Помощь в написании студенческих работ
Антистрессовый сервис

Структурно-функциональный анализ промоторных областей гена oct-1 мыши

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

С помощью временной трансфекции функционально охарактеризованы промоторные области Ш и 1Ь. Для промотора 1Ь мыши локализован «минимальный промотор» в области -337/-137. Обнаружен ингибигорный элемент в области -99/-20, удаление которого приводит к могокрагному увеличению промогорпой активности. Составлена карта потенциальных регуляторных сайтов этих областей, проведен анализ строения промоторов… Читать ещё >

Структурно-функциональный анализ промоторных областей гена oct-1 мыши (реферат, курсовая, диплом, контрольная)

Содержание

  • щ
  • Введение
  • Список обозначений и сокращений
  • Литературный обзор
  • 1. Инициация транскрипции эукариотической РНК-полимеразой II
    • 1. 1. Элементы последовательности ДНК, участвующие в инициации транскрипции РНК-полимеразой II
    • 1. 2. Общие транскрипционные факторы РНК-полимеразы II
    • 1. 3. Медиатор РНК-полимеразы II
  • 2. Oct-1 — полифункциональный фактор
    • 2. 1. Строение белка Oct
    • 2. 2. Взаимодействие Oct-1 с участками связывания
    • 2. 3. Альтернативный сплайсинг Oct-1 пре-мРНК
    • 2. 4. Взаимодействие Oct-1 с факторами транскрипции и коактиваторами
    • 2. 5. Фосфорилирование Oct-1 в клеточном цикле
    • 2. 6. Взаимодействие Oct-1 с белками HMG
    • 2. 7. Взаимодействие Oct-1 с белками ядерного матрикса
    • 2. 8. Участие Oct-1 в репликации ДНК.. .-г
    • 2. 9. Участие Oct-1 в эмбриональном развитии, морфогенезе и дифференцировке клеток
    • 2. 10. Oct-1, иммунная система и гемопоэз
    • 2. 11. Oct-1 и эндокринная система
  • Цели и задачи исследования
  • Материалы и методы
  • 1. Реактивы и материалы
  • 2. Стандратные методы
    • 2. 1. Выделение плазмидной ДНК с тритоном Х
    • 2. 2. Получение компетентных клеток
    • 2. 3. Трансформация
    • 2. 4. Мечение ДНК
    • 2. 5. Получение клеточных экстрактов из клеток миеломы NS/
    • 2. 6. Задержка подвижности в геле комплексов ДНК-белок
    • 2. 7. Выделение больших количеств суперскрученной плазмиды с очисткой bCsCI
    • 2. 8. Рестрикция
    • 2. 9. Лигирование
    • 2. 10. Электрофорез ДНК в агарозном геле
    • 2. 11. Выделение ДНК из легкоплавкой агарозы
    • 2. 12. Культивирование клеток
    • 2. 13. Транзиентная трансфекция и определение люциферазной активности
  • 3. Клонирование 5'-нетранслируемых областей гена oct-1 мыши
    • 3. 1. Клонирование 5'-нетранслируемых областей гена oct-1 мыши перед экзоном 1L
    • 3. 2. Клонирование 5'-нетранслируемых областей гена oct-1 мыши перед экзоном 1U
  • 4. Футпринтинг
  • 5. Создание репортерных плазмид
  • Результаты исследования
  • 1. Экзон-интронная структура гена Oct-1 мыши и человека
  • 2. Клонирование и анализ 5'-областей перед экзонами 1U и 1L
  • 3. Поиск сайтов связывания, потенциально способных участвовать в ауторегуляции гена Oct
    • 3. 1. Анализ ДНК-белковых комплексов методом задержки подвижности в геле
    • 3. 2. Поиск методом футпринтинга сайтов связывания, потенциально способных участвовать в ауторегуляции гена Oct
  • 4. Изучение промоторной активности 5'-областей перед экзонами
  • I. UhIL в клетках линии фибробластов 10(1)
  • V. / 4.1 Определенте активности промоторов 1U и 1L
    • 4. 2. Функциональный анализ 5'-фланкирующей области экзона 1L. .. .71 4.3Изучение активности промоторов 1U и 1L в лимфоидных и нелимфоидных клетках
  • Обсуждение результатов
  • Выводы

