Синтез, характеристика и биомедицинские применения золотосеребряных наноклеток и нанокомпозитов на их основе
Диссертация
Золотосеребряные наночастицы были конъюгированы с иммуноглобулинами (цыпленка, мыши и крысы) в соответствии с процедурой, описанной в разделе 4.2, с использованием гетеробифункционального кросс-линкера ОР88-РЕО→Щ8. Данный реагент содержит ортопиридил дисульфидную группу, которая прикреплятся к поверхности металла, и сукцинимидную группу, которая взаимодействует с аминогруппой белковой молекулы… Читать ещё >
Список литературы
- Muralidharan G., Bhat N., Santhanam V. Scalable processes for fabricating nonvolatile memory devices using self-assembled 2D arrays of gold nanoparticles as charge storagenodes //Nanoscale. 2011. — V. 3. — P. 45 754 579.
- Santhanam V., Andres R.P. Microcontact Printing of Uniform Nanoparticle Arrays // Nano Letters. 2004. — V. 4. — P. 41−44.
- Chen M.S., Goodman, D.W. The Structure of Catalytically Active Gold on Titania // Science. 2004. — V. 306. — P. 252−255.
- Kim S.-W., Kim M., Lee W.Y., Hyeon T. Fabrication of hollow palladiumspheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions // J. Am. Chem. Soc. 2002. — V. 124. -P. 7642−7643.
- Lewis L.N. Chemical catalysis by colloids and clusters // Chem. Rev. 1993.1. V. 93.-P. 2693−2730.
- Sinha A.K., Seelan S., Tsubota S., Haruta M. A Three-Dimensional Mesoporous
- Titanosilicate Supported for Gold Nanoparticles: Vapor-Phase Epoxidation of Propene with High Conversion // Angew. Chem., Int. Ed. 2004. — V. 43. — P. 1546−1548.
- Valden M., Lai X., Goodman D. W. Onset of Catalytic Activity of Gold Clusterson Titania with the Appearance of Nonmetallic Properties // Science. 1998. -V.281.-P. 1647−1650.
- Chen H.M., Chen, C.K., Chang, Y.-C., Tsai, C.-W., Liu, R.-S., Hu S.-F., Chang
- W.-S., Chen K.-H. Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting // Angew. Chem., Int. Ed. -2010. V. 49. — P. 5966−5969.
- Cao Y.C., Jin R., Mirkin C.A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection // Science. 2002. — V. 297. — P. 1536−1540.
- Elghanian R., Storhoff J.J., Mucic R.C., Letsinger R.L., Mirkin C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles // Science. 1997. — V. 277. — P. 10 781 081.
- Kamat P.V. Photophysical, photochemical and photocatalytic aspects of metal Nanoparticles // J. Phys. Chem. B 2002. — V. 106. — P. 7729−7744.
- Park S.-J., Taton T.A., Mirkin C.A. Array-based electrical detection of DNA with nanoparticle probes // Science. 2002. — V. 295. — P. 1503−1506.
- Rosi N.L., Giljohann D.A., Thaxton C.S., Lytton-Jean A.K.R., Han M.S., Mirkin C.A. Oligonucleotide- modified gold nanoparticles for intracellular gene regulation // Science. 2006. — V. 312 — P. 1027−1030.
- Taton T. A, Mirkin C.A., Letsinger R. L. Scanometric DNA array detection with nanoparticle probes // Science. 2000. — V. 289. — P. 1757−1760.
- Noguez CJ. Surface plasmons on metal nanoparticles: the influence of shape and physical environment // J. Phys. Chem. C. 2007. — V. 111. — P. 38 063 819.
- Chang S.-S., Shih C.-W., Chen C.-D., Lai W.-C., Wang C.R.Ch. The shape transition of gold nanorods // Langmuir. 1999. — V. 15. — P. 701−709.
- Link S., El-Sayed M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods // J. Phys. Chem. B. 1999. — V.103. — P. 8410−8426.
- Jana N.R., Gearheart L., Murphy C.J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template // Adv. Mater. 2001. — V. 13. — P. 1389−1393.
- Nikoobakht B., El-Sayed M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method // Chem. Mater. 2003. -V.15.-P. 1957−1962.
- Perez-Juste J., Pastoriza-Santos I., Liz-Marzan L.M., Mulvaney P. Gold nanorods: Synthesis, characterization and applications // Coordination Chem. Rev. -2005. -V. 249. P. 1870−1879.
- Oldenburg S., Averitt R.D., Westcott S., Halas N.J. Nanoengineering of optical resonances // Chem. Phys. Lett. 1998. — V. 288. — P. 243−247.
- Sun Y., Xia Y. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm // Analyst. 2003. — V. 128. -P. 686−691.
- West J.L., Halas N.J. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics // Annu. Rev. Biomed. Eng. -2006. V. 6. — P. 285−292.
- Hirsch L.R., Gobin A.M., Lowery A.R., Tam F., Drezek R., Halas N.J., West J.L. Metal nanoshells // Annals. Biomed. Eng. 2006. — V. 34. — P. 15−22.
- Chen J., McLellan J.M., Siekkinen A., Xiong Yu., Li Zh.-Y., Xia Y. Facile synthesis of gold-silver nanocages with controllable pores on the surface // J. Am. Chem. Soc. 2006. — V. 128. — P. 14 776−14 777.
- Yang X., Skrabalak S. E., Li Z. Y., Xia Y., Wang L. V. Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent // Nano Lett. 2007. — V. 7. — P. 3798−3802.
- Dam D.H.M., Lee J., Sisco P., Co D., Zhang M., Wasielewski M.R., Odom T.W. Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions // ACS Nano. 2012. — V. 6. — P. 3318−3326.
- Chen J., Wiley B., Li Z.Y., Campbell D., Saeki F., Cang H., Au L., Lee J., Li X., Xia Y. Gold nanocages: engineering their structure for biomedical applications // Adv Mater. 2005. — V. 17. — P. 2255−2261.
- Leontidis E., Kleitou K., Kyprianidou-Leodidou T., Bekiari V., Lianos P. Gold colloids from cationic surfactant solutions. 1. Mechanisms that control particle morphology // Langmuir. 2002. — V. 18. — P. 3659−3668.
- Yeung S.A., Hobson R., Biggs S., Grieser F. Formation of gold sols using ultrasound // J. Chem. Soc., Chem. Commun. 1993. — № 4. — P. 378−379.
- Chen W., Cai W., Zhang L., Wang G., Zhang L. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica // J. Colloid Interface Sci. 2001. — V. 238. — P. 291−295.
- Mandal M., Kundu S., Ghosh S.K., Pal T. UV-photoactivation technique for size and shape controlled synthesis and annealing of stable gold nanoparticles in micelle // Bull. Mater. Sci. 2002. — V. 25. — P. 509−511.
- Niidome Y., Hori A., Sato T., Yamada S. Enormous size growth of thiol-passivated gold nanoparticles induced by near-IR laser light // Chem. Lett. -2000.-№ 4.-P. 310−311.
