Помощь в написании студенческих работ
Антистрессовый сервис

Структурно-функциональный анализ гена LMP1 вируса Эпштейна-Барр у больных раком носоглотки

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Практическое значение полученных результатов состоит в том, что были выявлены определенные генетические отличия между изолятами LMP1 из опухолевой ткани больных нРНГ и периферической крови здоровых лиц. Среди этих генетических'1 изменений присутствуют делеции различного размера, дополнительные «вставки», а также разнообразные точечные замены аминокислот во всех функциональных доменах гена LMP1… Читать ещё >

Структурно-функциональный анализ гена LMP1 вируса Эпштейна-Барр у больных раком носоглотки (реферат, курсовая, диплом, контрольная)

Содержание

  • Перечень сокращений, условных обозначений, символов, единиц и терминов
  • ВВЕДЕНИЕ
  • ОБЗОР ЛИТЕРАТУРЫ
  • 1. Общая характеристика вируса Эпштейна-Барр
  • 2. Ассоциированные с ВЭБ заболевания человека
    • 2. 1. Инфекционный мононуклеоз
    • 2. 2. Лимфома Беркитта
    • 2. 3. Лимфогранулематоз (болезнь Ходжкина)
    • 2. 4. Пострансплантационные и другие ВЭБ-ассоциированные лимфомы
    • 2. 5. Рак желудка
    • 2. 6. Рак носоглотки
  • 3. Особенности-молекулярно-генетической организации генома ВЭБ. Гены латентного и литического цикла
  • 4. Основные типы латентности генома ВЭБ и механизм их поддержания
  • 5. Латентный мембранный белок ВЭБ (LMP1)
    • 5. 1. Общая характеристика, положение в геноме, регуляция активности
    • 5. 2. Основные функциональные домены молекулы LMP1. Иммортализирующие, трансформирующие и цитостатические свойства LMP
    • 5. 3. Молекула LMP1 как постоянно активированный аналог клеточного рецептора фактора некроза опухолей 1 (TNF-R1). Сигнальные свойства продукта гена LMP1: активация различных клеточных сигнальных путей
  • 6. Мутационные изменения гена LMP1 и их возможная роль в патогенезе развития неоплазий человека
    • 6. 1. «Азиатский» (CaO LMP1) вариант гена LMP1 и его возможная связь с генезом нРНГ в Юго-восточной Азии
    • 6. 2. Мутационные перестройки LMP1 при других неопластических заболеваниях человека (ЛГМ, лимфомы, РЖ, СПИД и др.)
  • МАТЕРИАЛЫ И МЕТОДЫ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ
  • 1. Структурный анализ новых изолятов LMP1 ВЭБ от больных нРНГ и здоровых лиц
    • 1. 1. Серологический мониторинг и отбор группы больных РНГ
    • 1. 2. Амплификация LMP1-специфических последовательностей и клонирование в pGEM-T векторной системе. <
    • 1. 3. Сиквенсный анализ полученных клонов LMP
  • 2. Функциональный анализ изолятов LMP1 от больных нРНГ и здоровых лиц
    • 2. 1. Реконструкция полноразмерных клонов LMP1 в составе эукариотического вектора pSG
    • 2. 2. Проверка экспрессии белковых продуктов клонов LMP1 методами иммуноблотинга и РИФ
    • 2. 3. Оценка функциональной способности клонов LMP активировать транскрипционный фактор NF-kB
    • 2. 4. Оценка функциональной способности клонов LMP1 активировать транскрипционный фактор jun/AP-1. ОБСУЖДЕНИЕ
  • ВЫВОДЫ

Одной из важнейших фундаментальных проблем современной онковирусологии является изучение молекулярных механизмов действия онкогенных вирусов, к числу которых относят и вирус Эпстайна-Барр (ВЭБ). ВЭБ принадлежит к семейству герпесвирусов, является убиквитарным и персистирует в организме человека на протяжении всей жизни. Роль ВЭБ в возникновении таких опухолей человека как лимфома Беркитта (ЛБ), лимфогранулематоз (J1TM), недифференцированный рак носоглотки (нРНГ) считается доказанной. Спектр патологических процессов у человека, в возникновении которых, как полагают, участвует ВЭБ, постоянно расширяется. Так, в настоящее время широко обсуждается вопрос о роли ВЭБ в процессе канцерогенеза эпителиальных клеток желудка. Более того, за последние годы открылась реальная возможность изучения функций отдельных генов этого вируса в процессе канцерогенеза эпителиальных клеток человка.