В отдельной клетке экспрессируются не все представленные в геноме гены, а только малая их часть. Спектр экспрессирующихся генов зависит от типа клетки и степени ее дифференцированности и может изменяться в ответ на поступающие извне сигналы. Одним из основных процессов, определяющих экспрессию, является процесс регуляции транскрипции через регуляторные элементы: промоторы, энхансеры, сайленсеры (цис-регуляторные элементы) и белковые транскрипционные факторы (транс-регуляторные элементы). В настоящее время описаны десятки факторов транскрипции и множество сигнальных путей, конечной точкой приложения которых являются универсальные процессы инициации (и реинициации) транскрипции и синтеза пре-мРНК РНК-полимеразами. При изучении процессов регуляции транскрипции и механизмов действия различных белковых транскрипционных факторов важно понять в какой мере данный процесс является специфическим или универсальным. Несомненный интерес представляет изучение механизмов, позволяющих одному и тому же белку участвовать как в активации, так и в репрессии целого ряда генов.

Белок ОсИ — фактор транскрипции, принадлежащий к РОИ-семейству. Описанный в конце 1980х годов, ОсИ долгое время считался исключительно «вездесущим» фактором транскрипции, регулирующим работу генов «домашнего хозяйства» клетки. Позднее было показано, что Ос1−1 принимает участие в регуляции экспрессии ряда тканеспецифических генов, в том числе генов интерлейкинов, легких и тяжелых цепей иммуноглобулинов, генов пролактина, гонадолиберина, тиреотропина и др.

К настоящему моменту описано более полутора десятков генов-мишеней ОсМ, несколько взаимодействующих с ним кофакторов, показано его участие в прикреплении хроматина к ядерной мембране. При этом ничего не известно о регуляции экспрессии самого гена оси! Данная работа посвящена анализу промоторных областей гена ос1−1 мыши, поиску возможных механизмов регуляции экспрессии гена этого полифункционального фактора.

Список обозначений и сокращений.

ГМ-КСФ — гранулоцитарно-макрофагальный колониестимулирующий фактор

ДМСО — диметилсульфоксид.

ДНК — дезоксирибонуклеиновая кислота.

ДТТ — дитиотреитол.

ИЛ (IL) — интерлейкин мРНК — матричная РНК мяРНП — малый ядерный рибонуклеопротеид.

ПААГ — полиакриламидный гель п.н. — пара нуклеотидов.

ПЦР — полимеразная цепная реакция.

РНК — рибонуклеиновая кислота.

РНКполН — РНК-полимераза II т.п.н. — тысяча пар нуклеотидов.

ЭДТА — этилендиамин-тетрауксусная кислота.

Cdk — Cycle dependent kinase CTD — C-terminal domain EMSA — electromobility shift assay HMG — high mobility group proteins GTFs — general transcription factors MAR — matrix attachment regions.

MOPS — 3-[М-морфолино] порпансульфониевая кислота.

ORF — open reading frame.

POUh — POU-гомеодомен.

POUs — POU-специфический домен.

TBP — TATA-binding protein.

TAFs — TBP-assotiated factors t*.

Обзор литературы.

Выводы.

1. Составлена экзон-интронная карта гена ос11−1 мыши и человека, локализовано положение экзона 1Ь: экзоны Ш и 1Ь разделяют 67 т.п.н. и 108 т.п.н. в генах мыши и человека соответственно.

2. Клонированы 5'-нетранслируемые области экзонов Ш и 1Ь гена ос/-7мыши.

3. Составлена карта потенциальных регуляторных сайтов этих областей, проведен анализ строения промоторов Ш и 1Ь гена ос/-1 человека и мыши. Перед экзоном 1Ь обнаружены сайты, потенциально способные обеспечить ауторегуляцию гена осг-1.

4. С помощью временной трансфекции функционально охарактеризованы промоторные области Ш и 1Ь. Для промотора 1Ь мыши локализован «минимальный промотор» в области -337/-137. Обнаружен ингибигорный элемент в области -99/-20, удаление которого приводит к могокрагному увеличению промогорпой активности.

5. Проведен анализ активности Ш и 1Ь промоторов в лимфоидных и нелимфоидных клетках, показана тканеспецифическая экспрессия промотора 1Ь в лимфоидных клетках.

