Синтез нанокристаллического диоксида церия методами «мягкой химии» и изучение его структурно-чувствительных свойств
Диссертация
Апробация работы. Основные результаты работы докладывались на следующих научных конференциях: XIII и XIV Международных молодежных научных конференциях студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2006, 2007 гг.) — Structural chemistry of partially ordered systems, nanoparticles and nanocomposites (Санкт-Петербург, 2006 г.) — VI Международном семинаре «Нелинейные процессы и проблемы… Читать ещё >
Список литературы
- Adachi G., 1.anaka N., Kang Z.C. Binary rare earth oxides. Dordrecht: Kluwer Academic Publishers. 2004. 257 p.
- Catalysis by Ceria and Related Materials (Catalytic Science Series). Ed. by A. Trovarelli. Singapore: World Scientific Publishing Company, 2002. 528 p.
- Tsunekawa S., Sivamohan R., Ohsuga Т., Kasuya A., Takahashi H., Tohji K. Ultraviolet absorption spectra of Ce02 nano-particles // Mater. Sci. Forum. V. 315−317.1999. P. 439−445.
- Леонов А. И. Высокотемпературная химия кислородных соединений церия // Л.: Наука, 1969. 201 с.
- Sorensen О.Т. Thermodynamic studies of the phase relationships of nonstoichiometric cerium oxides at higher temperatures // J. Sol. Stat. Chem. 1976. V. 18. P. 217−233.
- Арсеньев П.А., Ковба Л. М., Багдасаров X.C. и др. Соединения редкоземельных элементов. Системы с оксидами элементов I-III групп // М.: Наука, 1983. 280 с.
- Кофстад П. Отклонение от стехиометрии, диффузия и электропроводность в простых окислах металлов // М.: Мир, 1972.400 с.
- Smyth D.M. The defect chemistry of metal oxides. Oxford: Oxford University Press.2000. 294 p.
- Cao G. Nanostructures & Nanomaterials: Synthesis, properties and applications. London: Imperial College Press. 2004. 433 p.
- Rao C.N.R., Thomas P.J., Kulkarni G.U. Nanocrystals: Synthesis, properties, and applications. Berlin: Springer-Verlag, 2007. 180 p.
- Mays C.W., Vermaak J.S., Kuhlmann-Wilsdorf D. On surface stress and surface tension. II. Determination of the surface stress of gold // Surf. Sci. 1968. V. 12. P. 134−140.
- Tsunekawa S., Sivamohan R., Ito S., Kasuya A., Fukuda T. Structural study on monosize Ce02. x nano-particles // Nanostruct. Mater. 1999. V. 11. P. 141−147.
- Tsunekawa S., Sahara R., Kawazoe Y., Ishikawa K. Lattice relaxation of monosize СеОг-х nanocrystalline particles // Appl. Surf. Sci. 1999. V. 152. P. 53−56.
- Tsunekawa S., Ishikawa K., Li Z.-Q., Kawazoe Y., Kasuya A. Origin of anomalous lattice expansion in oxide nanoparticles // Phys. Rev. Lett. 2000. V. 85. P.3440−3443.
- Wu L.J., Wiesmann H.J., Moodenbaugh A.R., Klie R.F., Zhu Y.M., Welch D.O., Suenaga M. Oxidation state and lattice expansion of Ce02. x nanoparticles as a function of particle size // Phys. Rev. B. 2004. V. 69. P. 125 415−1-125 415−9.
- Zhang F., Chan S.-W., Spanier J.E., Apak E., Jin Q., Robinson R.D., Herman I.P. Cerium oxide nanoparticles: Size-selective formation and structure analysis // Appl. Phys. Lett. 2002. V. 80. P. 127−129.
- Deshpande S., Patil S., Kuchibhatla S.V.N.T., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide // Appl. Phys. Lett. 2005. V. 87. P. 133 113−1-133 113−3.
- Tsunekawa S., Ito S., Kawazoe Y. Surface structures of cerium oxide nanocrystalline particles from the size dependence of the lattice parameters // Appl. Phys. Lett. 2004. V. 85. P. 3845−3847.
- Tsunekawa S., Wang J.-T., Kawazoe Y. Lattice constants and electron gap energies of nano- and subnano-sized cerium oxides from the experiments and first-principles calculations //J. Alloys Сотр. 2006. V.40812. P. 1145−1148.
- Ozawa M., Loong C.-K. In situ X-ray and neutron powder diffraction studies of redox behavior in Ce02-containing oxide catalysts // Catal. Today. 1999. V. 50. P. 329−342.
- Мазалов Л.Н. Рентгеноэлектронная спектроскопия и ее применение в химии // Соросовский образовательный журнал. 2000. Т. 6. С. 37−44.
- Praline G., Koel В.Е., Hange R.L., Lee H.I., White J.M. X-ray photoelectron study of the reaction of oxygen with cerium // J. Electron Spectrosc. Relat. Phenom. 1980. V. 21. P. 17−30.
- Fujimori A. 4f- and core-level photoemission satellites in cerium compounds // Phys. Rev. B. 1983. V. 27. P. 3992−4001.
- Fujimori A. Mixed-valent ground state of Ce02 // Phys. Rev. B. 1983. V. 28. P. 2281−2283.
- Fujimori A. Correlation effects in the electronic structure and photoemission spectra of mixed-valence cerium compounds // Phys. Rev. B. 1983. V. 28. P. 4489−4499.
- Jo Т., Kotani A. Theory of core photoemission and absorption spectra in Ce02 and other 4f compounds // J. Magn. Magn. Mater. 1985. V. 52. P. 396−398.
- Jo Т., Kotani A. Theory of core photoabsorption spectra in Ce02 // Solid State Comm. 1985. V. 54. P. 451−456.