Учитывая тот факт, что практически 100% населения планеты инфицировано ВЭБ, вопрос о механизме возникновения ассоциированных с этим вирусом заболеваний, включая и нРНГ, является важной актуальной задачей современной онковирусологии. В этой связи, ген ВЭБ — BNLF1, кодирующий латентный мембранный белок 1 (LMP1) представляет особый интерес. Во-первых, LMP1 — один из немногих генов ВЭБ, который обладает трансформирующим потенциалом in vitro. Во-вторых, этот ген ВЭБ является аналогом рецептора клеточного ростового фактора (предположительно TNFR1) и вызывает множественную активацию клеточных сигнальных путей. В-третьих, определенные перестройки этого гена, такие как множественные точечные мутации, делеция специфического фрагмента размером 30 пар нуклеотидов в третьем экзоне и другие, способствуют увеличению трансформирующего потенциала вируса /Ни et al., 1991/.

Генетические перестройки гена LMP1 характеризуют изоляты ВЭБ, полученные от больных нРНГ в Юго-Восточной Азии и Средиземноморье. Эти регионы считаются эндемичными районами по нРНГ. Поиск и молекулярно-генетический анализ таких изолятов в неэндемичной зоне, а именно на территории России, представляется актуальной научной и практической задачей, которая позволит, вероятно, как получить новые экспериментальные данные о трансформирующих потенциях гена LMP1, так и выяснить реальную роль новых изолятов ВЭБ в возникновении нРНГ.

Цель настоящей диссертационной работы состояла в молекулярном и функциональном анализе одного из генов латентной инфекции ВЭБ, LMP1, в вирусных изолятах, полученных из образцов опухолевой ткани больных нРНГ и лимфоцитов периферической крови (ЛПК) здоровых доноров. При этом мы планировали выяснить, относятся ли отечественные изоляты к генетическому типу ВЭБ, распространенном^ в указанных выше эндемичных для нРНГ регионахпровести поиск дополнительных специфических мутаций, присущих только отечественным изолятам из эпителиальных опухолей человека. В ходе выполнения исследования необходимо было решить следующие задачи: создать архив клинического материала от больных нРНГ и здоровых лиц (биопсии опухолей, сыворотки и фракции лейкоцитов периферической крови) — провести скрининг сывороток больных нРНГ и здоровых носителей на наличие антител к белкам литической инфекции ВЭБполучить полноразмерные варианты гена LMP1 ВЭБ путем ПЦР-амплифика-ции из клинического материала, определить их первичную нуклеотидную структуру и выявить мутационные изменения данного генасубклонировать полученные варианты LMP1 ВЭБ в эукариотический экспрессирующий вектор и изучить их функциональное поведение.

Научная новизна работы заключается в том, что впервые были определены нуклеотидные последовательности вариантов полноразмерного гена LMP1 ВЭБ, амплифицированного из опухолевых тканей больных нРНГ и ЛПК здоровых носителей из Россиипроведен анализ по изучению их экспрессии и способности активировать транскрипционные факторы NF-kB и АР-1.

Практическое значение полученных результатов состоит в том, что были выявлены определенные генетические отличия между изолятами LMP1 из опухолевой ткани больных нРНГ и периферической крови здоровых лиц. Среди этих генетических'1 изменений присутствуют делеции различного размера, дополнительные «вставки», а также разнообразные точечные замены аминокислот во всех функциональных доменах гена LMP1 ВЭБ. Дальнейшее изучение этих генетических изменений, возможно, поможет расширить понимание сложного комплекса молекулярно-биологических, вирусологических и иммунологических закономерностей, которые лежат в основе патогенеза ВЭБ-ассоциированного нРНГ, а также в разработке новых подходов для ранней диагностики неоплазий человека. v s.