Показать весь текст

Список литературы

  1. К. 2005. Transcriptional activation: mediator can act after preinitiation complex formation. Mol Cell 17: 752−753
  2. L., Struhl K. 1999. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399: 609−613
  3. Agalioti T., Lomvardas S., Parekh В., Yie J., Maniatis T., Thanos D. 2000. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103: 667−678
  4. G., Lagrange T., Reinberg D. 1996. The general transcription factors of RNA polymerase II. Gen. Dev. 10:2657−2683
  5. Martinez E., Chiang C.M., Ge H., Roeder R.G. 1994 TAFs in TFIID function through the initiator to direct basal transcription from a TATA-less class II promoter. EMBOJ. 13: 3115−3126
  6. Maldonado E., Ha I., Cortes P., Weis L., Reinberg D. 1990. Role of transcription factors TFIIA, TFIID and TFIIB during formation of a transcription- competent complex. Mol. Cell. Biol. 10: 6335−6347
  7. Ha I., Roberts S., Maldonado E., Sun X., Kim L.-U., Green M., Reinberg D. 1993. Multiple functional domains of transcription factor IIB: distinct interaction with two general transcription factors and RNA polymerase II. Genes Dev. 7: 10 211 032
  8. Sun X., Ma D., Sheldon M., Yeung K., Reinberg D. 1994. Reconstitution of human TFIIA activity from recombinant polypeptides: a role in TFIID-mediated transcription. Genes Dev. 8: 2336−2348
  9. E., Mittler G., Meisterernst M. 2005. Mediator of RNA polymerase II. Chromosoma 113: 399−408
  10. Struhl 2005, Sato S., Tomomori-Sato C., Parmely T.J., Florens L., Zybailov В., Swanson S.K., Banks C.A., Jin J., Cai Y., Washburn M.P. 2004 Mol Cell 14: 685 691.
  11. J.A., Yudkovsky N., Hahn S. 1999. Intermediates in formation and activity of the RNA polymerase II preinitiatioin complex: holoenzyme recruitment and a postrecruitment role for the TATA-box and TFIIB. Genes Dev. 13:49 063
  12. J.A., Takagi Y., Kornberg R.D., Asturias F.A. 2002. Structure of the yeast RNA polymrease holoenzyme: mediator conformation and polymerase interaction. Mol. Cell 10: 409−415
  13. P., Talianidis I. 2002. Dynamics of enhancer -promoter communication during differentiation-induced gene activation. Mol. Cell 10: 1467−1477
  14. M.P., Panizza S., Nasmyth K. 2001. Cdkl triggers assotiation of RNA plymerase to cell cycle promoters only after recruitment of the mediator by SBF. Mol Cell 7: 1213−1220
  15. H., Fukusawa T. 2000. Functional connections between mediator components and general transcription factors of Saccharomyces cerevisiae. J. Biol. Chem. 275: 37 251−37 256.
  16. S., Chuikov S., Reinberg D. 2000. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407: 102−106.
  17. P.G., Ranish J.A., Hahn S. 2004. RNA polymerase II (Pol II)-TFIIF and Pol II-mediator complexes: the major stable Pol II complexes and their activity in transcription initiation and reinitiation. Mol. Cell. Biol. 24: 1709−1720.
  18. A.K., Rosenfeld M.G. 1997. POU domain family values: flexibility, partnership, and developmental codes. Genes Dev. 11, 1207−1225.
  19. K., Luisi B. 2000. The virtuoso of versatility: POU proteins that flex to fit. J. Mol. Biol. 302, 1023−1039.
  20. Sturm R.A., Das G., Herr W. 1988. The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes Dev. 2, 15 821 599.
  21. C., Perry M. 1992. Histone H2B gene-transcription during Xenopus early development requires functional co-operation between proteins bound to the CCAAT and octamer motifs. Mol. Cell. Biol. 12, 4400−4411.
  22. C., Heintz N., Roeder R.G. 1987. Purification and characterization of OTF-1, a transcription factor regulate cell cycle expression of a human histone H2b gene. Cell. 51, 773−781.
  23. J., Mullerimmergluck M.M., Sciepel K., Janson L., Westin G., Schaffner W., Petterson U. 1991. Both Oct-1 and Oct-2a contain domains which can activate the ubiquitously expressed U2 snRNA genes. EMBO J. 10, 2291−2296.