- Bianconi A., Clozza A., Murata Т., Matsukawa Т., Miyahara Т., Kotani A., Nakai S., Mitsuishi T. Many body effects in Ce 3p XAS and Ce 3p XPS of Ce02 // Physica B. 1989. V. 158. P. 389−391.
- Paparazzo E. XPS studies of damage induced by X-ray irradiation on Ce02 surfaces//Surf. Sci. Lett. 1990. V. 234. P. L253-L256.
- Paparazzo E., Ingo G.M., Zachetti N. X-ray induced reduction effects at Ce02 surfaces: An X-ray photoelectron spectroscopy study // J. Vac. Sci. Technol. A. 1991. V. 9. P. 1416−1420.
- Rama Rao M.V., Shripathi T. Photoelectron spectroscopic study of X-ray induced reduction of Ce02//J. Electron Spectrosc. Relat. Phenom. 1997. V. 87. P. 121−126.
- Paparazzo E., Ingo G.M. On the X-ray induced chemical reduction of Ce02 as seen with X-ray photoemission spectroscopy J. Electron Spectrosc. Relat. Phenom. 1997. V. 87. P. 121−126.
- Pfau A., Schierbaum K.D. The electronic structure of stoichometric and reduced Ce02 surfaces: an XPS, UPS and HREELS study// Surf. Sci. 1994. V. 321. P. 71−80.
- Romeo M., Bak K., Le Normand F" Hilaire L. XPS study of the reduction of cerium dioxide//Surf. Interface Anal. 1993. V. 20. P. 508−512.
- Holgado J.P., Alvarez R., Munuera G. Study of Ce02 XPS spectra by factor analysis: reduction of Ce02//App! Surf. Sci. 2000. V. 161. P. 301−315.
- Holgado J.P., Munuera G., Espinos J.P., Gonzalez-Elipe A.R. XPS study of oxidation processes of CeOx defective layers // Appl. Surf. Sci. 2000. V. 158. P. 164−171.
- Park P.W., Ledford J.S. Effect of crystallinity on the photoreduction of cerium oxide: A study of Ce02 and Ce/Al203 catalysts // Langmuir. 1996. V. 12. P. 1794−1799.
- Tsunekawa S., Fukuda Т., Kasuya A. X-ray photoelectron spectroscopy of monodisperse Ce02. x nanoparticles // Surf. Sci. 2000. V. 457. P. L437-L440.
- Zhang F., Wang P., Koberstein J., Khalid S., Chan S.W. Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy // Surf. Sci. 2004. V. 563. P. 72−82.
- Natile M.M., Boccaletti G., Glisenti A. Properties and reactivity of nanostructured Ce02 powders: Comparison among two synthesis procedures // Chem. Mater. 2005. V. 17. P. 6272−6286.
- Qiu L., Liu F., Zhao L., Ma Y. f Yao J. Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder // Appl. Surf. Sci. 2006. V. 252. P. 4931−4935.
- Bensalem A., Muller J.C., Bozon-Verduraz F. From bulk Ce02 to supported cerium-oxygen clusters: A diffuse reflectance approach // J. Chem. Soc. Faraday Trans. 1992. V. 88. P. 153−154.
- Masui T., Fujiwara K., Machida K., Adachi G. Characterization of cerium (IV) oxide ultrafine particles prepared using reversed micelles // Chem. Mater. V. 9. 1997. P.2197−2204.
- Tsunekawa S., Fukuda T., Kasuya A. Blue shift in ultraviolet absorption spectra of monodisperse Ce02. x nanoparticles // J. Appl. Phys. 2000. V. 87. P. 1318−1321.
- Nie J.C., Hua Z.Y., Dou R.F., Tu Q.T. Quantum confinement effect in high quality nanostructured Ce02 thin films // J. Appl. Phys. 2008. V. 103. P. 54 308−1-54 308−7.
- Patsalas P., Logothetidis S" Sygellou L., Kennou S. Structure-dependent electronic properties of nanocrystalline cerium oxide films // Phys. Rev. B. 2003. V. 68. P. 35 104−1-35 104−13.
- Zhang F., Jin Q., Chan S.W. Ceria nanoparticles: Size, size distribution and shape // J. Appl. Phys. 2004. V. 95. P. 4319−326.
- Yin L., Wang Y., Pang G., Koltypin Yu., Gedanken A. Sonochemical synthesis of cerium oxide nanoparticles effect of additives and quantum size effect // J. Coll. Int. Sci. 2002. V. 246. P. 78−84.
- Zhang Y. W., Si R., Liao C.S., Yan C.H., Xiao C.X., Kou Y. Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals // J. Phys. Chem B. 2003. V. 107. P. 10 159−10 167.
- Willard H., Tang N. A study of the precipitation of aluminium basic sulfate by urea // J.Am. Chem. Soc. 1937. V. 59. P. 1190−1196.
- Dreyfors J.M., Jones S.B., Sayed Y. Hexamethylenetetramine: a review // Am. Ind. Hyg. Assoc. J. 1989. V. 50. P. 579−585.
- Ismail A.A., El-Midany A., Abdel-Aal E.A., El-Shall H. Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique // Mat. Lett. 2005. V. 59. P. 1924−1928.
- Greene L.E., Yuhas B.D., Law M., Zitoun D., Yang P.D. Solution-grown zinc oxide nanowires // Inorg. Chem. 2006. V. 45. P. 7535−7543.
- Saric A., Nomura K., Popovic S., Ljubesic N., Music S. Effects of urotropin on the chemical and microstructural properties of Fe-oxide powders prepared by the hydrolysis of aqueous FeCI3 solutions // Mat. Chem. Phys. 1998. V. 52. P. 214−220.
