Помощь в написании студенческих работ
Антистрессовый сервис

Окислительно-восстановительное взаимодействие гидрогеназ фототрофных бактерий с металлами

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Показана способность гомогенных гидрогеназ Т. roseopersicina и L. modestohalophilus к окислению металлического кадмия и цинка с выделением водорода и восстановлению ионов никеля, платины, палладия и рутения в атмосфере водорода в модельных системах. Следовательно, ионы никеля, платины и палладия могут выступать в качестве акцепторов, а металлический порошок кадмия или цинка в качестве доноров… Читать ещё >

Окислительно-восстановительное взаимодействие гидрогеназ фототрофных бактерий с металлами (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений
  • ОБЗОР ЛИТЕРАТУРЫ
  • Глава I. Метаболизм водорода у фототрофных бактерий
  • Глава II. Общая характеристика гидрогеназ
    • 2. 1. Распространение и классификация гидрогеназ
    • 2. 2. Физиологические функции [NiFej-гидрогеназ
    • 2. 3. Строение активного центра NiFe-гидрогеназ
    • 2. 4. Механизм каталитического действия и активация NiFe-гидрогеназ
    • 2. 5. Факторы, влияющие на активность и стабильность гидрогеназ
    • 2. 6. Организация генов, синтез [NiFe]-гидрогеназ и его регуляция
    • 2. 7. Возможности практического применения гидрогеназ
  • Глава III. Взаимодействие гидрогеназ с металлами
    • 3. 1. Трансформация ионов металлов микроорганизмами, содержащими гидрогеназу
    • 3. 2. Окисление металлов микроорганизмами, содержащими гидрогеназу
    • 3. 3. Ингибирование гидрогеназ ионами металлов
  • МАТЕРИАЛЫ И МЕТОДЫ
  • Глава IV. Объекты и методы исследования
    • 4. 1. Микроорганизмы и условия их культивирования
    • 4. 2. Получение экстрактов клеток и очистка гидрогеназы
    • 4. 3. Определение гидрогеназной активности
    • 4. 4. Восстановление ионов металлов клетками бактерий и препаратами гидрогеназ
    • 4. 5. Окисление металлов препаратами гидрогеназ
    • 4. 6. Аналитические методы
    • 4. 7. Электронно-микроскопические методы
    • 4. 8. Обработка данных и воспроизводимость измерений
  • РЕЗУЛЬТАТЫ
  • Глава V. Общая характеристика гидрогеназы пурпурной серной бактерии L. modestohalophilus
    • 5. 1. Физико-химические свойства гидрогеназы
    • 5. 2. Стабильность гидрогеназы при хранении
    • 5. 3. Термостабильность гидрогеназы
    • 5. 4. Влияние рН на активность фермента
    • 5. 5. Влияние СО на активность гидрогеназы
  • Глава VI. Влияние ионов металлов на активность и процесс активации гидрогеназ фототрофных бактерий
    • 6. 1. Влияние ионов металлов на активность гидрогеназ
  • У I Л I П I Л I
    • 6. 2. Влияние ионов Ni, Cd, Си и Hg на активацию гидрогеназы
    • 6. 3. Влияние ионов металлов на спектр поглощения гидрогеназы
  • Глава VII. Окислительно-восстановительное взаимодействие клеток и препаратов гидрогеназ из фототрофных бактерий с металлами
    • 7. 1. Восстановление ионов металлов клетками микроорганизмов
    • 7. 2. Восстановление ионов металлов гидрогеназами
    • 7. 3. Окисление металлов гидрогеназами
  • ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • ВЫВОДЫ

Актуальность работы. Гидрогеназа является ключевым ферментом метаболизма водорода и катализирует обратимую активацию молекулярного водорода. Способность к образованию и потреблению водорода проявляют представители разных систа-матических групп микроорганизмов [Кондратьева, Гоготов, 1981].

Интерес к гидрогеназам в значительной степени обусловлен стремлением познать их структуру и механизм действия, а также возможностью практического применения этих многоядерных металлоферментов в водородных топливных элементах и биокаталитических системах получения молекулярного водорода с использованием солнечной энергии. По содержанию металлов в активном центре различают два типа гидрогеназ: NiFe-и Feгидрогеназы. В последнее время выделяют еще один тип гидро-V геназ — ферменты, не содержащие никель и железосернь^кластеров. Все типы гидрогеназ различаются по каталитическим свойствам и специфичности к разным донорам/акцепторам электронов [Vignais, Colbeau, 2004].