ОБЗОР ЛИТЕРАТУРЫ.

ВЫВОДЫ j.

1. Впервые выполнен полный структурный анализ (клонирование и определение первичной. нуклеотидной последовательности) вариантов генов LMP1 ВЭБ из опухолевой ткани больных нРНГ и лимфоцитов периферической крови доноров. При этом идентифицированы генетические варианты LMP1 ВЭБ, персистирующие на европейской части территории России.

2. Полученные нами новые изоляты РНГ LMP1 содержат специфический набор одиночных мутационных замен аминокислот, отличающих их от ЛПК LMP1-изолятов, а также, ранее проанализированных в нашей лаборатории изолятов LMP1 из опухолевой и нормальной тканей желудка.

3. Полученная коллекция изолятов LMP1 состоит из представителей всех известных групп генетических вариантов LMP1 по классификации зарубежных авторов, однако отличается от них отсутствием мутации G212S (замена глицина на серин), функциональное значение которой предстоит установить в дальнейшем.

4. Установлено, что ни в одном случае РНГ соответствующий изолят LMP1 не содержит Сао-подобную делецию 30 пн, однако таковая была обнаружена в одном из изолятов ЛПК (ЛПК-2). Полученные данные свидетельствует о том., что наличие делеции 30 пн является необязательным событием в процессе патогенеза нРНГ, инициированного ВЭБ, но не исключает её значение в усилении трансформирующего потенциала LMP1.

5. Доказано, что все изоляты LMP1, полученные из нРНГ и ЛПК не имеют существенных различий в способности активировать транскрипционные факторы NF-кВ и АР-1 при сравнении с прототипом В95−8 LMP1, но эта способность существенно ниже таковой для Сао LMP1. По-видимому, способность LMP1 активировать данные транскрипционные факторы не играет критической роли в усилении трансформирующих свойств этого гена.