  24. G.R., Pederson T. 1988. Upstream elements required for efficient transcription of human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev. 2, 196−204.
  25. L., Weller P., Pettersson U. 1989. Nuclear factor I can functionally replace transcription factor Spl in a U2 small nuclear RNA gene enhancer. J. Mol. Biol. 205, 387−396.
  26. Strom A.-C., Forsberg M., Lillhager P., Westin G. 1996. The transcription factors Spl and Oct-1 interact physically to regulate human U2 snRNA gene expression. Nucleic Acids Res. 24, 1981−1986.
  27. K.S., Flanagan W.M., Edvards C.A., Crabtree G.R. 1991. Activation of early gene expression in T lymphocytes by Oct-1 and an inducible protein, OAP. Science. 254, 558−562.
  28. Wu C.D., Lai E.J., Huang N., Wen X. 1997. Oct-1 and GGAAT/enhancer-binding protein (C/EBP) bind to overlapping elements within the interleukin-8 promoter. J. Biol. Chem. 24, 2396−2403.
  29. Kaushansky K., Shoemaker S.G., O’Rork C.A., McCarty J.M. 1994. Coordinate regulation of multiple human lymphokine genes by Oct-1 and potentially novel 45 and 43 kDa polypeptides. J. Immunol. 152,1812−1820.
  30. C.S., Patrone L., Wall R. 2000. An essential octamer motif in the mb-1 (Ig alpha) promoter. Mol. Immunol. 37, 321−328.
  31. C.S., Patrone L., Buchanan K.L., Webb C.F., Wall R. 2000. An upstream Oct-1- and Oct-2-binding silencer governs B29 (Ig beta) gene expression. J. Immunol. 164, 2550−2556.
  32. Tovar V., de la Fuente M.A., Pizcueta P., Bosh J., Engel P. 2000. Gene structure of the mouse leukocyte cell surface molecule Ly9. Immunogenetics. 51, 788−793.
  33. Luo J., Roeder R.G. 1995. Cloning, functional characterization, and mechanism of action of the B-cell specific transcriptional co-activator OCA-B. Mol. Cell. Biol. 15,4115−4124.
  34. P.C., Bertolino R.E., Singh H. 1997. Using altered specificity Oct-1 and Oct-2 mutants to analyze the regulation of immunoglobulin gene transcription. EMBOJ. 23,7105−7117.
  35. Delhase M., Castrillo J.-L., de la Hoya M., Rajas F., Hooge-Peters E.L. 1996. AP-1 and Oct-1 transcriptional factors down-regulate the expression of the human Pitl/ GHF1 gene. J. Biol. Chem. 271, 32 349−32 358.
  36. N., Cairns W., Okret S. 1998. Glucocorticoids repress transcription from a negative glucocorticoid response element recognized by two homeodomain-containing proteins, Pbx and Oct-1. J. Biol. Chem. 273, 2 356 723 574.
  37. J.W., Wilson L., Rosenfeld M.G. 1991. POU-domain proteins Pit-1 and Oct-1 interact to form a heteromeric complex and can cooperate to induce expression of the prolactin promoter. Genes Dev. 5, 1309−1320.
  38. C.D., Gowan S. 1996. Oct-1 interacts with consreved motifs in the human thyroid transcription factor 1 gene minimal promoter. Biochem. J. 319, 669−674.
  39. Pruijn G.J.M., van Miltenburg R.T., Claessens A.J., van der Vliet P.C. 1988. Interaction between the octamer-binding protein nuclear factor III and the adenovirus origin ofDNA replication. J. Virol. 62, 3092−3102.
  40. Kim M.K., Lesoon-Wood L.A., Weintraub B.D., Chung J.H. 1996. A soluble transcription factor, Oct-1, is also found in the insoluble nuclear matrix and posesses silencing activity in its alanine-rich domain. Mol. Cell. Biol. 16, 43 664 377.
  41. S., Nishibayashi S., Takao K., Tomifuji M., Fujino T., Hasegawa M., Takano T. 1997. Dissociation of Oct-1 from the nuclear peripheral structure induces the cellular aging-associated collagenase gene expression. Mol. Biol. Cell. 8, 2407−2419.
  42. He X., Treacy M.N., Simmons D.M., Ingraham H.A., Swanson L.W., Rosenfeld M.G. 1989. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 340, 35−42.
  43. Veenstra G.J.C., van der Vliet P.C., Destree O.HJ. 1997. POU domain transcription factors in embryonic development. Mol. Biol. Reports. 24, 139−155.
  44. Verrijezer C.P., Alkema M.J., van Weperen W.W., van Leeuwen H.C., Strating M.J., van der Vliet P.C. 1992. The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J. 11, 4993−5003.