- Gachard E., Remita H., Khatouri J., Keita B., Nadjo L., Belloni J. Radiation-induced and chemical formation of gold clusters // New J. Chem. 1998. — V. 22.-P. 1257−1265.
- Mafune F., Kohno J.-Y., Takeda Y., Kondow T., Sawabe H. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant // J. Phys. Chem. B.-2001.-V. 105.-P. 5114−5120.
- Mallick K., Witcomb M.J., Scurrell M.S. Polymer-stabilized colloidal gold: A convenient method for the synthesis of nanoparticles by a UV-irradiation approach // Appl. Phys. A. 2005. — V. 80. — P. 395−398.
- Teranishi T. Metallic colloids // In: Encyclopedia of surface and colloid science // Ed. Hubbard A. N-Y.: Marcel Dekker. — 2002. — P. 3314−3327.
- Daniel M.C., Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology // Chem. Rev. 2004. — V. 104. — P. 293−346.
- Tschopp J., Podack E.R., Muller-Eberchard H.J. Ultrastructure of the membrane attack complex of complement: Detection of the tetramolecular C9-polymerizing complex C5b-8 // PNAS. 1982. — V. 79. — P. 7474−7478.
- Turkevich J., Stevenson P.C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold // Discuss. Faraday Soc. 1951. -V. 11.-P. 55−75.
- Stathis E.C., Fabricanos A. Preparation of colloidal gold // Chem. Ind. (London) 1958. — V. 27. — P. 860−861.
- Thomas J.M. Colloidal metals: Past, present and future // Pure Appl. Chem. -1988.-V. 60.-P. 1517−1518.
- Zsigmondy R. The chemistry of colloids. New York: JohnWiley, 1917. — 288 P
- Jana N., Gearheart L., Murphy C. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods // J. Phys. Chem. B. 2001. — V. 105. — P. 40 654 067.
- Kim F., Sohn K., Wu J., Huang J. Chemical synthesis of gold nanowires in acidic solutions 11 J. Am. Chem. Soc. 2008. — V. 130. — P. 14 442−14 443.
- Wu H.-L., Chen C.-H., Huang M.H. Seed-Mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars // Chem. Mater. 2009. — V. 21(1). — P. 110−114.
- Rodriguez-Lorenzo L., Romo-Herrera J.M., Perez-Juste J., Alvarez-Puebla R.A., Liz-Marzan L. M. Reshaping and LSPR tuning of Au nanostars in the presence of CTAB // J. Mater. Chem. 2011. — V. 21. — P. 11 544−11 549.
- Sajanlal P. R, Pradeep T. Mesoflowers: a new class of highly efficient surface-enhanced Raman active and infraredabsorbing materials // Nano Res. 2009. -V. 2. — P. 306−320.
- Yu D., Yam V. W.-W. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction // J. Phys. Chem. B. 2005. — V. 109. — P. 5497−5503.
- Pham T., Jackson J.B., Halas N.J., Lee T.R. Preparation and characterization of gold nanoshells coated with self-assembled monolayers // Langmuir. V. 18. -P. 4915−4920.
- Van Blaaderen A., Van Geest J., Vrij A. Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism // Journal of Colioid and Interface Science. 1992. — V. 154. — № 2. — P. 481−502.
- Shi W., Sahoo Y., Swihart M.T., Prasad P.N. Gold nanoshells on polystyrene cores for control of surface plasmon resonance // Langmuir. 2005. — V. 21. -P. 1610−1617.
- Song C., Wang D., Lin Y., Hu Z., Gu G., Fu X. Formation of silver nanoshells on latex spheres // Nanotechnology. 2004. — V. 15 — P. 962−965.
- Dong A.G., Wang Y.J., Tang Y., Ren N., Yang W. L., Gao Z. Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction // Chem. Commun. 2002. — P. 350−351.
- Li X., Li Y., Yang Ch., Li Yo. Liposome induced self-assembly of gold nanoparticles into hollow spheres // Langmuir. 2004. — V. 20. — P. 37 343 739.
- Waddell T.G., Leyden D.E., DeBello M.T. The nature of organosilane to silica-surface bonding // J. Am. Chem. Soc. 1981. — V. 103. — P. 5303−5307.
- Liu Y.-H., Lin H.-P., Mou Ch.-Y. Direct method for surface silyl functionalization of mesoporous silica // Langmuir. 2004. — V. 20. — P. 32 313 239.
- URL: http://www.powerchemical.net/crosslinking.htm
- Ashayer R., Mannan S.H., Sajjadi Sh. Synthesis and characterization of gold nanoshells using poly (diallyldimethyl ammonium chloride) // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008. — V. 329. — P. 134−141.
- Shenoy D.B., Antipov A.A., Sukhorukov G.B., Mohwald H. // Layer-by-layer engineering of biocompatible, decomposable core-Shell structures // Biomacromolecules. 2003. — V.4. — P. 265−272.
- Sukhorukov G.B., Donath E., Davis S., Lichtenfeld H., Caruso F., Popov V.I., Mohwald H. Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design // Polym. Adv. Technol. 1998. — V. 9. — P. 759 767.
- Fievet F., Lagier J.P., Figlarz M. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process // MRS Bull. -1989. V. 14. — P. 29−34.
- Viau G., Fievet-Vincent F., Fievet F. Nucleation and growth of bimetallic CONI and FENI monodisperse particles prepared in polyols // Solid State Ionics. 1996. — V. 84. — P. 259−270.
- Sun Y., Yin Y., Mayers B.T., Herricks T., Xia Y. Uniform silver nanowires synthesis by reducing AgNC>3 with ethylene glycol in the presence of seeds and polyvinyl pyrrolidone) // Chem. Mater. 2002. — V. 14. — P. 4736−4745.
- Wiley B., Sun Y., Mayers B., Xia Y. Shape-controlled synthesis of metal nanostructures: the case of silver // Chem. Eur. J. 2005. — V. 11. — P. 54−63.
- Chen H., Wang Y., Dong S. An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures // Inorg. Chem. -2007. V. 46. — № 25. — P. 10 587−10 593.
- Shao M., Yu T., Odell J. H., Jin M., Xia Y. Structural dependence of oxygen reduction reaction on palladium nanocrystals // Chemical Communications. -2011. V. 47. — P. 6566−6568.
- Rycenga M., Cobley C. M., Zeng J., Li W., Moran C., Zhang, Q., Qin, D., Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications // Chemical Reviews. 2011. — V. 111. — P. 3669−3712.
- Cobley C. M., Chen J., Cho E. C., Wang L.V., Xia, Y. Gold nanostructures: A class of multifunctional materials for biomedical applications // Chemical Society Reviews. 2011. — V. 40. — P. 44−56.
- Lu C., Qi L., Yang J., Tang L., Zhang D., Ma J. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate // Chem. Commun. 2006. — V.33. — P. 3551−3553.