Показать весь текст

Список литературы

  1. Е. В. Вирус Эпштейна-Барр и рак желудка: поиск и анализ вирусологических и молекулярно-биологических маркёров: Автореферат диссертации канд. биол. наук. 2001.- 24 с.
  2. В. Э. Иммунодиагностика опухолей человека, ассоциированных свирусом Эпштейна-Барр: Автореферат диссертации докт. мед. наук. 1984.48 с.
  3. В. В., Аксель М. Е., Трапезников Н. Н. Состояние онкологической помощи населению стран СНГ в 1995.-М.:ОНЦ РАМН.-1996.-273 с.
  4. Дифференциальная диагностика рака носоглотки с помощью серологических маркеров вируса Эпстайна-Барр: Утв. Упр. Онкологической помощи главного Упр. Леч.-проф. Помощи. М., 1987.- 21 с.
  5. Т., Фрич Э., Сэмбрук Д. Методы генетической инженерии. Молекулярное клонирование- Пер. с англ.-М.:Мир, 1984.-480 с.
  6. Abbot S., Rowe M., Cadwallader K., Riksten A., Gordon J., Wang F.} Rymo L., Rickinson A. Epstein-Barr virus nuclear antigen 2 induces expression of the virus encoded latent membrane protein // J. Virol.-1990.-V. 64.-P. 2126−2134.
  7. Allan G., Inman G., Parker В., Rowe D., Farrell P. Cell growth effects of Epstein-Barr virus leader protein // J. Gen. Virol.-1992.-V. 73.-P. 1547−1551.
  8. Allday M., Sinclair A., Parker G., Crawford D., Farrelll P. Epstein-Barr virus efficiently immortalizes human В cells without neutralizing the function of p53 // EMBO J.-1995.-V. 14.-P. 1382−1391.
  9. Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation//Biochim. Biophys. Acta.-1991.-V. 1072.-P. 129−157.
  10. Arvanitakis L., Yaseen N., Sharma S. Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation and loss of TGF-J3 1-mediated inhibition in EBV-positive В cells // J. Immunol.-1995.-V. 155.-P. 1047−1056.
  11. Ashkenazi A., Dixit V. Death receptors: signaling and modulation // Science.-1998.-V.281.-P. 1305−1308.
  12. Audette M., Larouche L., Lussier I., Fugere N. Stimulation of the ICAM-1 gene transcription by the peroxovanadium compound bpV (Pic). involves STAT-1 but not NF-кВ activation in 293 cells // Eur. J. Biochem.-2001.-V. 268.-P. 1828−1836.
  13. Aviel S., Winberg G., Massucci M., Ciechanover A. Degradation of the Epstein-Barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway // J. Biol. Chemistry.-2000.-V. 275.-P. 23 491−23 499.
  14. Baer R., Bankier A., Biggin M., Deininger P., Farrell P., Gibson G., Hatfull G., Hudson G., Barrell B. DNA sequence and expression of the B95−8 Epstein-Barr virus genome // Nature.-1984.-V. 310.-P. 207−211.
  15. Berger С., McQuain С., Sullivan J., Nadal D., Quesenberry P., Knecht H. The 30 bp deletion variant of Epstein-Barr virus encoded latent membrane protein-1 prevails in acute infectious mononucleosis // J. Infect. Dis.-V. 176.-P. 1370−1373.
  16. Blake S., Eliopoulos A., Dawson C., Young L. The transmembrane domains of the EBV-encoded latent membrane protein 1 (LMP1) variant CAO regulate enhanced signaling activity// Virology.-2001.-V. 282.-P. 278−287.
  17. Bloss Т., Kaykas A., Sugden B. Dissociation of patching by latent membrane protein-1 of Epstein-Barr virus from its stimulation of NF-kappaB activity // J. Gen. Virol.-1999.-V. 80.-P. 3227−3232.
  18. Bochkarev A., Barwell J., Pfuetzner R., Furey W., Edwards A., Frappier L. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein EBNA1 // Cell.-1996.-V. 83.-P. 39−46.
  19. Boldin M., Varfolomeev E., Pancer Z., Mett I., Camonis J., Wallach D. A novel protein that interacts with the death domain of Fas/APOl contains a sequence motif related to the death domain // J. Biol. Chem.-1995.-V. 270.-P.-7795−7798.
  20. Bornkamm G., Hudewenz J., Freese U., Zimber U. Deletion of the non-transforming Epstein-Barr virus strain P3HR-1 causes fusion of the large internal repeat to the DSLregion // J. Virol.-1982.-V. 43.-P. 952−968.
