Grahame D.A., DeMoll E. (1995) Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry, 34(14): 4617−4624.
  103. C., Ragsdale S.W. (2000) The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway J Biol Chem, 275: 28 494−28 499.
  104. Stephen M. Techtmann, Albert S. Colman and Frank T. Robb (2009) 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia. Environmental Microbiology 11(5), 10 271 037
  105. Paul A. Lindahl (2002) «The Ni-Containing Carbon Monoxide Dehydrogenase Family: Light at the End of the Tunnel?», Biochemistry, 41, 20 972 105
  106. Jae-Hun Jeoung and Holger Dobbek (2007) Carbon Dioxide Activation at the Ni, Fe-Cluster of Anaerobic Carbon Monoxide Dehydrogenase. Science ЪП, 1461−1464.
  107. W.A. (2004) Biological Water-Gas Shift Conversion of Carbon Monoxide to Hydrogen. Milestone Completion Report (NREL/MP-560−35 592).
  108. W.F. (2004) The Co-Production of Ethanol and Electricity From Carbon-based Wastes. BRI Energy Report (http://www.magic-region.com/BRI Energy Backgrounder. pdf).
  109. Новый процесс производства этанола из углеродсодержащих отходов, http://www.coskata.com/
  110. J. (1961) A procedure for the isolation DNA from microorganisms. J Molecular Biol, 3: 208−218.
  111. Bimboim, H. C., Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 15 131 523.
  112. , D. J. (1991). 16S/23S rRNA sequencing, p. 115−175 In Nucleic Acid Techniques in Bacterial Systematics, pp. 115−175. Edited by E. Stackebrandt & M. Goodfellow, New York: Wiley.
  113. Owen, R. J., Hill, L. R. & Lapage, S. P. (1969). Determination of DNA base composition from melting profiles in dilute buffer. Biopolymers 7, 503 516.
  114. , B. J. (1990). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199—202.
  115. , M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc.1. ПУБЛИКАЦИИ
  116. Основные положения диссертации изложены в следующих публикациях:
  117. А.А., Тущин П. А., Винокуров В. А., Бердников В. И., Баранов Д. А. Микробиологические методы получения альтернативных топлив из синтез-газа // Наука и техника в газовой промышленности. 2008. № 1(33). с.79−85.
  118. А.А., Котелев М. С., Иванов Е. В., Винокуров В. А. Перспективы использования микробиологической сероочистки в России // Башкирский химический журнал. —2010, Том 17, № 3, с. 171−175.
Заполнить форму текущей работой