- Adams B.D., Wu G., Nigro S., Chen A. Facile synthesis of Pd-Cd nanostructures with high capacity for hydrogen storage // J. Am. Chem. Soc. -2009. V. 131. — P. 6930−6931.
- Chang C.-C., Wu H.-L., Kuo C.-H., Huang M.H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures // Chemistry of Materials. 2008. — V. 20. — P. 7570−7574.
- Cansell F., Chevalier B., Demourgues A., Etourneau J., Even C., Garrabos Y. et al. Supercritical fluid processing: a new route for materials synthesis // J. Mater. Chem. 1999. — V. 9. — P. 67−75.
- Yuan J., Li W.-N., Gomez S., Suib S.L. Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures //J. Am. Chem. Soc. 2005. — V. 127.-P. 4184−4185.
- Shen G., Chen D. Self-coiling of Ag2V40n nanobelts into perfect nanorings and microloops // J. Am. Chem. Soc. 2006. — V. 128. — P. 11 762−11 763.
- Tian L., Tan H.Y., Vittal J.J. Morphology-controlled synthesis of Bi2S3 nanomaterials via single- and multiple-source approaches // Cryst. Growth Des. -2008.-V. 8.-P. 734−738.
- Huang C.-J., Chiu P.-H., Wang Y.-H., Chen W.R., Mee T.H. Synthesis of the gold nanocubes by electrochemical technique // J. Electrochem. Soc. 2006. -V. 153.-P. 129−133.
- Yu Y.-Y, Chang S.-S, Lee C.-L, Wang C.R.C. Gold nanorods: electrochemical synthesis and optical properties // J. Phys. Chem. B. 1997. — V. 101. — P. 6661−6664.
- Gu C., Zhang T.-Y. Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces // Langmuir. 2008. — V. 24. -P. 12 010−12 016.
- Sun Y., Qiao R. Facile tuning of superhydrophobic states with Ag nanoplates // Nano Res. 2008. — V. 1. — P. 292−302.
- Esumi K., Matsuhisa K., Torigoe K. Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template // Langmuir. 1995. — V. 11.-P. 3285−3287.
- Jin R., Cao Y., Mirkin C.A., Kelly K.L., Schatz G.C., Zheng J.G. Photoinduced conversion of silver nanospheres to nanoprisms // Science. 2001. — V. 294. -P. 1901−1903.
- Martin C.R. Nanomaterials: a membrane based synthetic approach // Science. -1994. V. 266. — P. 1961−1966.
- Brenner A., Riddell G.E. Nickel plating on steel. Good-quality deposits by chemical reaction // J. Res. Natl. Bur. Stand. (US) 1946. — V. 37. — P. 31−34.
- Sun Y., Xia Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium // J. Am. Chem. Soc. -2004. V. 126. — P. 3892−3901.
- Au L., Chen Y., Zhou F., Camargo P.H.C., Lim B., Li Z.-Y. et al. Synthesis and optical properties of cubic gold nanoframes // Nano Res. 2008. — V. 1. -P. 441−449.
- Xiong Y., Wiley B.J., Chen J., Li Z.-Y., Yin Y., Xia Y. Corrosionbased synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties // Angew. Chem. Int. Ed. 2005. — V. 44. — P. 7913−7917.
- Kim D., Park J., An K., Yang N.-K., Park J.-G., Hyeon T. Synthesis of hollow iron nanoframes // J. Am. Chem. Soc. 2007. — V. 129. — P. 5812−5813.
- Sun Y., Xia Y. Multiple-walled nanotubes made of metals // Adv. Mater. -2004.-V. 16.-P. 264−268.
- Roosen A.R., Carter W.C. Simulations of microstructural evolution: anisotropic growth and coarsening // Phys. A (Amsterdam, Neth.). 1998. — V. 261.-P. 232−247.
- Mohl M., Dobo D., Kukovecz A., Konya Z., Kordas K., Wei J., Vajtai R., Ajayan P.M. Formation of CuPd and CuPt Bimetallic Nanotubes by Galvanic Replacement Reaction // J. Phys. Chem. C. 2011. — V. 115. — P. 9403−9409.
- Dresselhaus M.S., Thomas I.L. Alternative energy technologies // Nature. -2001.-V. 414.-P. 332−337.
- Schlapbach L., Zuttel A. Hydrogen-storage materials for mobile applications // Nature. 2001. — V. 414. — P. 353−358.
- Ward M.D. Molecular fuel tanks // Science. 2003. — V. 300. — P. 1104−1105.
- Lauhon L.J., Gudiksen M.S., Wang D., Lieber C.M. Epitaxial core-shell and core-multishell nanowire heterostructures // Nature. 2002. — V. 420. — P. 5761.
- Markovic N.M., Ross P.N. Electrocatalysts by design: From the tailored surface to a commercial catalyst // Electrochim. Acta. 2000. — V. 45. — P. 4101−4115.
- Wang X., Kariuki N., Vaughey J. T., Goodpaster J., Kumar R., Myers D. J. // J. Electrochem. Soc. 2008. — V. 155. — P. B602-B609.
- Shao M.-H., Sasaki K., Adzic R. R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction // J. Am. Chem. Soc. 2006. — V. 128. — P. 3526−3527.
- Wang L., Yamauchi Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic coreand nanoporous Pt shell // J. Am. Chem. Soc. 2010. — V. 132. P. 1 363 613 638.
- Shao M.H., Shoemaker K., Peles A., Kaneko K., Protsailo L. Pt Monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts // J. Am. Chem. Soc. 2010.-V. 132.-P. 9253−9255.
- Nilekar A.U., Alayoglu S., Eichhorn B., Mavrikakis M. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles // J. Am. Chem. Soc. 2010. — V. 132. — P. 7418−7428.
- Lee Y.W., Ko A.R., Han S.B., Kim H.S., Park K.W. Synthesis of Octahedral Pt-Pd Alloy Nanoparticles for improved catalytic activity and stability in methanol electrooxidation // Phys. Chem. Chem. Phys. 2011. — V. 13. — P. 5569−5572.
- Lee H. J., Habas S.E., Somoijai G.A., Yang P.D. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid // J. Am. Chem. Soc. 2008. — V. 130. — P. 5406−5407.
- Chen H.M., Liu R.-S., Lo M.-Y., Chang S.-C., Tsai L.-D., Peng Y.-M., Lee J.-F. Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction // J. Phys. Chem. C. 2008. — V. 112. — P. 75 227 526.
- Kim H., Cho J. Hollow Sb93Pt7 nanospheres prepared by Galvanic Displacement Reaction for a Highly Li Reactive Material // J. Korean Electrochem. Soc. 2008. — V. 11. — P. 154−158.
- Cang H., Sun T., Li Z.-Y., Chen J., Wiley B.J., Xia Y., Li X. Gold nanocages as contrast agents for spectroscopic and conventional optical coherence tomography // Optics Letters. 2005. — V. 30. — P. 3048−3050.