  21. Bornkamm G., Delius W., Zimber U., Hudewentz J., Epstein M. Comparison of Epstein-Barr virus strains of different origin by analysis of viral DNAs // J. Virol.-1980.-V. 35.-P. 603−618.
  22. Bomkamm G., Hammerschmidt W. Molecular virology of Epstein-Barr virus // Phil. Trans. R. Soc. Lond.-2001 .-V. 356.-P. 437−459.
  23. Bornkamm G., Polack A., Eick D. C-myc deregulation by chromosomal translocation in Burkitt’s lymphoma // Cellular oncogene activation / ed. Klein G.-New York, 1988. P. 223−273.
  24. Brennan P., Floettmann J., Mehl A., Jones M., Rowe M. Mechanism of action of a novel latent membrane protein-1 dominant negative // J. Biol. Chem.-2001.-V. 276.-P. 1195−1203.
  25. Brichacek В., Hirsh I., Sibl O., Vilikusova E., Vonka V. Presence of Epstein-Barr virus DNA in carcinomas of palatine tonsil // J. Natl. Cancer Inst.-1984.-V. 72.-P. 809−815.
  26. Briskoe J., Kohlhuber F., Muller M. JAKs and STATs branch out // Trends Cell Biol.-1996.-V. 6.-P. 336−340.
  27. Brodeur S., Cheng G., Baltimore D., Thorley-Lawson D. Localisation of the major NF-KB-activating site and the sole TRAF3 binding site of LMP1 defines two distinct signaling motifs // J. Biol. Chem.-1997.-V. 272.-P. 19 777−19 784.
  28. Brooks L., Yao Q., Rickinson A., Young L. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: Co-expression of EBNA1, LMP1 and LMP2A transcripts // J. Virol.-1992.-V. 66.-P. 2689−2697.
  29. Brown D., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts // J. Biol. Chem.-2000.-V. 275.-P. 17 221−17 224.
  30. Burke A., Yen Т., Shekitka K., Sobin L. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction // Mod. Pathol.-1990.-V. 3.-P. 377−380.
  31. Burkhard A., Bolen J., Kieff E., Longnecker R. An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases//J. Virol.-1992.-V. 66.-P. 5161−5167.
  32. Burkitt D. A «tumor safari» in East and Central Africa // Br. J. Cancer.-1962.-V. 16.-P. 379−386.
  33. Cherney В., Sgadari C., Kanegane C., Wang F., Tosato G. Expression of the Epstein-Barr virus protein LMP1 mediates tumor regression in vivo // Blood.-1998.-V.91.-P. 2491−2500.
  34. Cruickshank J., Shire K., Davidson A., Edwards A., Frappier L. Two domains of the Epstein-Barr virus origin DNA-binding protein, EBNA1, orchestrate sequence-specific DNA binding // J. Biol. Chem.-2000.-V. 275.-P. 22 273−22 277.
  35. Curran J., Laverty F., Campbell D., MacDiarmid J., Wilson J. Epstein-Barr virus encoded latent membrane protein-1 induces epithelial cell proliferation and sensitizes transgenic mice to chemical carcinogenesis // Cancer Res.-2001.-V. 61.-P. 6730−6738.
  36. Dambaugh Т., Raab-Traub N., Heller M., Beisel C., Hummel M., Cheung A., Fennewald S., King W., Kieff E. Variations among isolates of Epstein-Barr virus // Ann. N. Y. Acad. Sci.-1980.-V. 354.-P. 309−325.
  37. Deacon E., Pallesen G., Niedobitek G., Crocker J., Brooks L., Rickinson A., Young L. Epstein-Barr virus and Hodgkin’s disease: Transcriptional analysis of viral latency in the malignant cells // J. exp. Med.-1993.-V. 177.-P. 339−349.
  38. Derijard В., Hibi M., Wu I., Barrett Т., Su В., Deng Т., Karin M., Davis R. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain // Cell.-1994.-V. 76.-P. 1025−1037.
  39. Devergne O., McFarland E., Mosialos G., Izumi K., Ware C., Kieff E. Role of the TRAF binding site and NF-кВ activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression // J. Virol.-1998.-1998.-V. 72.-P. 79 007 908.
  40. D’Souza В., Rowe M., Walls D. The bfl-1 gene is transcriptionally upregulated by the Epstein-Barr virus LMP1, and its expression promotes the survival of a Burkitt’s lymphoma cell line // J. Virol.-2000.-V. 74.-P. 6652−6658.