- Saric A., Music S., Nomura K., Popovic S. Microstructural properties of Fe-oxide powders obtained by precipitation from FeCI3 solutions // Mat. Sci. Eng. B. 1998. V. 56. P. 43−52.
- Pike J., Hanson J., Zhang L., Chan S.-W. Synthesis and redox behavior of nanocrystalline hausmannite (Mn304) II Chem. Mater. 2007. V. 19. P. 5609−5616.
- Wang J., Wang Y., Qiao M., Xie S., Fan K. A novel sol-gel synthetic route to alumina nanofibers via aluminum nitrate and hexamethylenetetramine // Mater. Lett. 2007. V. 61. P. 5074−5077.
- Li J.G., Ikegami T., Mori T., Yajima Y. SC2O3 nanopowders via hydroxyl precipitation effects of sulfate ions on powder properties // J. Am. Ceram. Soc. 2004. V. 87. P. 1008−1013.
- Saric A., Popovic S., Music S. Formation of crystalline phases by thermal treatment of amorphous rhodium hydrous oxide // Mater. Lett. 2002. V. 55. P. 145−151.
- Wenli G., Tongxiang L., Xingyu Z., Shaochang H., Xiaoming F. A study of function mechanism of hexamethyl tetra-amine in gelation process of uranium II Rare Metals. 2006. V. 25. P. 343−346.
- Shi J.Y., Verweij H. Synthesis and purification of oxide nanoparticle dispersions by modified emulsion precipitation // Langmuir. 2005. V. 21. P. 5570−5575.
- Hirano M., Okumura S., Hasegawa Y., Inagaki M. Direct precipitation of spinel type oxide ZnGa204 from aqueous solutions at low temperature below 90 degrees C // Int. J. Inorg. Mater. 2001. V. 3. P. 797−801.
- Allan J.R., Brown D.H., Lappin M. Transition metal halide complexes of hexamethylenetetramine//J. Inorg. Nucl. Chem. 1970. V. 32. P. 2287−2292.
- Chopra D., Dagur P., Prakash A.S., Guru Row T.N., Hedge M.S. Synthesis and crystal structure of M (hmt)2(H20)6(N03)2x4H20 complexes, where M = Mn2+, Co2+ // J. Cryst. Growth. 2005. V. 275. P. e2049-e2053
- Zalewicz M. The synthesis and thermal decomposition of complex salts of lanthanide bromides with hexamethylenetetramine // Thermochim. Acta. 1990. V. 171. P. 131−146.
- Grassino S.L., Hume D.N. Complexation of transition metal ions by hexamethylenetetramine in aqueous solution // J. Inorg. Nucl. Chem. 1970. V. 32. P. 3112−3113.
- Blazevic N., Kolbah D., Belin B., Sunjic V., Kajfez F. Hexamethylenetetramine, a versatile reagent in organic synthesis//Synthesis. 1979. N03. P. 161−176.
- Chen P.L., Chen I.W. Reactive cerium (IV) oxide powders by the homogeneous precipitation method // J. Am. Ceram. Soc. 1993. V. 76. P. 1577−1583.
- Ozawa M. Sintering curve inflection in densification of fine Ce02 powders at high temperature// J. Ceram. Soc. Jap. 2004. V. 112. P. 321−326.
- Ozawa M., Onoe R., Kato H. Formation and decomposition of some rare-earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation // J. Alloy. Compd. 2006. V. 408−412. P. 556−559.
- Markmann J., Tschope A., Bimnger R. Low temperature processing of dense nanocrystalline yttrium-doped cerium oxide ceramics // Acta Mater. 2000. V. 50. P. 1433−1440.
- Rojas T.C., Ocana M. Uniform nanoparticles of Pr (lll)/ceria solid solution prepared by homogeneous precipitation // Scripta Mater. 2002. V. 46. P. 655−660.
- Li J.G., Wang Y., Ikegami T., Mori T., Ishigaki T. Reactive 10 mol% RE203 (RE = Gd and Sm) doped Ce02 nanopowders: Synthesis, characterization, and low-temperature sintering into dense ceramics // Mat. Sci. Eng. B. 2005. V. 121. P. 54−59.
- Vasylkiv O., Sakka Y., Skorokhod V.V. Nano-blast synthesis of nano-size Ce02-Gd203 powders //J. Am. Ceram. Soc. 2006. V. 89. P. 1822−1826.
- Vasylkiv O., Sakka Y., Skorokhod V.V. Nano-explosion synthesis of multicomponent ceramic nano-composites // J. Europ. Ceram. Soc. 2007. V. 27. P. 585−592.
- Ishikawa T., Matijevic E. Formation of uniform particles of cobalt compounds and cobalt//Coll. Polym. Sci. 1991. V. 269. P. 179−186.
- Kratohvil S., Matijevic E. Preparation of copper-compounds of different compositions and particle morphologies// J. Mater. Res. 1991. V. 6. P. 766−777.
- Hsu W.P., Wang G.X., Matijevic E. Preparation and properties of uniform colloidal particles of mixed composition. 7. Aluminum and yttrium compounds // Coll. Surf. 1991. V. 61. P. 255−267.
- Quiben J., Matijevic E. Preparation and properties of uniform colloidal particles of mixed composition. 7. Cadmium and nickel phosphates // Coll. Surf. A. 1994. V. 82. P. 237−246.
- Wang L.F., Sondi I., Matijevic E. Preparation of uniform needle-like aragonite particles by homogeneous precipitation //J. Coll. Int. Sci. 1999. V. 218. P. 545−553.
- Matijevic E., Hsu W.P. Preparation and properties of monodispersed colloidal particles of lanthanide compounds//J. Coil. Int. Sci. 1987. V. 118. P. 506−522.