Металлы, с одной стороны, необходимы для биосинтеза и каталитического действия ферментов, включая гидрогеназу. С другой стороны, ионы металлов в повышенных концентрациях оказывают токсическое действие на живые клетки и ингибирующее влияние на ферменты. В связи с этим необходимо исследовать влияние ионов металлов в широком диапазоне концентраций на активность и механизм каталитического действия гидрогеназ.

Кроме того, многие металлы моут быть донорами электронов в катализируемой гидрогеназой реакции образования водорода и окисляться до растворимой ионной формы [Bryant, Laishley, 1990]. Данный процесс моделирует анаэробную биокоррозию металлов в присутствии микроорганизмов, содержащих гидрогеназу.

Важной задачей охраны окружающей среды является поиск технологий очистки сточных вод промышленных предприятий от тяжелых металлов. Комплексное использование химических и биологических методов позволит значительно снизить загрязнение окружающей среды тяжелыми металлами. Многие микроорганизмы способны аккумулировать в биомассе большое количество тяжелых металлов, а также трансформировать высокотоксичные ионы металлов в малорастворимые комплексы или осадок свободного металла. Однако механизм редокс-трансформации металлов остается неясным. Показано, что микроорганизмы, содержащие гидрогеназу, способны восстанавливать ионы ряда металлов до металлического состояния в присутствии водорода [Lloyd, 2003].

В связи с этим необходим поиск новых продуцентов стабильных и активных гидрогеназ, способных к окислению металлов и восстановлению их ионов в атмосфере водорода. Перспективными продуцентами активных и стабильных гидрогеназ являются фототрофные микроорганизмы.

Цель и задачи исследования

Целью данной работы являлось выяснение возможности и механизма окислительно-восстановительного взаимодействия гидрогеназ с металлами в модельных системах, используя ранее описанную гидрогеназу Thiocapsa roseopersicina, штамм BBS, и вновь выделенную гидрогеназу Lamprobacter modestohalophilus, штамм Syvash, и исследование свойств гидрогеназы ранее не изученной пурпурной серобактерии L. modestohalophilus.

В связи с этим были поставлены следующие задачи:

1) получить гомогенные препараты и охарактеризовать свойства гидрогеназы пурпурной серной бактерии L. modestohalophilus,.

2) изучить влияние ионов металлов на активность и активацию очищенных гидрогеназ Т. roseopersicina и L. modestohalophilus,.

3) выяснить возможность восстановления ионов металлов клетками фототрофных бактерий Т. roseopersicina и L. modestohalophilus в атмосфере водорода,.

4) изучить восстановление ионов металлов в атмосфере водорода и окисление металлов очищенными гидрогеназами Т. roseopersicina и L. modestohalophilus. Научная новизна работы. Впервые показано, что ионы никеля, платины и палладия могут выступать в качестве акцепторов, а металлический порошок кадмия или.

V цинка) йоноров электронов для гидрогеназ, выделенных из фототрофных бактерий.

Установлена способность клеток фототрофных бактерий к восстановлению ионов никеля, платины, палладия и рутения в атмосфере водорода. Добавление метилвио-логена в качестве переносчика электронов приводило к ускорению этого процесса.

Л| ^ j Л г л | Л Г л |.

Изучено ингибирующее действие ионов Ni, Cd, Mg, Си, Hg, Pt, Pd и Ru3+ на активность и процесс активации гидрогеназ Т. roseopersicina и L. modestohalophilus. Впервые выяснены различные механизмы ингибирующего действия ионов металлов на гидрогеназы микроорганизмов. Установлено, что ионы никеля, кадмия и рутения являются обратимыми ингибиторами гидрогеназ по отношению к окисленному метилвиологену и не влияют на процесс их активации. Ионы меди и ртути необратимо подавляют как активность, так и активацию гидрогеназ.

Впервые получены гомогенные препараты и изучены свойства гидрогеназы пурпурной серной бактерии L. modestohalophilus. Показано, что гидрогеназа этой бактерии устойчива к действию СО, высокой температуры и проявляет высокую стабильность при хранении.