- Sun Y., Xia Y. Shape-controlled synthesis of gold and silver nanoparticles // Science. 2002. — V. 298. — P. 2176−2179.
- Zhang Q., Cobley C., Au L., McKiernan M., Schwartz A., Wen L.-P., Chen J., Xia Y. Production of Ag Nanocubes on a Scale of 0.1 g per Batch by
- Protecting the NaHS- Mediated Polyol Synthesis with Argon // Appl. Mater. Interfaces. 2009. — V. 1. — P. 2044−2048.
- Skrabalak S.E., Au L., Li X., Xia Y. Facile synthesis of Ag nanocubes and Au nanocages // Nat. Protoc. 2007. — V. 2. — P. 2182−2190.
- Heller W., Pugh T.L. «Steric» stabilization of colloidal solutions by adsorbtion of flexible macromolecules // J. Polymer Sci. 1960. — V. 48. — P. 203−217.
- Goddard E.D., Vincent B. Polymer adsorption and dispersion stability. -Washington: ACS Symp. Ser., 1984. 480 p.
- Leonov A.P., Zheng J., Clogston J.D., Stern S.T., Patri A.K., Wei A. Detoxification of Gold Nanorods by Treatment with Polystyrenesulfonate // ACS Nano. 2008. — V. 2. — P. 2481−2488.
- Nitin N., Javier D.J., Richards-Kortum R. Oligonucleotide-coated metallic nanoparticles as a flexible platform for molecular imaging agents // Bioconjugate Chem. 2007. — V. 18. — P. 2090−2096.
- Lai S., Clare S., Halas N.J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact // Accounts of chemical research. 2008. — V. 41. -P. 1842−1851.
- Terentyuk G.S., Maslyakova G.N., Suleymanova L.V., Khlebtsov B.N., Kogan B.Ya., Akchurin G.G., Shantrocha A.V., Maksimova I.L., Khlebtsov
- N.G., Tuchin V.V. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery // J. Biophoton. 2009. — P. 1−11.
- De Jong W.H., Hagens W.I., Krystek P., Burger M.C., Sips A.J., Geertsma R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration // Biomaterials. 2008. — V. 29. — P. 1912−1919.
- Donnelly J.J., Wahren В., Liu M.A. DNA Vaccines: Progress and Challenges // J. Immunol. 2005. — V. 175. — P. 633−639.
- Bergen J.M., von Recum H.A., Goodman T.T., Massey A.P., Pun S.H. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery // Macromol. Biosci. 2006. — V. 6. — P. 506−516.
- Дыкман Л.А., Богатырев B.A. Наночастицы золота: получение, функционализация, использование в биохимии и иммунохимии // Успехи химии. 2007. — Т. 76. № 2. — С. 199−213.
- Дыкман JI.A., Богатырев В. А., Хлебцов Н. Г., Щеголев С. Ю. Золотые наночастицы: Синтез, оптические свойства, биомедицинское применение. Москва: Наука, 2008. — 318 с.
- Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system // Chem. Commun. 1994. — V. 7. — P. 801−802.
- Martin B. R., Dermody D. J., Reiss B. D., Fang M., Lyon L. A., Natan M. J., Mallouk Т. E. Orthogonal self assembly on colloidal gold-platinum nanorods // Adv. Mater. 1999. — V. 11. — P. 1021−1025.
- Hou W., Dasog M., Scott R. W. J. Probing the relative stability of thiolate-and dithiolate-protected Au monolayer-protected clusters // Langmuir. 2009. -V. 25.-P. 12 954−12 961.
- Zhao Y., Perez-Segarra W., Shi Q. C., Wei A. Dithiocarbamate assembly on gold // J. Am. Chem. Soc. 2005. — V. 127. — P. 7328−7329.
- Yee С. K., Ulman A., Ruiz J. D., Parikh A., White H., Rafailovich M. Alkyl selenide- and alkyl thiolate-functionalized gold nanoparticles: chain packing and bond nature // Langmuir. 2003. — V. 19. — P. 9450−9458.
- Schmid G., Pfeil R., Boese R., Bandermann F., Meyer S., Calis G.H.M., van der Velden J. W. A. // Chem. Ber. 1981. — V. 114. — P. 3634−3642.
- Падцефет P. Химия золота. M.: Мир, 1982. 259с.
- Dubois L.H., Nuzzo R.G. Synthesis, structure, and properties of model organic surfaces // Annu. Rev. Phys. Chem. 1992. — V. 43. — P. 437−467.
- Riehemann K., Schneider S.W., Luger T.A., Godin В., Ferrari M., Fuchs H. Nanomedicine challenge and perspectives // Angew.Chem. Int. Ed. — 2009. -V. 48.-P. 872−897.
- Heath J.R., Davis M.E. Nanotechnology and cancer // Annu. Rev. Med. -2008.-V. 59.-P. 251−265.
- Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy // Nat. Nanotechnol. -2007.-V. 2.-P. 751−760.
- Ferrari M. Cancer nanotechnology: Opportunities and challenges // Nat. Rev. Cancer. -2005. V. 5.-P. 161−171.
- Arap W., Pasqualini R., Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model // Science. 1998. — V. 279. -P. 377−380.
- Harris J.M., Martin N.E., Modi M. Pegylation: a novel process for modifying pharmacokinetics // Clin. Pharmacokinet. 2001. — V. 40. — P. 539−551.
- Perrault S.D., Walkey C., Jennings T., Fischer H.C., ChanW.C.W. Mediating tumor targeting efficiency of nanoparticles through design // Nano Lett. 2009. — V. 9. — P. 1909−1915.
- Gref R., Minamitake Y., Peracchia M.T., Trubetskoy V., Torchilin V., Langer R. Biodegradable long-circulating polymeric nanospheres // Science. 1994. -V. 263.-P. 1600−1603.
- Gratton S.E.A, Ropp P. A, Pohlhaus P. D, Luft J. C, Madden V. J, Napier M. E, DeSimone J.M. The effect of particle design on cellular internalization pathways // Proc. Natl. Acad. Sci. 2008. — V. 105. — P. 11 613−11 618.
- Dobrovolskaia M. A, McNeil S.E. Immunological properties of engineered nanomaterials // Nat. Nanotech. 2007. — V. 2. — P. 469−78.
- Ferrari M. Nanogeometry: Beyond drug delivery // Nat. Nano. 2008. — V. 3. -P. 131−132.
- Torchilin V.P. Multifunctional nanocarriers // Adv. Drug Delivery Rev. -2006.-V. 58.-P. 1532−1555.
- Gullotti E., Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery // Mol. Pharm. 2009. — V. 6. — P. 1041−1051.
- Gao X., Cui Y., Levenson R., Chung L.W., Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots // Nat. Biotechnol. 2004. — V. 22.-P. 969−976.
- Ghosh P., Han G., De M., Kim C.K., Rotello V.M. Gold nanoparticles in delivery applications // Adv. Drug Delivery Rev. 2008. — V. 60. — P. 13 071 315.