  45. J.D., Rould M.A., Aurora R., Herr W., Pabo C.O. 1994. Crystal structure of the Oct-1 POU domain bound to the octamer site: DNA recognition with tethered DNA-binding modules. Cell. 77, 21−32.
  46. A.G. 1994. Noncanonical Oct-sequences are targets for mouse Oct-2B transcription factor. FEBS Lett. 337, 175−178.
  47. J.D., Pabo C.D. 1996. Oct-1 POU domain DNA interactions: cooperative binding of isolated subdomains and effects of covalent linkage. Genes Dev. 10,27−36.
  48. W., Cleary M.A. 1995. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev. 9, 16 791 693.
  49. K., Georgiev O., Schaffner W. 1992. Different activation domains stimulate transcription from remote («enhancer») and proximal («promoter») positions. EMBO J. 11: 4961−4968.
  50. A.G. 1992. Interaction of Oct-binding transcription factors with a large series of «noncanonical» oct-sequences. Primary sequence of murine Oct-2B cDNA. Dokl Akad Nauk. 235,175−179.
  51. A.G., Luchina N.N., Pankratova E.V. 1997. Cysteine 50 of the POUH domain determines the range of targets recognized by POU proteins. Nucleic Acids Res. 25, 2847−2853.
  52. A.G., Luchina N.N., Polanovsky O.L. 1997. Conservative Val47 residue of POU homeodomain: role in DNA recognition. FEBS Lett. 412, 5−8.
  53. O’Hare P., Goding C.R. 1988. Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation. Cell. 52, 435−445.
  54. T., Sturm R., Herr W. 1988. OBPIOO binds remarkably degenerate octamer motifs through specific interactions with flanking sequences. Genes Dev. 2, 1400−1413.
  55. Gstaiger M., Georgiev O., van Leeuwen H., van der Vliet P.C., Schaffner W. 1996. The B-cell coactivator Bobl shows DNA sequence-dependent complex formation with Oct-l/Oct-2 factors, leading to differential promoter activation. EMBO J. 15,2781−2790.
  56. P., Matthias P. 1998. Coactivator OBF-1 makes selective contacts with both the POU-specific domain and the POU homeodomain and acts as a molecular clamp on DNA. Mol. Cell. Biol. 18, 7397−7409.
  57. K.L., Chasman D.I., Sharp P.A. 1996. Sequence-specific DNA binding of the B-cell-specific coactivator OCA-B. Genes Dev. 10, 2079−2088.
  58. R., Cleary M.A., Herr W. 1998. OCA-B is a functional analog of VP 16 but targets a separate surface of the Oct-1 POU domain. Mol. Cell. Biol. 18, 2430.
  59. J.A., Jamamoto K.R. 1998. Allosteric effects of DNA on transcriptional regulators. Nature. 392, 885−888.
  60. Xia Y.-R., Andersen B., Mehrabian M., Diep A.T., Warden C.H., Monandas T., McEvilly R.J., Rosenfeld M.G., Lusis A.J. 1993. Cromosomal Organization of Mammalian POU Domain Factors. Genomics 21, 126−130.
  61. N., Peter W., Ciesiolka T., Gruss P., Scholer H. 1993. Mouse Oct-1 contains a composite homeodomain of human Oct-1 and Oct-2. Nucl. Acids Res. 21,245−252.
  62. A.G. 1991. The nucleotide sequence of mouse OCT-1 cDNA. Nucleic Acids Res. 20, 1419.
  63. Е.В., Деев И. Е., Поляновский O.JL 2001. Тканеспецифический сплайсинг 5'-экзонов гена фактора транскрипции Oct-1. Молекулярная биология 35: 34−41.
  64. Е.В., Деев И. Е., Женило С. В., Анфалова Т. В., Поляновский O.JI. 2001. Субформы фактора транскрипции Oct-1, синтезируемые в лимфоцитах. Молекуляр. биология 35, 816−823.
  65. E.V., Deev I.E., Zhenilo S.V., Polanovsky O.L. 2001. Tissue-specific isoforms of the ubiquitous transcription factor Oct-1. Mol. Genet. Genomics 266, 239−245.
  66. Luchina N. N, Krivega I.V., Pankratova E.V. 2002. Human Oct-1 isoform has tissue-specific expression pattern similar to Oct-2. Immunol Lett. 85(3), 237−41.
  67. C.B., Деев И. Е., Серов C.M., Поляновский O.JI. 2003. Регуляция транскрипции гена oct-1 человека с участием двух промоторов. Генетика 39, 280−285.
  68. S., Deyev I., Serov S., Polanovsky O.L. 2003 Regulation of oct-1 gene is different in lymphoid and non-lymphoid cells. Biochemie 85, 715−718.
  69. Das G., Herr W. 193. Enhanced Activation of the Human Histone H2B Promoter by an Oct-1 Variant Generated by Alternative Splicing. J. Biol. Chem. 268, 25 026−25 032.