- Hirano M., Kato E. Hydrothermal synthesis of two types of cerium carbonate particles//J. Mat. Sci. Lett. 1999. V. 18. P.40305.
- Hirano M., Kato E. Hydrothermal synthesis of nanocrystalline cerium (IV) oxide powders // J. Am. Ceram. Soc. 1999. V. 82. P. 786−788.
- Hirano M., Inagaki M. Preparation of monodispersed cerium (IV) oxide particles by thermal hydrolysis: influence of the presence of urea and Gd doping on their morphology and growth //J. Mater. Chem. 2000. V. 10. P. 473−477.
- Tsai M.-S. Formation of nanocrystalline cerium oxide and crystal growth // J. Cryst. Growth. V. 274. 2005. P. 632−637.
- Tsai M.S., Xiao X.Z. Phase development of nanocrystalline cerium oxide via cerium sulfate // J. Cryst. Growth. 2006. V. 289. P. 351−356.
- Han Z.H., Guo N., Tang K.B., Yu S.H., Zhao H.Q., Qian Y.T. Hydrothermal crystal growth and characterization of cerium hydroxocarbonates // J. Cryst. Growth. 2000. V. 219. P. 315−318.
- Han Z., Qian Y., Tang K., Lu G., Yu S., Guo N. Hydrothermal deposition of cerium hydroxycarbonate thin films on glass// Inorg. Chem. Comm. 2003. V. 6. P. 1117−1121.
- Lu C.H., Wang H.C. Formation and microstructural variation of cerium carbonate hydroxide prepared by the hydrothermal process // Mat. Sci. Eng. B. 2002. V. 90. P.138−141.
- Wang H.C., Lu C.H. Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique // Mat. Res. Bull. 2002. V. 37. P. 783−792.
- Ikuma Y., Oosawava H., Shimada E., Kamiya M. Effect of microwave radiation on the formation of Ce20(C03)2-H20 in aqueous solution // Solid State Ionics. 2002. V. 151. P. 347−352.
- Zhang Y., Hu Q., Fang Z., Cheng T., Han K., Yang X. Self-assemblage of single/multiwall hollow Ce02 microspheres through hydrothermal method // Chem. Lett. 2006. V. 35. P. 944−945.
- Wang S., Gu F., Li C., Cao H. Shape-controlled synthesis of Ce0HC03 and Ce02 microstructures // J. Cryst. Growth. 2007. V. 307. P. 386−394.
- Zhang D., Huang L., Zhang J., Shi L. Facile synthesis of ceria rhombic microplates// J. Mater. Sei. 2008. V. 43. P. 5647−5650.
- Wu G.S., Xie T., Yuan X.Y., Cheng B.C., Zhang L.D. An improved sol-gel template synthetic route to large-scale Ce02 nanowires // Mat. Res. Bull. 2004. V. 39. P. 1023−1028.
- Cheng M.Y., Hwang D.H., Sheu H.S., Hwang B.J. Formation of Ceo. sSmo^Oi.g nanoparticles by urea-based low-temperature hydrothermal process // J. Power Sources. 2008. V. 175. P. 137−144.
- Jobbagy M., Marino F., Schonbrod B., Baronetti G., Laborde M. Synthesis of copper-promoted Ce02 catalysts // Chem. Mater. 2006. V. 18. P. 1945−1950.
- Byrappa K., Yoshimura M. Handbook of Hydrothermal Technology. A Technology for Crystal Growth and Materials Processing. New York, USA, William Andrew Publishing. 2000. 870 p.
- Tani E., Yoshimura M., Somiya S. Crystallization and crystal growth of Ce02 under hydrothermal conditions//J. Mat. Sei. Lett. 1982. V. 1. P. 46162.
- Zhou Y.C., Rahaman M.N. Hydrothermal synthesis and sintering of ultrafine Ce02 powders// J. Mater. Res. 1993. V. 8. P. 1680−1686.
- Hirano M., Kato E. Hydrothermal synthesis of cerium (IV) oxide // J. Am. Ceram. Soc. 1996. V. 79. P. 777−780.
- Hirano M., Kato E. The hydrothermal synthesis of ultrafine cerium (IV) oxide powders//J. Mat. Sei. Lett. 1996.V. 15. P. 1249−1250.
- Lakhwani S., Rahaman M.N. Hydrothermal coarsening of Ce02 particles //J. Mat. Res. V. 14 1999. P. 1455−1461.
- Wu N.C., Shi E.W., Zheng Y.Q., Li W.J. Effect of pH of medium on hydrothermal synthesis of nanocrystalline cerium (IV) oxide powders // J. Am. Ceram. Soc. 2002. V. 85. P. 2462−2468.
- Tok A.I.Y., Boey F.Y.C., Dong Z" Sun X.L. Hydrothermal synthesis of Ce02 nanoparticles // J. Mat. Proc. Tech. 2007. V. 190. P. 217−222.
- Malta L.F.B., Caffarena V.R., Medeiros M.E., Ogasawara T. TA of non-stoichometric ceria obtained via hydrothermal synthesis // J. Therm. Anal. Calorim. 2004. V. 75. P. 901−910.
- Djuricic B., Pickering S. Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders//J. Eur. Ceram. Soc. 1999. V. 19. P. 1925−1934.
- Lee J.S., Choi S.C. Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H202 and NH4OH // Mat. Lett. 2004. V. 58. P. 390−393.
- Vanetsev A.S., Tretyakov Yu. D. Microwave-assisted synthesis of individual and milticomponent oxides // Russ. Chem. Rev. 2007. V. 76. P. 397−413.