- Kreibig U., Vollmer M. Optical Properties of Metal Clusters. New York: Springer, 1995. — 532 p.
- Hu M., Chen J., Li Z.-Y., Au L., Hartland G.V., Li X., Marqueze M., Xia Y. Gold nanostructures: engineering their plasmonic properties for biomedical Applications // Chem. Soc. Rev. 2006. — V. 35. — P. 1084−1094.
- Weissleder R. A clearer vision for in vivo imaging // Nat. Biotechnol. 2000. -V. 19.-P. 316−317.
- Martin C.R. Membrane-based synthesis of nanomaterials // Chem. Mater. -1996.-V. 8.-P. 1739−1746.
- Van der Zande B.M.I, Bohmer M.R., Fokkink L.G.J., Schonenberger C. Colloidal dispersions of gold rods: Synthesis and optical properties // Langmuir 1999.-V. 16.-P. 451−458.
- Murphy C.J., Sau T.K., Gole A.M., Orendorff C.J., Gao J., Gou L., Hunyadi S.E., Li T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications // J. Phys. Chem. B. 2005. — V. 109. — P. 13 857−13 870.
- Kim F., Song J.H., Yang P. Photochemical synthesis of gold nanorods // J. Am. Chem. Soc. -2002. V. 124.-P. 14 316−14 317.
- Rasch M. R, Sokolov K. V, Korgel B.A. Limitations on the optical tunability of small diameter gold nanoshells // Langmuir. 2009. — V. 25. — P. 1 177 711 785.
- Schwartzberg A.M., Olson T.Y., Talley C.E., Zhang J.Z. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres // J. Phys. Chem. B. 2006. — V. 110. — P. 19 935−19 944.
- Huang X., El-Sayed I.H., Qian W., El-Sayed M.A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods // J. Am. Chem. Soc. 2006. — V. 128. — P. 2115−2120.
- Chen J., Wang D., Xi J., Au L., Siekkinen A., Warsen A., Li Z.Y., Zhang H., Xia Y., Li X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells // Nano Lett. 2007. V. 7. -P. 1318−1322.
- O’Neal D.P., Hirsch L.R., Halas N.J., Payne J.D., West J.L. Photo-thermal tumor ablation in mice using near infraredabsorbing nanoparticles // Cancer Lett. 2004. — V. 209. — P. 171−176.
- Maeda H., Fang J., Inutsuka T., Kitamoto Y. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications // Int. Immunopharmacol. 2003. — V. 3. — P. 319−328.
- Dvorak H. F, Nagy J.A., Dvorak J.T., Dvorak A.M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules // Am. J. Pathol. 1988. — V. 133. — P. 95−109.
- Brigger I., Dubernet C., Couvreur P. Nanoparticles in cancer therapy and diagnosis // Adv. Drug. Deliv. Rev. 2002. — V. 54. — P. 631−651.
- Lapotko D.O., Lukianova-Hleb E.Y., Oraevsky A.A. Clusterization of nanoparticles during their interaction with living cells // Nanomed. 2007. -V. 2.-P. 241−253.
- Chithrani B.D., Chan W.C.W. Elucidating the mechanism of cellular uptake and removal of proteincoated gold nanoparticles of different sizes and shapes // Nano Lett. 2007. — V. 7. — P. 1542−1550.
- Cobley C.M., Au L., Chen J., Xia Y. Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery // Expert Opin. Drug Deliv. -2010.-V. 7.-P. 577−587.
- Jiang W., Kim B.Y.S., Rutka J.T., Chan W.C. Nanoparticle-mediated cellular response is size-dependent // Nat. Nanotech. 2008. — V. 3. — P. 145−150.
- Au L., Zheng D., Zhou F., Li Z.Y., Li X., Xia Y. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells // ACS Nano. 2008. — V. 2. — P. 1645−1652.
- Hu M., Hartland G.V. Heat dissipation for Au particles in aqueous solution: Relaxation time versus size // J. Phys. Chem. B. 2002. — V. 106. — P. 70 297 033.
- Link S., Burda C., Mohamed M.B., Nikoobakht B., El-Sayed M.A. Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time // Phys. Rev. B. 2000. -V. 61.-P. 6086−6090.
- Hu M., Petrova H., Chen J., McLellan J.M., Siekkinen A.R., Marquez M., Li X., Xia Y., Hartland G.V. Ultrafast laser studies of the photothermal properties of gold nanocages // J. Phys. Chem. B. 2006. — V. 110. — P. 1520−1524.
- Tong L., Wei Q., Wei A., Cheng J.X. Gold nanorods as contrast agents for biological imaging: Optical properties, surface conjugation and photothermal effects // Photochem. Photobiol. 2009. — V. 85. — P. 21−32.
- Tong L., Zhao Y., Huff T.B., Hansen M.N., Wei A., Cheng J.X. Gold nanorods mediate tumor cell death by compromising membrane integrity // Adv. Mater. 2007. — V. 19. — P. 3136−3141.
- Lapotko D. Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications // Nanomed. 2009. — V. 4. — P. 813−845.
- Chen J., Glaus C., Laforest R., Zhang Q., Yang M., Gidding M., Welch M.J., Xia Y. Gold nanocages as photothermal transducer for cancer treatment // Small. 2010. — V. 9. — P. 811−817.
- Sunaga N., Oriuchi N., Kaira K., Yanagitani N., Tomizawa Y., Hisada T., Ishizuka T., Endo K., Mori M. Usefulness of FDG-PET for early prediction of the response to gefitinib in non-small cell lung cancer // Lung Cancer. -2008.-V. 59.-P. 203−210.
- Sershen S. R, Westcott S. L, Halas N. J, West J.L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery // J. Biomed. Mater. Res. 2000. — V. 51. — P. 293−298.
- Kim J.H., Lee T.R. Discrete thermally responsive hydrogel-coated gold nanoparticles for use as drugdeiivery vehicles. Drug Dev. Res. 2006. — V. 67. -P. 61−69.
- Angelatos A.S., Radt B., Caruso F. Light-responsive polyelectrolyte/gold nanoparticle microcapsules // J. Phys. Chem. B. 2005. — V. 109. — P. 30 713 076.
- Skirtach A. G, Javier A.M., Kreft O., Kohler K. Piera Alberola A., Mohwald H., Parak W.J., Sukhorukov G.B. Laser-induced release of encapsulated materials inside living cells // Angew. Chem. Int. Ed. 2006. — V. 118. — P. 4728−4733.
- Wu G., Mikhailovsky A., Khant H.A., Fu C., Chiu W., Zasadzinski J.A. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells // J. Am. Chem. Soc. 2008. — V. 130. — P. 8175−8177.
- Troutman T.S., Leung S.J., Romanowski M. Light-induced content release from plasmon-resonant liposomes // Adv. Mater. 2009. — V. 21. — P. 23 342 338.