  70. M., Knoepfel L., Georgiev O., Schaffner W., Hovens C.M. 1995. A B-cell coactivator of octamer-binding transcription factors. Nature. 373, 360−362.
  71. Dulic V, Lees E, Reed SI. 1992. Association of human cyclin E with a periodic Gl-S phase protein kinase. Science. V. 257. P. 1958−1961
  72. Zhao J, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, Fletcher JA, Harlow E. 2000. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev.: 2283−2297
  73. Zheng L., Roeder R.G., Luo Y. 2003. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114: 255−266.Kakizava Т., Miyamoto Т., Ichikawa K., Kaneko
  74. A., Suzuki S., Hara M., Nagasawa T., Takeda T., Mori Ji., Kumagai M., Hashizume K. 1999. Functional interaction between Oct-1 and retinoid X receptor. J. Biol. Chem. 274, 19 103−19 108.
  75. Z. 1993.Glycolytic enzymes as DNA binding proteins. Int J Biochem. V. 7. P. 1073−1076.
  76. P.E., Dyson H.J. 1999. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321−331.
  77. V., Cleary M.A., Herr W., Hernandez N. 1996. The Oct-1 POU-specific domain can stimulate Small Nuclear RNA gene transcription by stabilizing the basal transcription complex SNAPc. Mol. Cel. Biol. 16, 1955−1965.
  78. T., Miyamoto T., Ichikawa K., Kaneko A., Suzuki S., Hara M., Nagasawa T., Takeda T., Mori Ji., Kumagai M., Hashizume K. 1999. Functional interaction between Oct-1 and retinoid X receptor. J. Biol. Chem. 274, 1 910 319 108.
  79. V., Hess H., Fuhraman G., Anastassiadis C., Gross M.K., Vriend G., Scoler H.R. 1998. New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes Dev. 12, 2073−2090.
  80. Tomilin A., Remenyi A., Lins K., Bak H., Leidel S., Vrieno G., Wilmanns M., Scholer H.R. 2000. Synergism with the coactivator OBF-1 (OCA-B, BOB-1) is mediated by a specific POU dimer configuration. Cell. 103, 853−864.
  81. J.L., Pabo C.O., Sharp P.A. 1995. Analysis of homeodomain function by structure-based design of a transcriptional factor. Proc. Natl. Acad. Sci. USA. 92,9752−9756.
  82. M.A., Pendergrast P. S., Herr W. 1997. Structural flexibility in transcription complex formation revealed by protein-DNA photocrosslinking. Proc. Natl. Acad. Sci. USA. 94, 8450−8455.
  83. Mysiak M.E., Wyman C., Holthuizen P.E., van der Vliet P.C. 2004. NF1 and Oct-1 bend the Ad5 origin in the same direction leading to optimal DNA replication. Nucl. Acid Res. 32: 6218−6225
  84. M.A., Stern S., Tanaka M., Herr W. 1993. Differential positive control by Oct-1 and Oct-1: activation of a transcriptionally silent motif through Oct-1 and VP-16 corecruitment. Genes Dev. 7, 72−83.
  85. Williams D.C.Jr., Cai M., Clore G.M. 2004. Molecular basis for synergistic transcriptional activation by Octl and Sox2 revealed from the solution structure of the 42-kDa Octl. Sox2.Hoxbl-DNA ternary transcription factor complex. JBC 279(2): 1449−57
  86. B.P., Heckert L.L. 2005 Silencing of Fshr occurs through a conserved, hypersensitive site in the first intron, Mol. Endjcrynol. Apr.7, Epub ahead of print
  87. Inman C.K., Li N., Shore P. 2005 Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/ Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein, Mol Cell Biol 8: 3182−93.
  88. A.T., Kinsella B.T. 2005 Characterisation of promoter 3 of the human thromboxane A receptor gene. A functional AP-1 and octamer motif are required for basal promoter activity, FEBS J. 4: 1036−53.
  89. S., Annweiler A., Wirth T. 1994. The POU domains of the Oct-1 and Oct-2 transcription factors mediate specific interaction with TBP. Nucleic Acids Res. 22, 1655−1662.
  90. H., Nakshatri P., Currie R.A. 1995. Interaction of Oct-1 with TFIIB: implications for a novel response elicited through the proximal octamer site of the lipoprotein-lipase promoter. J. Biol. Chem. 270, 19 613−19 623.
  91. N., Roberts S.B., Heintz N. 1991. Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science 254: 18 141 816.