- Microwave-Enhanced Chemistry. Ed. by H. M. Kingston, S. J. Haswell. Washington: American Chemical Society. 1997.400 p.
- Komarneni S., Roy R., Li Q.H. Microwave-Hydrothermal Synthesis of Ceramic Powders // Mat. Res. Bull. 1992. V. 27. P. 1393−1405.
- Komarneni S., Katsuki H. Nanophase materials by a novel microwave-hydrothermal process // Pure Appl. Chem. 2002. V. 74. P. 1537−1543.
- Yang H., Huang C., Tang A., Zhang X., Yang W. Microwave-assisted synthesis of ceria nanoparticles // Mat. Res. Bull. 2005. V. 40. P. 1690−1695.
- Bonamartini Corradi A., Bondioli F., Ferrari A.M., Manfredini T. Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method // Mat. Res. Bull. 2006. V. 41. P. 38−44.
- Gao F., Lu Q., Komarneni S. Fast synthesis of cerium oxide nanoparticles and nanorods//J. Nanosci. Nanotech. 2006. V. 6. P. 3812−3819.
- Chen H.I., Chang H.Y. Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation // Solid State Comm. 2005. V. 133. P. 593−598.
- Chen H.I., Chang H.Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method 11 Ceram. Int. 2005. V. 31. P. 795−802.
- Chang H.Y., Chen H.I. Morphological evolution for Ce02 nanoparticles synthesized by precipitation technique // J. Cryst. Growth. 2005. V. 283. P. 457−468.
- Han W.-Q., Wu L., Zhu Y. Formation and oxidation state of Ce02. x nanotubes // J. Am. Chem. Soc. V. 127. 2005. P. 12 814−12 815.
- Zhou K., Yang Z., Yang S. Highly reducible Ce02 nanotubes // Chem. Mater. 2007. V. 19. P. 1215−1217.
- Mai H.X., Sun L.D., Zhang Y.W., Si R., Feng W., Zhang H.P., Liu H.C., Yan C.H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods and nanocubes // J. Phys. Chem. B. 2005. V. 109. P. 24 380−24 385.
- Zhou K., Wang X., Sun X., Peng Q., Li Y. Enhanced catalytic activity of ceria nanorods from well defined reactive planes // J. Catal. V. 229. 2005. P. 206−212.
- Zhang D.-E., Ni X.M., Zheng H.G., Zhang X.J., Song J.M. Fabrication of rod-like Ce02: Characterization, optical and electrochemical properties // Solid State Sci. 2006. V. 8. P. 1290−1293.
- Yang Z., Zhou K., Liu X., Tian Q., Lu D., Yang S. Single-crystalline ceria nanocubes: size-controlled synthesis, characterization and redox property // Nanotechnology. 2007. V. 18. P. 185 606−1-185 606−4.
- Higashine Y., Fujihara S. Facile synthesis of single-crystalline Ce02 nanorods from aqueous CeCI3 solutions // J. Ceram. Soc. Jap. 2007. V. 115. P. 916−919.
- Huang P.X., Wu F., Zhu B.L., Gao X.P., Zhu H.Y., Yan T.Y., Huang W.P., Wu S.H., Song D.Y. Ce02 nanorods and gold nanocrystals supported on Ce02 nanorods as catalyst//J. Phys. Chem. B. 2005. V. 109. P. 19 169−19 174.
- Penn R.L., Banfield J.F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania // Geochim. Cosmochim. Acta. 1999. V. 63. P. 1549−1557.
- Penn R.L., Banfield J.F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline Ti02 // Am. Mineral. 1998. V. 83. P. 1077−1082.
- Penn R.L., Banfield J.F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals // Science. 1998. V. 281. P. 969−971A
- Si R., Zhang Y.W., You L.P., Yan C.H. Self-organized monolayer of nanosized ceria colloids stabilized by poly (vinylpyrrolidone) // J. Phys. Chem. B. 2006. V. 110. P. 5994−6000.
- Du N., Zhang H., Chen B., Ma X., Yang D. Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature // J. Phys. Chem. C. 2007. V. 111. P. 12 677−12 680.
- Godinho M., Ribeiro C., Longo E., Leite E.R. Influence of microwave heating on the growth of gadolinium-doped cerium oxide nanorods /./ Cryst. Growth and Design. 2008. V. 8. P. 384−386.
- Serpone N., Dondi D., Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare product // Inorg. Chim. Acta. 2007. V. 360. P. 794−802.
- Vertegel A.A., Kalinin S.V., Oleynikov N.N., Tretyakov Yu.D. Visible spectra of fractal particles in colloidal solutions // Chem. Phys. Lett. 1996. V. 262. P. 455−459.
- Linsebigler A.L., Lu G.Q., Yates J.T. Photocatalysis on Ti02 surfaces principles, mechanisms, and selected results // Chemical Reviews. 1995. V.95. P. 735−758.
- Herrmann J.M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants // Catal. Today. 1999. V.53. P. 115−129.
- Dunford R., Salinaro A., Cai L., Serpone N., Horikoshi S., Hidaka H., Knowland J. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients // FEBS Lett. 1997. V. 418. P. 87−90.
- Warner W.G., Yin J.J., Wei R.R. Oxidative damage to nucleic acids photosensitized by titanium dioxide // Free Radical Biol. Med. 1997. V. 23. P. 851−858.
- Li R., Yabe S., Yamashita M" Momose S., Yoshida S" Yin S., Sato T. UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes // Mat. Chem. Phys. 2002. V. 75. P. 39−44.
- Li R., Yabe S" Yamashita M., Momose S., Yoshida S., Yin S., Sato T. Synthesis and UV-shielding properties of ZnO- and CaO-doped Ce02 via soft solution chemical process // Solid State Ionics. 2002. V. 151. P. 235−241.