- Moghimi S.M., Hunter A.C., Murray J.C. Long-circulating and target-specific nanoparticles: theory to practice // Pharmacol. Rev. 2001. — V. 53. — P. 283 318.
- Chen J., Yang M., Zhang Q., Cho E.C., Cobley C. M., Kim C., Glaus C., Wang L.V., Welch M. J., Xia Y. Gold Nanocages: A Novel Class of Multifunctional Nanomaterials for Theranostic Applications // Adv. Funct. Mater. 2010. — V. 20. — P. 3684−3694.
- Семиглазов В.Ф., Семиглазов В. В., Дашян Г. А. Проблемы хирургического лечения рака молочной железы // Практическая онкология. 2010. — Т. 11, № 4. — С. 217−220.
- Gould Е., Winship Т., Philbin P. et al. Observation on a «Sentinel Nodes» in cancer of the paratid // Cancer. 1960. — V. 13. — P. 77−78.
- Morton D., Wen D., Wong J. et al. Technical details of intraoperative lymphatic mapping for early stage melanoma // Arch. Surg. 1992. — V. 1272. — P. 339−344.
- Van der Veen H., Hoekstra O., Paul M. et al. Gamma-probe-guided sentinel node biopsy to select patients with melanoma for lymphadenectomy // Br. J. Surg. 1994.-V. 81.-P. 1769−1770.
- Nakajima M., Takeda M., Kobayashi M., Suzuki S., Ohuchi N. Nano-sized fluorescent particles as new tracers for sentinel node detection: Experimental model for decision of appropriate size and wavelength // Cancer Sci. 2005. -V. 96.-P. 353−356.
- Song К. H., Kim C., Cobley С. M., Xia Y., Wang L. V. Near-Infrared Gold Nanocages as a New Class of Tracers for Photoacoustic Sentinel Lymph Node Mapping on a Rat Model // Nano Lett. 2009. — V. 9. — P. 183−188.
- Feldchtein F.I., Gladkova N.D., Snopova L.B., Zagaynova E.V., Streltzova O.S., Shakhov A.V., Terentjeva A.B., Shakhova N.M., Kuznetsova I.A.,
- Руководство по оптической когерентной томографию. Под ред. Гладковой Н. Д., Шаховой Н. М., Сергеева A.M. Москва: Физматлит, Медкнига, 2007. 296 с.
- Barton J. K., Hoying J. В., Sullivan C. J. Use of microbubbles as an optical coherence tomography contrast agent. Academic Radiology // Acad. Radiol. -2002.-V. 9.-P. 52−55.
- Lee T.M., Toublan F.J., Sitafalwalla S., Oldenburg A.L., Suslick K.S., Boppart S.A. Engineered microsphere contrast agents for optical coherence tomography // Optics Letters. 2003. — V. 28. — P. 1546−1548
- Loo C., Lin A., Hirsch L., Lee M.H., Barton J., Halas N., West J., Drezek R. C. Nanoshell-enabled photonics-based imaging and therapy of cancer // Technol. Cancer Res. Treat. 2004. — V. 3. — P. 33−40.
- Huo L., Chen Y., Xi J., Hsu К., Li X. Gold nanocages for spectroscopic OCT imaging with a swept source at 1060 nm // Conference Paper
- Biomedical Optics (BIOMED) Miami, Florida, April 11, 2010 Sunday Poster Session (BSuD).
- Chen J., Saeki F., Wiley B. J., Cang H., Gobb M.J., Li Zh.-Y., Au L., Zhang H., Kimmey M.B., Li X., Xia Y. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents // Nano Lett. 2005. — V. 5. -P. 473−477.
- McLellan J.M., Li Z.-Y., Siekkinen A.R., Xia Y. The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization // Nano Lett. 2007. — V. 7. — P. 1013−1017.
- Rycenga M., McLellan J.M., Xia Y. A SERS study of the molecular structure of alkanethiol monolayers on Ag nanocubes in the presence of aqueous glucose // Chem. Phys. Lett. 2009. — V. 463. — P. 166−171.
- Yang X., Skrabalak S. E., Li Z. Y., Xia Y., Wang L. V. Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent // Nano Lett. 2007. — V. 7. — P. 3798−3802.
- McLellan J.M., Siekkinen A., Chen J., Xia Y. Comparison of the Surface-Enhanced Raman Scattering on Sharp and Truncated Silver Nanocubes // Chem. Phys. Lett. 2006. — V. 427. — P. 122−126.222. http://nanocages.com/publications.html
- Skrabalak S.E., Wiley B.J., Kim M.H., Formo E., Xia Y. On the polyol synthesis of silver nanostructures: Glycolaldehyde as a reducing agent // Nano Lett. 2008. — V. 8. — P. 2077−2081.
- Cobley C., Rycenga M., Zhou F., Li Z., Xia Y. Controlled etching as a route to high quality silver nanospheres for optical studies // J. Phys. Chem. C. -2009.-V. 113.-P. 16 975−16 982.
- Wiley В., Herricks Th., Sun Y., Xia Y. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons// Nano Lett. 2004. — V. 4. — P. 1733−1739.
- Siekkinen A. R., McLellan J. M., Chen J., Xia Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide // Chem. Phys. Lett. 2006. — V. 432. -P. 491−496.
- Kim C., Favazza C., Wang L.V. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths // Chem. Rev. 2010. — V. 110. — P. 2756−2782.
- Mahmoud M.A., Snyder В., El-Sayed M.A. Surface Plasmon Fields and Coupling in the Hollow Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy. Theory and Experiment // J. Phys. Chem. C. 2010. — V. 114. -P. 7436−7443.
- Ye J., Chen C., Van Roy W., Van Dorpe P., Maes G., Borghs G. The fabrication and optical property of silver nanoplates with different thicknesses // Nanotechnology. 2008. — V. 19. — P. 325 702 (1−6).
- Хлебцов Б.Н., Ханадеев B.A., Максимова И. Л., Терентюк Г. С., Хлебцов Н. Г. Серебряные нанокубики и золотые наноклетки: синтез, оптические и фототермические свойства // Российские нанотехнологии. 2010. -Т. 5.-С. 54.
- Smith D. К., Korgel В. A. The Importance of the СТАВ Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods // Langmuir. 2008. -V. 24. — P. 644−648.
- Wiley В., Sun Y., Xia Y. Synthesis of silver nanostructures with controlled shapes and properties // Acc. Chem. Res. 2007. — V. 40. — P. 1067−1076.
- Wiley В., Xiong Y., Li Zh.-Y., Yin Y., Xia Y. Right Bipyramids of Silver: A New Shape Derived from Single Twinned Seeds// Nano Lett. 2006. — V. 6. -P. 765−768.
- Zheng J., Ding Y., Tian В., Wang Zh.L., Zhuang X. Luminescent and Raman Active Silver Nanoparticles with Polycrystalline Structure // J. Am. Chem. Soc. 2008. — V. 130. — P. 10 472−10 473.