Научная и практическая значимость работы. Полученные данные расширяют имеющиеся представления о свойствах фототрофных бактерий и выделенных из них гидрогеназ. Показано, что металлический порошок кадмия или цинка в анаэробных условиях может быть донором электронов для этих ферментов, что важно для выяснения природы коррозии металлов. Выделенная гидрогеназа из L. modestohalophilus, проявляющая высокую устойчивость к действию Ог, СО и температуры, может быть использована при разработке новых видов водородных топливных элементов. На основе клеток фототрофных микроорганизмов возможно создание фотобиореакторов, способных в атмосфере водорода восстанавливать ионы металлов из сточных вод промышленных предприятий.

Апробация работы. Материалы диссертации доложены на 6-ой Международной конференции «Гидрогеназа 2000» (Германия, Потсдам, 2000), школе-конференции «Горизонты физико-химической биологии» (Пущино, 2000), международной конференции «Биокатализ 2000, основы и практическое использование» (Москва, 2000), 4-ой, 5-ой и 7-ой Пущинской школе-конференции молодых ученых «Биология — наука XXI века» (Пущино, 1999,2001,2003).

Публикации. По материалам диссертации опубликовано 11 работ.

Структура диссертации. Диссертация состоит из введения, обзора литературы, описания объектов и методов исследования, изложения экспериментальных данных, их обсуждения, выводов и списка цитируемой литературы. Текст диссертации занимает 105 страниц, содержит 32 рисунка и 7 таблиц.

выводы.

1. Получены гомогенные препараты гидрогеназы из ранее не изученной фото-трофной серобактерии Lamprobacter modestohalophilus штамм Syvash. Гидрогеназа этой бактерии стабильна при хранении и проявляет устойчивость к действию СО и высокой температуры.

2. Впервые показано, что ионы никеля, кадмия и рутения являются обратимыми и конкурентными ингибиторами гидрогеназ Т. roseopersicina и L. modestohalophilus по отношению к окисленному метилвиологену в реакции окисления водорода и не оказывают влияние на активацию. Ионы ртути и меди необратимо подавляют активность и активацию этих ферментов.

3. Впервые установлена способность клеток Т. roseopersicina и L. modestohalophilus к восстановлению ионов никеля, платины, палладия и рутения в атмосфере водорода с образованием металлов.

4. Показана способность гомогенных гидрогеназ Т. roseopersicina и L. modestohalophilus к окислению металлического кадмия и цинка с выделением водорода и восстановлению ионов никеля, платины, палладия и рутения в атмосфере водорода в модельных системах. Следовательно, ионы никеля, платины и палладия могут выступать в качестве акцепторов, а металлический порошок кадмия или цинка в качестве доноров электронов в реакции обратимого окисления водорода этими ферментами.

5. Установлено, что восстановление и окисление металлов гидрогеназами фототрофных бактерий может происходить как путем прямого переноса электронов от металла к ферменту, так и опосредованно через переносчик электронов, добавление которого ускоряет протекание этих процессов.

В заключение мне очень приятно назвать имена тех людей, которые оказывали помощь и поддержку в процессе выполнения и оформления этой работы.

Сердечно благодарю моего научного руководителя доктора биологических наук Ивана Николаевича Гоготова за внимание к работе и бесценную научную школу.

Выражаю глубочайшую благодарность моему научному руководителю кандидату биологических наук Николаю Алексеевичу Зорину за большое внимание и всестороннюю помощь в работе, который не только организовывал и направлял мою работу, но и ободрял меня в моменты неудач и сомнений.

Искренне благодарю сотрудников лаборатории биохимии и биотехнологии фо-тотрофных микроорганизмов кандидата биологическюс наук Ларису Тимофеевну Серебрякову, кандидата биологических наук Марину Евгеньевну Шереметьеву, асп. Григория Ивановича Котова и Валентину Андреевну Морозову за помощь в работе и при обсуждении результатов.

Глубоко признателен заведующему лаборатории физиологии и биотехнологии фототрофных организмов доктору биологических наук Анатолию Анатолиевичу Цыганкову и кандидату биологических наук Татьяне Викториновне Лауринавичене за поддержку и содействие в работе и всем сотрудникам этой лаборатории.