- Yamashita M., Kameyama K., Yabe S., Yoshida S., Fujishiro Y., Kawai T., Sato T. Synthesis and microstructure of calcia doped ceria as UV filters // J. Mat. Chem. 2002. V. 37. P. 683−687.
- Yabe S., Sato T. Cerium oxide for sunscreen cosmetics // J. Solid State Chem. 2003. V. 171. P. 7−11.
- Sato T., Katakura T., Yin S., Fujimoto T., Yabe S. Synthesis and UV-shielding properties of calcia-doped ceria nanoparticles coated with amorphous silica // Solid State Ionics. 2004. V. 172. P. 377−382.
- El-Toni A.M., Yin S., Hayasaka Y., Sato T. Coating and photochemical properties of calcia-doped ceria with amorphous silica by a seeded polymerization technique // J. Mater. Chem. 2005. V.15. P. 1293−1297.
- El-Toni A.M., Yin S., Yabe S., Sato T. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique// Mat. Res. Bull. 2005. V. 40 P. 1059−1064.
- El-Toni A.M., Yin S., Hayasaka Y., Sato T. Synthesis and UV-shielding properties of silica-coated calcia-doped ceria nanoparticles via soft solution processes // J. Electroceram. 2006. V. 17. P. 9−14.
- El-Toni A.M., Yin S., Sato T. Synthesis and silica coating of calcia-doped ceria/mica nanocomposite by seeded polymerization technique // Appl. Surf. Sci. 2006. V. 252. P. 5063−5070.
- Jakupec M.A., Unfried P., Keppler B.K. Pharmacological properties of cerium compounds // Rev. Physiol. Biochem. Pharmacol. 2005. V. 153. P. 101−111.
- Schubert D., Dargusch R., Raitano J., Chan S.W. Cerium and yttrium oxide nanoparticles are neuroprotective // Biochem. Biophys. Res. Comm. 2006. V. 342. P. 86−91.
- Das M" Patil S., Bhargava N., Kang J.-F., Riedel L.M., Seal S., Hickman J.J. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons // Biomat. 2007. V. 28. P.1918−1925.
- Chen J., Patil S., Seal S., McGinnis J.F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides // Nature Nanotechnology. 2006. V. 1. P. 142−150.
- Tan S., Schubert D., Maher P. Oxytosis: A Novel Form of Programmed Cell Death // Curr. Top. Med. Chem. 2001. V. 1. P. 497−506.
- Rzigalinski B.A. Nanoparticles and cell longevity //Technology in Cancer Research & Treatment. 2005. V. 4. P. 651−659.
- Lin W., Huang Y.W., Zhou X.Y., Ma Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells // Int. J. Toxicol. 2006. V. 25. P. 451−457.
- Patil S., Reshetnikov S., Haldar M.K., Seal S., Mallik S. Surface-derivatized nanoceria with human carbonic anhydrase II inhibitors and fluorophores: A potential drug delivery device // J. Phys. Chem. C. 2007. V. 111. P. 8437−8442.
- Takaya M., Shirohara Y., Serita F., Ono-Ogasawara M., Otaki N., Toya T., Takata A., Yoshida K., Kohyama N. Dissolution of functional materials and rare earth oxides into pseudo alveolar fluid // Ind. Health. 2006. V. 44. P. 639−644.
- Gotz M., Wendt H. Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas // Electrochim. Acta. 1998. V. 43. P. 3637−3644.
- Korotkikh O., Farrauto R. Selective catalytic oxidation of CO in H2: fuel cell applications // Catal. Tod. 2000. V. 62. P. 249−254.
- McCarthy E., Zahradnik J., Kuczynski G. C., Carberry J. J. Some unique aspects of CO oxidation on supported Pt // J. Catal. 1975. V. 39. P. 29−35.
- Summers J.C., Ausen S.A. Interaction of cerium oxide with noble metals II J. Catal. 1979. V. 58. P. 131−143.
- Yao H. C., Yu Yao Y. F. Ceria in automotive exhaust catalysts: I. Oxygen storage //J. Catal. 1984. V. 8. P. 254−265.
- Ying J.Y., Tschope A. Synthesis and characteristics of non-stoichiometric nanocrystalline cerium oxide-based catalysts II Chem. Eng. J. 1996. V. 64. P. 225−237.
- Liu W., Flytzani-Stephanopoulos M. Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu-Ce02 // Chem. Engin. J. 1996. V. 64. P. 283−294.
- Tang X., Zhang B., Li Y., Xu Y., Xin Q., Shen W. Carbon monoxide oxidation over Cu0/Ce02 catalysts // Catal. Tod. 2004. V. 93−95. P. 191−198.
- Jung C.R., Han J., Nam S.W., Lim T.H., Hong S.A., Lee H.I. // Selective oxidation of CO over Cu0-Ce02 catalyst: effect of calcination temperature // Catal. Tod. 2004. V. 93−95. P. 183−190.
- Zheng X.C., Wu S.H., Wang S.P., Wang S.R., Zhang S.M., Huang W.P. The preparation and catalytic behavior of copper-cerium oxide catalysts for low-temperature carbon monoxide oxidation //Appl. Catal. A: Gen. 2005. V. 283. № 1−2. P. 217−223.
- Liu Z., Zhou R., Zheng X. Comparative study of different methods of preparing Cu0-Ce02 catalysts for preferential oxidation of CO in excess hydrogen // J. Mol. Catal. A: Chem. 2007. V. 267. P. 137−142.
- Chung L.C., Yeh C.T. Synthesis of highly active Cu0-Ce02 nanocomposites for preferential oxidation of carbon monoxide at low temperatures // Catal. Comm. 2008. V. 9. P. 670−674.