- Blin В., Fievet F., Beaupere D., Figlarz M. Oxydation duplicative de l’ethyleneglycol dans un nouveau procede de preparation de poudres metalliques // Nouv. J. Chim. 1989. — V. 13. — P. 67−72.
- Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions // Nature Phys. Sci. 1973. — V. 241. — P. 2022.
- Nikoobakht В., El-Sayed M.A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods // Langmuir. 2001. — V. 17. — P. 6368−6374.
- Yen C.W., Mahmoud M.A., El-Sayed M.A. Photocatalysis in gold nanocage nanoreactors // J. Phys. Chem. A. 2009. — V. 113. — P. 4340−4345.
- Хлебцов Б.Н., Ханадеев B.A., Богатырев B.A., Дыкман JI.A., Хлебцов Н. Г. Использование золотых нанооболочек в твердофазном иммуноанализе // Российские нанотехнологии. 2008. Т. 3. — № 7−8. -С.50−63.
- Sun Y., Xia Y. Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction // Nano Lett. 2003 — V. 3. — P. 1569−1572.
- Lu X., Tuan H.-Y., Chen J., Li Z.-Y., Korgel B.A., Xia Y. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and НАиСЦ in an organic medium // J. Am. Chem. Soc. -2007.-V. 129.-P. 1733−1742.
- Skrabalak S.E., Chen J., Sun Y., Lu X., Au L., Cobley C.M., Xia Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications // Acc. Chem. Res. 2008. — V. 41. — P. 1587−1595.
- Chen J, Saeki F, Wiley BJ, Cang Hu, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li X, Xia Y. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents // Nano Lett. 2005. — V. 5. -P. 473−477.
- Draine B. T, Flatau P.J.J. Discrete-dipole approximation for scattering calculations // Opt. Soc. Am. A. 1994. — V. 11. — P. 1491−1499.
- Khlebtsov B.N., Khlebtsov N.G. Biosensing potential of silica/gold nanoshells: Sensitivity of plasmon resonance to the local dielectric environment // J. Quant. Spectr. Radiat. Transfer. 2007. — V. 106. — P. 154 169.
- Goldman E. R., Medintz I. L., Mattoussi H. Luminescent quantum dots in immunoassays // Anal. Bioanal. Chem. 2006. — V. 384. — P. 560−563.
- Chan W. C. W., Maxwell D. J., Gao X., Bailey R. E., Han M. Y., Nie S. M. Luminescent quantum dots for multiplexed biological detection and imaging // Curr. Opin. Biotechnol. 2002. — V. 13. — P. 40−46.
- Wang H. Q., Wang J. H., Li Y. Q., Li X. Q., Liu T. C., Huang Z. L., Zhao Y. D. Multi-color encoding of polystyrenemicrobeads with CdSe/ZnS quantumdots and its application in immunoassay // J. Colloid Interface Sci. 2007. -V. 316.-P. 622- 627.
- Summers C. J., Menkara H. M., Gilstrap R. A. Jr., Menkara M., Morris T. Nanocrystalline phosphors for lighting and detection applications // Mater. Sci. Forum. 2010. — V. 654−656. — P. 1130−1133.
- Wang, Z., Wang X., Jiang H., Ding J., Wang J., Shi W. Probing near-infrared quantum dots for imaging and biomedicalapplications // Adv. Mater. Res. -2012.-V. 345.-P. 3−11.
- Pons T., Pic E., Lequeux N., Cassette E., Bezdetnaya L., Guillemin F., Marchal F., Dubertre B. Cadmium-freeCuInS2/ZnS quantum dots for sentinel lymph node imagingwith reduced toxicity // ACS Nano 2010. — V. 4. — P. 2531−2538.
- Hu R., Yong K. T., Roy I., Ding H., He S., Prasad P. N. Metallic nanostructures as localized plasmon resonanceenhanced scattering probes for multiplex dark-field targetedimaging of cancer cells // J. Phys. Chem. C. -2009. V. 113. — P. 2676−2684.
- Schultz S., Smith D. R., Mock J. J., Schultz D. A. Single-target molecule detection with nonbleaching multicolor optical immunolabels // Proc. Natl. Acad. Sci. USA. 2000. — V. 97. — P. 996−1001.
- Khlebtsov B., Khlebtsov N. Ultrasharp light-scattering resonances of structured nanospheres: Effects of size-dependentdielectric functions // J. Biomed. Opt. 2006. — V. 11. — P. 44 002.
- Nehl C. L., Hafher J. H. Shape-dependent plasmon resonances of gold nanoparticles // J. Mater. Chem. 2008. — V. 18. — P. 2415−2419.
- Jurgens L., Nichtl A., Werner U. Electron density imagingof protein films on gold-particle surfaces with transmissionelectron microscopy // Cytometry. -1999.-V. 37.-P. 87−92.
- Khlebtsov B. N., Khlebtsov N. G. Enhanced solid-phase immunoassay using gold nanoshells: Effect of nanoparticle optical properties // Nanotechnology. -2008.-V. 19.-P. 435 703.
- Chen C., Wang L., Yu H., Wang J., Zhou J., Tan Q., Deng L. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process // Nanotechnology. 2007. — V. 18. — P. 115 612.
- Sosa, I. O., Noguez C., Barrera R. G. Optical properties of metal nanoparticles with arbitrary shapes // J. Phys. Chem. B. 2003. — V. 107. — P. 6269−6275.
- Liao H., Hafner J. H. Gold nanorod bioconjugates // Chem. Mater. 2005. -V. 17.-P. 4636−4641.
- Xie Z. X., Charlier J., Cousty J. Molecular structure of self-assembled pyrrolidone monolayers on the Au (111) surface: Formation of hydrogen bond-stabilized hexamers // Surf. Sei. 2000. — V. 448. — P. 201−211.
- Skrabalak S. E., Chen J., Sun Y., Lu X., Au L., Cobley C. M., Xia Y. Gold nanocages: Synthesis, properties, and applications // Acc. Chem. Res. 2008. -V.41.-P. 1587−1595.
- Urusov A. E., Zherdev A. V., Dzantiev B. B. Immunochemical methods of mycotoxin analysis (review) // Appl. Biochem. Microbiol. 2010. — V. 46. -P. 253−266.
- Jevons M.P., Coe A.W., Parker M.T. Methicillin resistance in staphylococci. // Lancet. 1963. — V. 1. — P. 904−907.
- Deurenberg R.H., Vink C., Kalenic S., Friedrich A.W., Bruggeman C.A., Stobberingh E.E. The Molecular Evolution of Methicillin-resistant Staphylococcus aureus // Clinical Microbiology and Infection. 2007. — V. 13.-P. 222−235.
- Malik Z., Hanania J., Nitzan Y, Bactericidal effects of photoactivated porphyrins— an alternative approach to antimicrobial drugs // J. Photochem. Photobiol. B. 1990. — V. 5. — P. 281−293.
- Wainwright M. Photodynamic antimicrobial chemotherapy // J. Antimicrob. Chemother. 1988. — V. 42. — P. 13−28.