Выражаю благодарность кандидату биологическюс наук Наталье Егоровне Су-зиной и асп. Татьяне Николаевне Абашиной (ИБФМ РАН) за помощь в проведении электронно-микроскопических экспериментов.

От всей души признателен моим близким Валентине Ивановне Задворной, Юлии Александровне Червонной и Екатерине Юрьевне Гавриш, и друзьям в Пущино, Туле, Москве и Санкт-Петербурге за понимание и поддержку на всём протяжении работы.

Показать весь текст

Список литературы

  1. О.Д., Орлеанский В. К., Никандров В. В. Аккумуляция кадмия, титана и алюминия цианобактерей Nostoc muscorum. Микробиология, 1999, 68(6):851−859.
  2. Л.А. О свойствах Thiocapsa roseopersicina штамм BBS, выделенного из эстуария белого моря. Микробиология, 1974,43:326−333.
  3. М.К., Кожанов Т. К., Клышев Л. К. В кн.: Труды Всесоюзного семинара 14−18 декабря 1971 (под ред. В. Л. Кретовича), 1971, Москва, ВДНХ, с. 110−115.
  4. И.Н., Зорин Н. А., Кондратьева Е. Н. Очистка и свойства гидрогеназы Thiocapsa roseopersicina. Биохимия, 1976, 41:836−842.
  5. Гоготов И.Н. Hydrogenase of purple bacteria: properties and regulation of synthesis. Arch. Microbiol, 1984,140(2):86−90.
  6. И.Н. Биотехнологичекие основы получения водорода за счет фототрофных микроорганизмов. Биотехнология, 1989, 5:1.
  7. И.Н., К.К. Рао, Холл Д. О. Образование системами, содержавшими металлическое железо и препараты гидрогеназ. Прикладная биохимия и микробиология, 1995,31(4): 387−392.
  8. И.Н., Зорин Н. А., Задворный О. А. Аккумуляция металлов фототрофными микроорганизмами и их извлечение. Экология и почвы. Избранные лекции VIII IX Всероссийских школ. Москва: Политекс, 1999, с. 238−251.
  9. Д. Электрохимические константы. Справочник для электрохимиков. М.: Мир, 1980, 365 с.
  10. Е.Н., Прохорова Г. В. Аналитическая химия, М.: Высшая школа, 1991, с. 233−234.
  11. Г. А., Колотилова Н. Н. Введение в природоведческую микробиологию: Учеб. пособие. М.: Книжный дом «Университет», 2001. — 256 с.
  12. Зорин Н.А. Redox properties and active center of phototrophic bacteria hydrogenases. Biochemie, 1986a, 68(1):97−101.
  13. Н.А. Ингибирование гидрогеназы Thiocapsa roseopersicina различными соединениями. Биохимия, 19 866, 51:770−774.
  14. Н.А. рН-Индуцируемые конформационные изменения гидрогеназы Thiocapsa roseopersicina. Биохимия, 1992, 57(2):1171−1176.
  15. Н.А., Карякин А. А., Гоготов И. Н., Варфоломеев С. Д. Механизм действия гидрогеназы Thiocapsa roseopersicina. Биохимия, 1988, 53(5):728−734.
  16. Н.А., Пашкова О. Н., Гоготов И. Н. Выделение и характеристика двух форм гидрогеназы Thiocapsa roseopersicina. Биохимия, 1995, 60(4):515−521.
  17. Н.А., Серебрякова JI.T., Гоготов И. Н. Влияние окислительно-восстановительного потенциала на активность гидрогеназ пурпурных бактерий. Биохимия, 1984,49(8): 1316−1319.
  18. Н. А., Гоготов И. Н. Гидрогеназная активность Thiocapsa roseopersicina по реакции обмена D2 Н20. Биохимия, 1975, 40(2):192−195.
  19. Н. А., Гоготов И. Н. Стабильность гидрогеназы из пурпурной серобактерии Thiocapsa roseopersicina. Биохимия, 1982, 47(5):827−833.
  20. Г. И. Биогеотехнология металлов В кн. Промышленная микробиология. Под ред., Н. С. Егорова. М.:Высш. шк., 1989, с. 634−660.
  21. А.А., Варфоломеев С. Д. Каталитические свойства гидрогеназ. Успехи химии, 1986 55(9): 1524−1549.
  22. Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. М.: Металлургия, 1984,400 с.