- Marino F., Baronetti G., Laborde M., Bion N., Le Valant A., Epron F., Duprez D. Optimized Cu0-Ce02 catalysts for COPROX reaction // Intern. J. Hydrog. En. 2008. V. 33. P. 1345−1353.
- Lopez I., Valdes-Solis T., Marban G. An attempt to rank copper-based catalysts used in the CO-PROX reaction II Internal J. Hydrog. En. 2008. V. 33. P. 197−205.
- Kang M., Song M. W., Lee Ch. H. Catalytic carbon monoxide oxidation over CoOx/Ce02 composite catalysts // Appl. Catal. A: Gener. 2003. V. 251. P. 143−156.
- Lokhov Y.A., Tikhov S.F., Bredikhin M.N., Zhirnyagin A.G., Sadykov V.A. Carbon Monoxide Oxidation on Cobalt Oxides at 80K: an FT-IR Study // Mend. Comm. 1992. V. 2. P. 10−11.
- Pollard M. J., Weinstock B.A., Bitterwolf T.E., Griffiths P. R., Newbery A. P., Paine J. B. A mechanistic study of the low-temperature conversion of carbon monoxide to carbon dioxide over a cobalt oxide catalyst // J.Catal. 2008. V. 254. P. 218−225.
- Tang C. W., Kuo C. Ch., Kuo M. Ch., Wang Ch. B., Chien Sh. H. Influence of pretreatment conditions on low-temperature carbon monoxide oxidation over Ce02/Co304 catalysts //Appl. Catal. A: General. 2006. V. 309. P. 37−43.
- Shao J., Zhang P., Tang X., Zhang В., Song W., Xu Y., Shen W. Effect of Preparation Method and Calcination Temperature on Low-Temperature CO Oxidation over Co304/Ce02 Catalysts // Chin. J. Catal. 2007. V. 28. P. 163−169.
- Benin A.I., Kossoy A.A., Sharikov F.Yu. Automated-system for kinetic research in thermal-analysis. 2. Organization of kinetic-experiments in askr // J. Therm. Anal. 1992. V. 38. P. 1167−1180.
- Neimark A.V. Calculating surface fractal dimension of adsorbents //Ads. Sci. Tech. 1990. V. 7. P. 210−219.
- Неймарк A.B. Термодинамический метод расчета поверхностной фрактальной размерности // Письма в ЖЭТФ. 1990. Т. 51. С. 535−538.
- Wignall G.D., Bates F.S. Absolute calibration of small-angle neutron scattering data // J. Appl. Crystallogr. 1987. V. 20. P. 28−40.
- Schmatz W., Springer Т., Schelten J., Ibel K. Neutron small-angle scattering: Experimental techniques and applications // J. Appl. Cryst. V. 7.1974. P. 96−116.
- Данилов B.C., Зарубина А. П., Ерошников Г. Е. и др. Сенсорные биолюминесцентные системы на основе LUX-оперонов разных видов люминесцентных бактерий // Вестн. МГУ. Сер. 16. Биология. 2002. С. 20−24.
- Власова И.И., Асриели Т. В., Гаврилова Е. М., Данилов B.C. Определение антибиотиков с помощью люминесцентных Escherichia coli в присутствии сыворотки крови // Прикл. биохимия и микробиология. 2007. Т. 43. С. 471−478.
- Страховская М.Г., Пархоменко И. М., Румбаль Я. В. и др. Фотоиндуцированное подавление биолюминесценции генно-инженерного штамма бактерий Escherichia Coli TG1 (рХеп7) в присутствии фотодитазина // Микробиология. 2002. Т. 71. С. 345−348.
- Белов А.А., Данилов B.C., Зубков Б. В. и др. Прибор «Биотокс-К» для экспресс-оценки экологической обстановки //Датчики и системы. 2007. № 9. С. 27−31.
- Шариков Ф.Ю., Шапорев А. С., Иванов В. К. и др. Формирование высокодисперсных порошков ZnO в гидротермальных средах // Журн. неорган, химии. 2005. Т. 50. С. 1947−1953.
- Chen H.I., Chang H.Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents // Coll. Surf. A: Physicochem. Eng. Aspects. 2004. V. 242. P. 61−69.
- Tarnopolsky V.A., Aliev A.D., Churagulov B.R. et al. Influence of thermal treatment on the ion transport properties of hydrated zirconia // Solid State Ionics. 2003. V. 162−163. P. 225−229.
- Perkins C.L., Henderson M.A., Peden C.H.F., Herman G.S. Self-diffusion in ceria // J. Vac. Sci. Technol. A. 2001. V. 19. P. 1942−1946.
- Гегузин Я.Е. Физика спекания. 2-е изд., перераб. и доп. М.: Наука. 1984. 312 с.
- Rupp J.L.M., Infortuna A., Gauckler L.J. Microstrain and self-limited grain growth in nanocrystalline ceria ceramics//Acta Mater. 2006. V. 54. P. 1721−1730.
- Chen P.L., Chen I.W. Grain growth in Ce02: Dopant effects, defect mechanism, and solute drag //J. Am. Ceram. Soc. 1996. V. 79. P. 1793−1800.
- Loffler J.F., Johnson W.L. Model for decomposition and nanocrystallization of deeply undercooled Zr4i.2Tii3.8Cui2.5NiioBe22.5 // Appl. Phys. Lett. 2000. V. 76. P.3394−3396.
- Справочник химика. Второе издание, перераб. и дополн. T.III. М.: Изд-во «Химия», 1965.
- Баранчиков А.Е., Иванов В. К., Третьяков Ю. Д. Сонохимический синтез неорганических материалов // Успехи химии. 2007. Т. 76. С. 147−168.