- Phillips D. Chemical mechanisms in photodynamic therapy with phthalocyanines // Prog. React. Kinet. 1997. — V. 22. — P. 176−300.
- Jori G., Fabris C., Soncin M., Ferro S., Coppellotti O. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications // Lasers Surg. Med. 2006. — V. 38. — P. 468−481.
- Jori J. Photodynamic Therapy of Microbial Infections: State of the Art and Perspectives // J. Environ. Path. Toxcol. Oncol. 2006. — V. 25. — P. 505−519.
- Maisch T. Anti-microbial photodynamic therapy: useful in the future? // Lasers Med. Sci. 2007. — V. 22. — P. 83−91.
- Kashef N., Esmaeeli D.G., Siroosy M., Taghi Khani A., Hesami Zokai F., Fateh M. Photodynamic inactivation of drug-resistant bacteria isolated from diabetic foot ulcers // Iranian Journal of Microbiology. 2011. — V. 3. — P. 36−41.
- Popov D. E., Ovchinnikov I.S., Tuchin V.V., Shapoval O.G., Shub G.M., Altshuler G. B. Photodynamic bacteria inactivation by NIR LED (810 nm) in conjunction with ICG // Proc. SPIE. 2003. — V. 5068. — P. 442−445.
- Tuchina E.S., Tuchin V.V. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis // Proceedengs of SPIE. 2009. — V. 7165. — P. 1243−1251.
- Nitzan Y., Gozhansky S., Malik Z. Effect of photoactivated hematoporphyrin derivative on the viability of Staphylococcus aureus // Current Microbiology. 1985.-V. 8.-P. 279−284.
- Banfi S., Caruso E., Buccafurni L., Battini V., Zazzaron S., et al. Antibacterial activity of tetraaryl-porphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria // J. Photochem. Photobiol. B. 2006. -V. 85.-P. 28−38.
- Perni S., Prokopovich P., Pratten J., Parkinc I.P., Wilson M. Nanoparticles: their potential use in antibacterial photodynamic therapy // Photochem. Photobiol. Sci. 2011. — V. 10. — P. 712−720.
- Koo Y. E. L., Fan W., Hah H., Xu H., Orringer D., Ross B., Rehemtulla A., Philbert M.A., Kopelman R. Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy // Appl. Opt. 2007. -V. 46.-P. 1924−1930.
- Schwiertz J., Wiehe A., Greafe S., Gitter B., Epple M. Calcium Phosphate Nanoparticles as Efficient Carriers for Photodynamic Therapy Against Cells and Bacteria // Biomaterials. 2009. — V. 30. — P. 3324−3331.
- Zharov V.P., Mercer K.E., Galitovskaya E.N., Smeltzer M.S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles // Biophys. J. 2006. — V. 90. — P. 619−627.
- Gramotnev D.K., Pile D.F.P., Vogel M.W., Zhang X. Local electric field enhancement during nanofocusing of plasmons by a tapered gap // Phys. Rev. B. 2007. — V. 75. — P. 35 431.
- Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria // Journal of Colloid and Interface Science. 2004. — V. 275. — P. 177−182.
- Perni S., Piccirillo C., Pratten J., Prokopovich P., Chrzanowski W., Parkin I.P., Wilson M. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles // Biomaterials. 2009. -V. 30.-P. 89−93.
- Kuo W.-Sh., Chang Ch.-N., Chang Yi-T., Yeh Ch.-Sh. Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia // Chem. Commun. 2009. — P. 4853−4855.
- Zhao T., Wu H., Yao S.Q., Xu Q.-H., Xu G.Q. Nanocomposites Containing Gold Nanorods and Porphyrin-Doped Mesoporous Silica with Dual Capability of Two-Photon Imaging and Photosensitization // Langmuir. -2010. V. 26. — P. 14 937−14 942.
- Stober W., Fink A., Bohn J. Controlled growth of monodisperse silica spheres in the micron size range // J. Colloid Interface Sci. 1968. — V. 26. — P. 6269.
- Ye J., Van de Вгоек В., De Palma R., Libaers W., Clays K., Van Roy W., Borghs G., Maes G. Surface morphology changes on silica-coated gold colloids // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008. — V. 322. — P. 225−233.
- Gorelikov I., Matsuura N. Single-Step Coating of Mesoporous Silica on Cetyltrimethyl Ammonium Bromide-Capped Nanoparticles // Nano Lett. -2008.-V. 8.-P. 369−373.
- Khlebtsov N.G., Dykman L.A. Optical properties and biomedical applicationsof plasmonic nanoparticles // JQSRT. 2010. — V. 111. — P. 1−35.j
- Lakowicz J. P. Principles of fluorescence spectroscopy. 2 Edition, Springer, New York, 2004.
- Huang X., Jain P.K., El-Sayed I.H., El-Sayed M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles // Lasers Med. Sci. 2008. — V. 23. -P. 217−228.
- Хлебцов Б. H., Ханадеев В. А.,' Максимова И. Л., Терентюк Г. С., Хлебцов Н. Г. Серебряные нанокубики и золотые наноклетки: синтез, оптические и фототермические свойства // Российские нанотехнологии. 2010. — Т. 5. № 7−8.-С. 54−62.
- М.В. Ломоносова, РОНЦ РАМН им. Н. Н. Блохина. № 2 008 123 126/15- заявл. 10.06.08- опубл. 10.11.09, Бюл. № 31. — 14 с.: ил.
- Ivanov A.V., Rumyantseva V.D., Shchamkhalov K.S., Shilov I.P. Luminescence Diagnostics of Malignant Tumors in the IR Spectral Range Using Yb-Porphyrin Metallocomplexes // Laser Physics. 2010. — V. 20. № 12.-P. 2056−2065.
- Oez S., Platzer Е., Welte К. A Quantitative Colorimetric Method to Evaluate the Functional State of Human Polymorphonuclear Leukocytes // Blut. -1990.-V. 60.-P. 97−102.
- Lakowicz J.R., Ray K., Chowdhury M., Szmacinski H., Fu Y., Zhang J., Nowaczyk K. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy // Analyst. 2008. — V. 133. — P. 1308−1346.
- Bardhan R., Grady N.K., Cole J.R., Joshi A., Halas N.J. Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods. // ACS Nano. 2009. — V. 3. — P. 744−752.
- Chen, Y.-S.- Frey, W.- Kim, S.- Kruizinga, P.- Homan, K.- Emelianov, S. S. Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers // Nano Lett. 2011. — V. 11. — P. 348−354.
- Kennedy L.C., Bickford L.R., Lewinski N.A., Coughlin A.J., Hu Y., Day E. S., West J.L., Drezek R.A. A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies // Small. 2011. — V. 7. — P. 169 183.
- Li C., Wang L.V. Photoacoustic Tomography and Sensing in Biomedicine // Phys. Med. Biol. 2009. — V. 54. — P. R59-R97.