  41. Edwards R., Seillier Moisewitsch F., Raab-Traub N. Signature amino acids changes in latent membrane protein 1 distinguish Epstein-Barr virus strains // Virology.-1999.-V. 261.-P. 79−95.
  42. Finley D. An alternative to destruction // 2001.-V. 412.-P. 283−286.
  43. Fischer N., Kopper В., Graf N., Schlehofer J., Grasser F., Mueller-Lantzsch N. Functional analysis of different LMP1 proteins isolated from Epstein-Barr virus-positive carriers // Virus Res.-1999.-V. 60.-P. 41−54.
  44. Floettmann J., Rowe M. Epstein-Barr virus latent membrane protein-1 (LMP1) C-terminus activation region (CTAR2) maps to the far C-terminus and requires oligomerisation for NF-кВ activation//Oncogene.-1997.-V. 15.-P. 1851−1858.
  45. Floettmann J., Ward K., Rickinson A., Rowe M. Cytostatic effect of Epstein-Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in В cell lines //Virology.-1996.-V. 223.-P. 29−40.
  46. Garhmberg C., Leukocyte adhesion: CDll/cdl8 integrins and intercellular adhesion molecules // Curr. Opin. Cell Biol.-1997.-V.-9.-P. 643−650.
  47. Hennessy K., Fennewald S., Kieff E. A third viral nuclear protein in lymphoblasts immortalized by Epstein-Barr vims // Proc. Natl. Acad. Sci. USA.-1985.-V. 82.-P. 5944.5948.
  48. Hennesy K., Wang F., Bushman E., Kieff E. Definitive identification of a member of the Epstein-Barr virus // Proc. Natl. Acad. Sci. USA.-1986.-V. 83.-P. 56 935 697.
  49. Henkel Т., Ling P., Hayward S., Peterson M. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein Jk // Science.1994.-V. 265.-P. 92−95.
  50. Henle G., Henle W. Immunofluorescence in cells derived from Burkitt’s lymphoma//J. Bacterid.-1966.-V. 91.-P.1248−1256.
  51. Kaye K., Izumi K., Johannsen E., Davidson D., Longnecker R., Kieff E. An Epstein-Barr virus that expresses only the first 231 LMP1 amino acids efficiently initiates primary B-lymphocyte growth transformation // J. Virol.-1999.-V. 73.-P. 10 525−10 530.
  52. Kaykas A., Sugden B. The amino-terminus and membrane-spanning domains of LMP1 inhibit cell proliferation //(>ncogene.-2000.-V. 19.-P. 1400−1410.
  53. Kleines M., Finke K., Ritter K., Schaade L. Induction of growth rate and transcriptional modulation of growth promoters and growth inhibitors in epithelial cells by EBV-LMP1 // Virus Res.-2000.-V. 68.-P. 63−69.
  54. Knutson J. The level of c-fgr RNA is increased by EBNA-2, an Epstein-Barr virus gene required for B-cell immortalization // J. Virol.- 1990.-V. 64.-P. 2530−2536.
  55. Koyama Y., Adachi M., Sekiya M., Takekawa M., Imai K. Histone deacetylase inhibitors suppress IL-2-mediated gene expression prior to induction of apoptosis // Blood.-2000.-V. 96.-P. 1490−1495.
  56. Lawrence J., Villnave C., Singer R. Sensitive, high-resolution chromatin and chromosome mapping in situ: Presence and orientation of two closely integrated copies of EBV in a lymphoma line // Cell.-1988.-V. 52.-P. 51−61.
  57. Lee E., Locker J., Nalesnik M., Reyes J., Jaffe R., Alashari M., Nour В., Tzakis A., Dickman P. The association of the Epstein-Barr virus with smooth-muscle tumors occurring after organ transplantation // New Engl. J. Med.-1995.-V. 332.-P. 19−25.
  58. Leen A., Meji P., Redchenko I., Middeldorp J., Bloemena E., Richinson A., Blake N. Differencial immunogenecity of Epstein-Barr vims latent-cycle proteins for human CD4(+) T-helper 1 responces // J. Virol.-200l.-V. 75.-P. 8649−8659.
  59. Lenoir G., Bornkamm G. Burkitt’s lymphoma, a human cancer model for the study of the multistep deveplopment of cancer: Proposal for a new scenario // Adv. Viral Oncol.-1988.-V. 7.-P. 173−206.
  60. Leyvraz S., Henle W., Chahinian A., Pearlmann C., Klein G., Gordon L. Association of Epstein-Barr virus with thymic carcinoma // New Engl. J. Med.-1985.-V.312.-P. 1296−1299.