  23. Е.Н., Гоготов И. Н. Молекулярный водород в метаболизме микроорганизмов. 1981, М.: Наука. 344 с.
  24. Е.Н. Автотрофные прокариоты: Учеб. пособие. М: Изд-во МГУ, 1996. 312 с.
  25. В. И. Распределение ингибирующей активности среди катионов двухвалентных металлов. Биохимия, 1988, 53(6):905−911.
  26. Методы общей бактериологии. Под ред. Ф. Герхардта и др. 1989. М.: Мир, 2:356.
  27. С.В. Водородный топливный электрод на основе ферментов. Диссертация на соискание ученой степени кандидата химических наук, МГУ, Москва, 2003.
  28. С.В., Карякина Е. Е., Задворный О. А., Зорин Н. А., Варфоломеев С. Д., Карякин А. А. Биоэлектрокатализ гидрогеназой Th. roseopersicina, иммобилизованной на различных углеродных материалах. Электрохимия, 2002, 38:113−119.
  29. В.А., Антонович В. П., Невская Е. М. Гидролиз ионов металлов в разбавленных растворах. М.: Атомиздат, 1979.
  30. В.В. Неорганические полупроводники в биологических и биохимических системах: биосинтез, свойства и фотохимическая активность. Успехи биологической химии, 2000, 40:357−396.
  31. В.М., Гоготов И. Н. Выделение молекулярного водорода клетками зеленой водоросли Chlorella vulgaris. Физиология растений, 1979, 26:560.
  32. М.Н. Повреждение микроорганизмами материалов и способы их защиты.
  33. В кн. Промышленная микробиология. Под ред., Н. С. Егорова. -М.:Высш. шк., 1989, с. 660−677.
  34. А.В., Аверина, С.Г. Оксигенная фототрофия: Руководство по эволюционной клеточной биологии. СПб: Изд-во С.-Петерб. ун-та, 2002. — 236 с.
  35. Серебрякова J1.T. Гидрогеназы пурпурных и зеленых бактерий. Диссертация на соискание ученой степени кандидата биологических наук, ИПиФ АН СССР, Пущино, 1990.
  36. JI.T., Гоготов И. Н. Ингибирование гидрогеназ зеленых бактерий газообразными соединениями. Биохимия, 1991,56(2):289−294.
  37. Л.Т., Зорин Н. А., Гоготов И. Н. Гидрогеназа зеленой серобактерии СЫогоЫит limicola forma thiosulfatophilum. Биохимия, 1987, 52(6):908−914
  38. Л.Т., Зорин Н. А., Карпилова И. Ф., Гоготов И. Н. Влияние температуры на анаэробное окисление металлов при участии бактериальных гидрогеназ. Прикладная микробиология и биохимия, 1997, 33(3):317−320.
  39. Физическая энциклопедия. Гл. ред. Прохоров А. М. М.: Большая Российская энциклопедия, 1992,3:356.
  40. И.А. Физиология и биохимия микроэлементов. М.: Высшая школа, 1970.
  41. М.Б., Орлова Е. В., Смирнова Е. А., Зорин Н. А., Тагунова И. В., Куранова И. П., Гоготов И. Н. Структура микрокристаллов гидрогеназы из Thiocapsa roseopersicina. Биофизика, 1987. 295(2):509−512.
  42. Н.А., Савельева Н. Д., Ляликова Н. Н. Окисление молекулярного водорода и окиси углерода факультативно-хемолитотрофными ванадатвосстанавли-вающими бактериями. Микробиология, 1993, 62(4):597−603.
  43. Adams M.W.W. The Structure and Mechanism of Iron-Hydrogenases. Biochim. Biophys. Acta, 1990,1020(2):115−145.
  44. Adams M.W.W., Hall D.O. Properties of the solubilized membrane-bound hydrogenase from the photosynthetic bacterium Rhodospirillum rubrum. Arch. Biochem. and Biophys., 1979,195(2):288−295.
  45. Adams M.W.W., Mortenson, L.E., Chen, J.S. Hydrogenase. Biochem. Biophys Acta, 1981, 594(2−3): 105−176.
  46. Albracht S.P.J., van der Zwaan J.W., Fontijn R.D. Direct evidence for spin-spin interaction between Ni (III) and iron-sulfur cluster. Biochem. Biophys. Acta, 1984, 766:245−258.