  92. Schild-Poulter C., Shih A., Yarymowich N., Hache RJ.S. 2003. Down-regulation of histone H2B by DNA-dependent protein kinase in response to DNA damage through modulation of Octamer Transcription Factorl. Cancer Res. 63: 7197−7205
  93. T., Koning H., Zwilling S. 1995. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 14, 1198−1208.
  94. Abdulkadir S.A., Krishna S., Thanos D., Maniatis T., Strominger J., Ono S.J. 1995. Functional roles of the transcription factor Oct-2A and the high mobility group protein I/Y in HLA-DRA gene expression. J. Exp. Med. 182, 487−500.
  95. Bolting C.H., Hay R.T. 1999. Characterization of the adenovirus preterminal protein and its interaction with the POU homeodomain of NFIII (Oct-1). Nucleic Acids Res. 27, 2799−2805
  96. Mysiak M.E., Wyman C., Holthuizen P.E. and van der Vliet P.C. 2004. NFI and Oct-1 bend the Ad5 origin in the same direction leading to optimal DNA replication. Nucleic Acids Research. 32 (21), 6218−6225.
  97. Koyasu S., Hussey R.E., Clayton L.K., Lerner A., Pedersen R., Delany-Heiken P., Chau F., Reinherz E.L. 1994. Targeted disruption within the CD3 zeta/eta/phi/Oct-1 locus in mouse. EMBO J. 13, 784−797.
  98. V.E., Tantin D., Chen J., Sharp P.A. 2004. В cell development and immunoglobulin transcription in Oct-1-deficient mice. Proc Natl Acad Sci USA. 101 (7), 2005−10.
  99. Т., Miyamoto Т., Ichikawa K., Kaneko A., Suzuki S., Нага M., Nagasava Т., Takeda Т., Mori Ji., Kumagai M., Hashizume K. 1999. Functional interaction between Oct-1 and retinoid X receptor. J. Biol. Chem. 274: 1 910 319 108.
  100. A.L., Martz G.U., Leonard J.L., Zoeller R.T. 2000. Acute changes in maternal thyroid hormone induce rapid and transient changes in gene expression in fetal rat brain. J. Neurosci. 20, 2255−2265.
  101. Chin L.S., Weigel C., Li L. 2000. Transcriptional regulation of gene expression of sec6, a component of mammalian exocyst complex at the synapse. Brain. Res. Mol. Brain Res. 79, 127−137.
  102. Deng J., Madan A., Banta A.B., Friedman C., Trask B.J., Hood L., Li L. 2000. Characterization, chromosomal localization, and complete 30-kb DNA sequence of the human Jugged2 (JAG2) gene. Genomics 63, 133−138.
  103. В.Г. Иммунология. М, изд-во «Нива России», 2000
  104. Cron RQ, Zhou В, Brunvand MW, Lewis DB. 2001. Octamer proteins inhibit IL-4 gene transcription in normal human CD4 T cells. Genes Immun.8: 464−468
  105. M., Mordvinov V., Sanderson C. 2000. Binding of octamer factors to a novel 3'-positive regulatory element in the mouse interleukin-5 gene. J.Biol.Chem. 257: 4525−4531
  106. M.I., Robins D.M. 2001.0ct-l preferentially interacts with androgen receptor in a DNA-dependent manner that facilitates recruitment of SRC-1. J. Biol. Chem. 276, 6420−6428.
  107. A., Hasegava Y., Higai K., Matsumoto K. 2000. Transcriptional regulation of human beta-galactoside alpha-2, 6-sialyltransferase (hST6Gal I) gene during differentiation of the HL-60 cell line. Glycobiology 10, 623−628.
  108. Д., Мейл Б. Иммунология.- М. изд-во «Мир». 2000
  109. Schaffer A, Kim EC, Wu X, Zan H, Testoni L, Salamon S, Cerutti A, Casali P. 2003. Selective inhibition of class switching to IgG and IgE by recruitment of the
  110. HoxC4 and Oct-1 homeodomain proteins and Ku70/Ku86 to newly identified ATTT cis-elements. J Biol Chem 278: 23 141−23 150
  111. Akizawa Y, Nishiyama C, Hasegawa M, Maeda K, Nakahata T, Okumura K, Ra C, Ogawa H. 2003. Regulation of human Fc-epsilon RI beta chain gene expression by Oct-1. Int Immunol.: P. 549−556
  112. K., Massa S., Schubart D., Corcoran L.M., Rolink A.G., Matthias P. 2001. В cell development and immunoglobulin gene transcription in the absence of Oct-1 and OBF-1. Nature Immunol. 2: 69−74.
  113. Bharadwaj RR, Trainor CD, Pasceri P, Ellis J. 2003. LCR-regulated transgene expression levels depend on the Oct-1 site in the AT-rich region of beta -globin intron-2. Blood: 1603−1610