- Willard М.А., Kurihara L.K., Carpenter Е.Е., Calvin S. Chemically prepared magnetic nanoparticles// Int. Mat. Rev. 2004. V. 49. P. 145−147.
- Wang S., Gu F., Li Ch., Cao H. Shape-controlled synthesis of Ce (0H)C03 and Ce02 microstructures// J. Crys. Growth. 2007. V. 307. P. 386−394.
- Matijevic E., Hsu W.P. Preparation and properties of monodispersed colloidal particles of lantanide compounds // J. Coll. Interf. Sci. 1987. V. 118. P. 506−523.
- Кнотько A.B., Пресняков И. А., Третьяков Ю. Д. // Химия твердого тела. М.: «Академия». 2006. 304 с.
- Park J., Kim J., Han J., Nam S.W., Lim Т.Н. Hydrothermal synthesis and characterization of nanocrystalline ceria powders // J. Ind. Eng. Chem. 2005. V. 11. P. 897−901.
- Tang C., Bando Y., Liu В., Golberg D. Cerium oxide nanotubes prepared from cerium hydroxide nanotubes//Adv. Mater. 2005. V. 17. P. 3005−3009.
- Антонова A.A., Жилина О. В., Каграманов Г. Г., Киенская К. И. и др. Синтез и некоторые свойства гидрозолей диоксида церия // Колл. журн. 2001. Т.6. С. 728−734.
- Sayle Т.Х.Т., Parker S.C., Sayle D.C. Oxidizing CO to C02 using ceria nanoparticles // Phys. Chem. 2005. V.7. P.2936−2941.
- Gomez-Cortez A., Solis D., Arenas-Allatore J., Dias G. 20th North American Meeting NACSII2007. P-3−744.
- Luo M.F., Hou Z.Y., Yuan X.X., Zheng X.M. Characterization study of Ce02 supported Pd catalyst for low-temperature carbon monoxide oxidation // Catal. Lett. 1998. V. 50. P. 205−209.
- Harrison P.G., Ball I.K., Azelee W., Daniell W., Goldfarb D. Nature and Surface Redox Properties of Copper (ll)-Promoted Cerium (IV) Oxide CO-Oxidation Catalysts // Chem. Mater. 2000. V. 12. P. 3715−3725.
- Zhou K., Xu R., Sun X., Chen H., Tian Q., Shen D., Li Y. Favorable synergetic effects between CuO and the reactive planes of ceria nanorods // Catal. Lett. 2005. V. 101. P. 169−173.
- Zhen X., Wang S., Wang S., Zhang S., Huang W., Wu S. // Copper oxide catalysts supported on ceria for low-temperature CO oxidation // Catal. Com. 2004. V.5. P. 729−732.
- Avgouropulos G., loannides T., Matralis H. Influence of the preparation method on the performance of Cu0-Ce02-x catalysts for the selective oxidation of CO // Appl. Catal. B. 2006. V.56. P. 87−93.
- Kundakovic L., Flytzani-Stephanopoulos M. // Reduction characteristics of copper oxide in cerium and zirconium oxide systems Appl. Catal. A. 1998. V. 171. P. 13−29.
- Kang M., Song M.W., Kim K.L. // Catalytic oxidation of carbon monoxide over CoOx/Ce02-x catalysts // React. Kinet. Catal. Lett. 2003. V. 79. P. 3−10.
- Parravano G. // J. Am. Chem. Soc. The Catalytic Oxidation of Carbon Monoxide on Nickel Oxide. I. Pure Nickel Oxide //1952. V. 75. P. 1448−1451.
- Roberts M.W., Wells B.R. Nature and reactivity of nickel and oxidized nickel surfaces // Discuss. Far. Soc. 1966. V. 41. P.162−174.
- Zhu J., Gui Z., Ding Y., Wang Z., Hu Y., Zou M. A Facile Route to Oriented Nickel Hydroxide Nanocolumns and Porous Nickel Oxide // J. Phys. Chem. 2007. V. 111. P.5622−5627.
- Deraz N.A.M. Catalytic oxidation of carbon monoxide on non-doped and zinc oxide-doped nickel-alumina catalysts// Coll. Surf. A. 2003. V. 218. P. 213−223.
- Wang X.Y., Wang S.P., Wang S.R., Zhao Y.Q., Huang J., Zhang S.M., Huang W.P., Wu S.H. The preparation of Au/Ce02 catalysts and their activities for low-temperature CO oxidation // Catal. Lett. 2006. V. 112 P. 115−119.
- Wang J.B., Tsai D.H., Huang T.J. Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-Doped Ceria // J. Catal. 2002. V. 208. P. 370−380.
- Manzoli M., Di Monte R., Boccuzzi F., Coluccia S., Kaspar J. CO oxidation over Cu0x-Ce02-Zr02 catalysts: Transient behaviour and role of copper clusters in contact with ceria // Appl. Catal. B. 2005. V. 61. P. 192−205.
- Aupretre F., Descorme C., Duprez D. Hydrogen production for fuel cells from the catalytic ethanol steam reforming //Topics in Catalysis. 2004. V. 30/31. P. 487−491.
- Erdohelyi A., Rasko J., Kecskes T., Toth M., Domok M., Baan K. Hydrogen formation in ethanol reforming on supported noble metal catalysts // Catal. Tod. 2006. V. 116. P. 367−376.
- Kim D.H., Cha J.E. A Cu0-Ce02 mixed-oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures//Catal. Lett. 2003. V. 86. P. 107−112.
- Avgouropoulos G., loannides T., Matralis H.K., Batista J., Hocevar S. Cu0-Ce02 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen // Catal. Lett., 2001^ V. 73. P. 33−40. ^