  61. Li S.-N., Chang Y.-S., Liu S.-H. Effect of 10-amino-acid deletion on the oncogenic activity of latent membrane protein-1 of Epstein-Barr vims // Oncogene.-1996.-V. 12.-P. 2129−2135.
  62. Little R., Schildcraut C. Initiation of latent DNA replication in the Epstein-Barr vims genome can occur at sites other than the genetically defined origin // Mol. Cell. Biol.-1995.-V. 15.-P. 2893−2903.
  63. Longnecker R., Kieff E. A second Epstein-Barr vims membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1 // J. Virol.-1990.-V. 64.-P. 2319−2326.
  64. Longnecker R., Druker В., Roberts Т., Kieff E. An Epstein-Barr vims protein associated with cell growth transformation interacts with a tyrosine kinase // J. Virol.-199l.-V. 65.-P. 3681−3692.
  65. Petti L., Sample C., Kieff E. Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins // Virology.- 1990.-V. 176.-P. 563−574.
  66. Pope J. H., Home M. K., Scott W. Transformation of fetal human leukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus // Int. J. Cancer.-1968.-V. 3.-P. 857−866.
  67. Puis A., Eliopoulos A., Nobes C., Bridges Т., Young L. Activation of the small GTPase Cdc42 by the inflammatory cytokines TNF-a and IL-1, and by the Epstein-Barr virus transforming protein LMP1 // Journal of Cell Science.-1999.-V. 112.-P. 2983−2992.
  68. Raab-Traub N., Hood R., Yang C.S., Henry В., Pagano J. Epstein-Barr vims transcription in nasopharyngeal carcinoma // J. Virol.-1983.-V. 48.-P. 580−590.
  69. Rawlins D., Milman G., Hayward S., Hayward G. Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region // Cell.-1985.-V. 42.-P. 859−868.
  70. Reynes M, Aubert J., Cohen J., Audoin J., Tricottet V., Diebold J., Kazatchkine M. Human follicular dendritic cells express CR1, CR2 and CR3 complement receptor antigenes // J. Immunol.-1985.-V. 135.-P. 2687−2694.
  71. Rickinson A., Gregory C., Young L. Mechanism of the establishment of Epstein-Barr virus genome-containing lymphoid cell lines from infectious mononucleosis: studies with phosphonoacetate // Int. J. Cancer.-1977.-V. 20.-P. 861−868.
  72. Rickinson A., Young L., Rowe M. Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed В cells // J. Virol.-1987.-V. 61.-P. 1310−1317.
  73. Ricksten A., Kallin., Alexander H., Dillner J., Fahraeus R., Klein G., Lerner R., Rymo L. BamHI E region of the Epstein-Barr genome encodes three transformation-associated nuclear proteins // Proc. Natl. Acad. Sci. USA.-1988.-V. 85.-P. 996−999.
  74. U., Puschner S., Kremmer E., Мак Т., Engelmann H., Hammerschmidt W., Kieser A. TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein // EMBO J.-2001.-V. 20.-P. 56 785 691.
  75. Shimakaze M., Sasagawa Т., Kawahara K., Yutsudo M., Kusuoka H., Kozuka T. Expression of Epstein-Barr virus in cutaneous T-cell lymphoma including mycosis fungoides // Int. J. Cancer.-2001.-V. 92.-P. 226−231.
  76. Shirakata M., Hirai K. Identification of minimal oriP of Epstein-Barr virus required for DNA replication //1. Biochem.-1998.-V. 123.-P. 175−181.
  77. Sinclair A., Palmero I., Paters G., Farrell P. EBNA-2 and EBNA-LP cooperate to cause G0 to Gi transition during immortalization of resting human В lymphocytes by Epstein-Barr virus // EMBO J.-1994.-V. 13.-P. 3321−3328.
  78. Sinha S., Todd S., Hedrick J., Speiser C., Lambris J., Tsoukas C. Characterization of the EBV/C3d receptor on the human Jurkat T cell line: Evidence for a novel transcript // J. Immunol.-1993 .-V. 150.-P. 5311−5320.
  79. Sixbey J., Nedrud J., Raab-Traub N., Hanes R., Pagan J. Epstein-Barr virus replication in oropharyngeal epithelial cells // New Engl. J. Med.-1984.-V. 310.-P. 1225−1230.
  80. Smith P., de Jesus O., Turner D., Hollyoake M., Karstegl C., Griffin В., Karran L., Wang Y., Hayward D., Farrell P. Structure and coding content of CST (BART) family RNAs of Epstein-Barr virus //J. Virol.-2000.-V. 74.-P. 3082−3092.