  114. Т. Маниатис, Э. Фрич, Дж. Сэмбрук. Молекулярное клонирование. М. «Мир» 1984, стр. 333−334.
  115. Inoue Н. Et al. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23−28.
  116. , J.L. (1984) in: Transcription and Translation. A Practical Approach (Hames, B.D. and Higgins, S.G., Eds.) pp. 89−110, IRL Press, Oxford.
  117. Carbon P., Murgo S., Ebel J.P., Krol A., Tebb G. And Mattaj L.W. 1987. Cell 51, pp. 1071−1080.
  118. Т. Маниатис, Э. Фрич, Дж. Сэмбрук. Молекулярное клонирование. М. «Мир» 1984, стр. 99−104.
  119. Malik K.F., Kim J., Hartman A.L., Kim P., Scott Young-III W. 1996 Binding preferences of the POU domain protein Brain-4: implications for autoregulation. Mol. Brain Res. 38, 209−221.
  120. Tranche F., Ringeisen F., Blumenfeld M., Yaniv M., Pontoglio M. Analysis of the distribution of binding sites for a tissue-specific transcription factor in the vertebrate genome. 1997 J.Mol.Biol. 266, 231−245.
  121. Pikarsky E., Sharir H., Ben-Shushan E., Bergman Y. 1994 Retinoic acid represses Oct-¾ gene expression through several retinoic acid-responsive elements located in the promoter-enhancer region. Mol.Cel.Biol. 14, 1026−1038.
  122. А.Г., Поляновский О.Jl. 1996. Взаимодействие Oct-белков с ДНК. Молекул. Биология 30, 296−302.
  123. М.Р., Tamkun J.W., Hartzell G.W. 1989. The structure and function of the homeodomain. Biochim. Biophis. Acta 989, 25−48.
  124. Percival-Smith A., Muller M., Affolter M., Gehring W.J. 1992. The interaction with DNA of wild-type and mutant fushi tarazu homeodomains. EMBO J. 9, 3967−3974.
  125. П.М. 2000. Альтернативные промоторы и процессинг РНК в экспрессии эукариотического генома. Молекулярная биология 34, 626−634.
  126. Landry J.-R., Mager D.L., Wilhelm В.Т. 2003. Complex controls: the role of alternative promoters in mammalian genimes. TRENDS in genetics 19, 640−648.
  127. Adriana Cabral, David F. Fischer, Wilbert P. Vermeij, Claude Backendorf. 2003. Distinct functional interactions of human Skn-1 isoforms with Ese-1 during keratinocyte terminal differentiation. J. Biol. Chem. 278(20), 17 792−99.
  128. M., Knoepfel L., Georgiev O., Schaffner W., Hovens C.M. 1995. A B-cell coactivator of octamer-binding transcription factors. Nature 373: 360−362.
  129. Strubin M, Newell JW, Matthias P. 1995. OBF-1, a novel В cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell 80(3), 497−506.
  130. G.Struhl, K. Struhl, P.M.Macdonald. 1989. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57, 1259−1273.
  131. M.Carey, J. Kolman, D.A.Katz, L. Gradoville, L. Barberis, G.Miller. 1992. Transcriptional synergy by the Epstein-Barr virus transactivator ZEBRA. J.Virol. 66,4803−4813.
  132. S., Meyer S. 1992. Compilation of vertebrate-encoded transcription factors. Nucl. Acids Res. 20, 3−26.
  133. E.V., Polanovsky O.L. 1998. Oct-1 promoter region contains octamer sites and TAAT motifs recognized by Oct proteins. FEBS Let. 426, 8185.
  134. V.B., Choudhary V., Hock C.K. 2004. Content analysis of the core promoter region of human genes. In Silico Biol. 4(2): 109−125.
  135. Е.В., Панкратова Е. В. 2003. Фактор транскрипции Oct-1 -пластичность и полифункциональность. Молекулярная Биология, т.37 (5):755−67.
  136. Pankratova EV, Sytina EV, Luchina NN, Krivega IV. 2003. The regulation of the oct-1 gene transcription is mediated by two promoters. Immunol Lett., v.88(l):15−20.
  137. E.B., Сытина E.B., Степченко А. Г., Поляновский O.JI. Oct-гены и Oct-факторы транскрипции. 1998. Тезисы отчетной конференции по программе «Геном человека», с. 54.
  138. Е.В., Сытина Е. В., Юдина Г. Ф., Степченко А. Г., Поляновский O.JI. Регуляция экспрессии генов Oct-1 nOct-2. 1999. Тезисы отчетной конференции по программе «Геном человека», с. 72.
  139. Автор благодарит А. Г. Степченко за предоставление ос/-7 кДНК геномную ДНК мыши и методическую помощь.
Заполнить форму текущей работой