  81. Summers H., Barwell J., Pfuetzner R., Edwards A., Frappier L. Cooperative assembly of EBNA1 on the EBV latent origin of replication // J. Virol.-1996.-V. 70.-P. 1228−1231.
  82. Summers W., Grogan E., Sheed D., Robert M., Liu C., Miller G. Stable expression in mouse cells of nuclear neoantigen after transfer of a 3.4 megadalton cloned fragment of Epstein-Barr DNA // Proc. Natl. Acad. Sci. USA.-1982.-V. 79.-P. 5688−5692.
  83. Sung N., Edwards R., Seillier-Moisewitsch F., Perkins A., Zeng Y., Raab-Traub N. Epstein-Barr virus strain variation in nasopharyngeal carcinoma from the endemic and non-endemic regions of China // Int. J. Cancer.-1998.-V. 76.-P. 207 215.
  84. Thorley-Lawson D., Geilinger K. Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr vims neutralize infectivity // Proc. Natl. Acad. Sci. USA.-1980.-V. 77.-P. 5307−5311.
  85. Thorley-Lawson D., Poodry C. Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo //J. Virol.-1982.-V. 43.-P. 730−736.
  86. Tokunaga M., Land С., Uemura Y., Tokudome Т., Tanaka S., Sato E. Epstein-Barr virus in gastric carcinoma // Am. J. Pathol.-1993.-V. 143.-P. 1250−1254.
  87. Tomkinson В., Kieff E. Use of second-site homologous recombination to demonstrate that Epstein-Barr virus nuclear 3B is not important for lymphocyte infection or growth transformation in vitro // J. Virol.-1992a.-V. 66.-P. 2893−2903.
  88. Tomkinson В., Kieff E. Second-site homologous recombination in Epstein-Barr virus: Insertion of a type 1 EBNA 3 genes in place of type 2 has no effect on in vitro infection // J. Virol.-19 926.-V. 66.-P. 780−789.
  89. Tomkinson В., Robertson E., Kieff E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation // J. Virol.-1993.-V. 67.-P. 2014−2025.
  90. Walling D., Shebib N., Weaver S., Nichols M.,. Flaitz C., Webster-Cyriaque J. The molecular epidemiology
  91. Waltzer L., Perricaudet M., Sergeant A., Manet E. Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-Jk-EBNA2-activated transcription by inhibiting the binding of RBP-Jk to DNA // J. Virol.-1996.-V. 70.-P. 5909−5915.
  92. Wang D., Liebowitz D., Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells // Cell.-1985.-V. 43.-P. 831−840.
  93. Wang C., Deng L., Hong M., Akkaradju G., Inoue J., Chen Z. TAK1 is a ubiquitin-dependent kinase of MKK and IKK // Nature.-2001.-V. 412.-P. 346−351.
  94. Wang F., Petti L., Braun D., Seung S., Kieff E. A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latenly infected, growth-transformed lymphocytes // J. Virol.- 19 876.-V. 61.-P. 945−954.
  95. Wang D., Rowe M., Lundgren E. Expression of the Epstein-Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines // Cancer Res.-1996.-V. 56.-P. 4610−4613.133
  96. Weiss L., Stricter J., Warnke R., Purtilo D., Sklar J. Epstein-Barr virus DNA in tissues of Hodgkin’s disease//Am. J. Pathol.-1987.-V. 129.-P. 86−91.
  97. Weiss L., Movahed L., Warnke R., Sklar J. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease // New. Engl. J. Med.-1989.-V. 320.-P. 502−506.
  98. Yates J., Warren N., Sudgen B. Staable replication of plasmids derived from Epstein-barr virus in various mammalian cells // Nature.-1985.-V. 313.-P. 812 815.
  99. Zhang Q., Brooks L., Busson P., Wang F., Charron D., Kieff E., Rickinson A., Tursz T. Epstein-Barr virus (EBV) latent membrane protein 1 increases HLA class II expression in an EBV-negative cell line // Eur. J. Immunol.- 1994.-V. 24.-P. 1467−1470.
  100. Zimber U., Aldlinger H., Lenoir G., Vuillame M., Knebel-Doeberitz M., Laux G., Desgranges C., Wittmann P., Freese U.-K., Scheider U., Bornkamm G. Geographical prevalence of two types of Epstein-Barr virus // Virology.-1986.-V. 154.-P. 56−66.
Заполнить форму текущей работой