  47. Albracht S.P.J. Nickel hydrogenases: in search of the active site. Biochim. Biophys. Acta, 1994,1188:167−204.
  48. Alexeeva S., Hellingwerf, K.J., and Teixeira de Mattos, M.J. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J. Bacteriol. 2003.185:204−209.
  49. Alvarez H.M., Krawiec, M., Donovan-Merkert, B.T., Fouzi, M., and Rabinovich, D.
  50. Modeling nickel hydrogenases: synthesis and structure of a distorted octahedral complex with an unprecedented NiS (4)H (2). core. Inorg. Chem., 2001. 40:5736−5737.
  51. Aono S. Biochemical and biophysical properties of the СО-sensing transcriptional activator CooA. Acc. Chem. Res., 2003,36:825−831.
  52. Appel J., and Schulz, R. Hydrogen metabolism in organisms with oxygenic photosynthesis: Hydrogenases as important regulatory devices for a proper redox poising. J. Photochem. Photobiol., 1998, 47:1−11.
  53. Asada Y., and Miyake, J. Photobiological hydrogen production J. Biosci. Bioeng., 1999, 88:1−6.
  54. Badar U., Ahmed N., Beswick A.J., Pattanapiptpaisal P., and Macaskie L.E. Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan. Biotechnol. Letters, 2000, 22:829−836.
  55. Bagyinka C., J.P. Whitehead, M.J. Maroney. An X-Ray-absorption spectroscopic study of nickel redox chemistry in hydrogenase. J. Am. Chem. Soc., 1993, 115(9):3576−3585.
  56. Bertrand M., Friedrich, В., and Siddiqui, R.A. Ralstonia eutropha TF93 is blocked in Tat-mediated protein export. J. Bacteriol., 2000, 182:581−588.
  57. Binder U., Maier, T. and Bock, A. Nickel incorporation into hydrogenase 3 from Escherichia coli requires the precursor form of the large subunit. Arch. Microbiol., 1996,165:69−72.
  58. Blokesch M., Magalon, A., and Bock, A. Interplay between the specific chaperone-like proteins HybG and HypC in maturation of hydrogenases 1,2, and 3 from Escherichia coli. J. Bacteriol., 2001,183:2817−2822.
  59. Blokesch M. and Bock, A. Maturation of NiFe.-hydrogenases in Escherichia coli: the HypC cycle. J. Mol. Biol., 2002, 324:287−296.
  60. Boichenko A.V. and Hoffmann, P. Photosynthetic hydrogen-production in prokaryotes and eukaryotes: Occurrence, mechanism, and functions. Photosynthetica 1994, 30:527−552.
  61. Bontidean I., Lloyd, J, R., Hobman, J.L., Wilson, J.R., Csoregi, E., Mattiasson, B, and Brown, N.L. Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J Inorg. Biochem., 2000, 79:225 229.
  62. Bredford M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle protein-dye binding. Analyt. Biochem., 1976, 72(1−2):248−254.
  63. Brewin N.J., DeJong, T.M., Phillips D.A., and Johnston A.W.B. Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium legumino-sarum. Nature, 1980,288:77−79.
  64. Bruschi M., Fantucci, P., and De Gioia, L. DFT investigation of structural, electronic, and catalytic properties of diiron complexes related to the 2Fe. n subcluster of Fe-only hydrogenases. Inorg. Chem., 2002, 41:1421−1429.
  65. Bryant R. D., and Laishley, E. J. The role of hydrogenase in anaerobic biocorrosion. Can. J.Microbiol., 1990,36:259−264.
  66. Bryant R., and Laishley, E. The effect of inorganic phosphate and hydrogenase on the corrosion of mild steel. Appl. Microbiol. Biotechnol., 1993,38:824−827.
  67. Cammack R. in Cammack, R., Frey, M., and Robson, R. (eds). 2001. Hydrogen as a Fuel.1.arning from Nature (Taylor and Francis Inc., London and New York, USA, 2001), pp. 71−92.
  68. Cammack R., Patil, D. S., Hatchikian, E.C., and Fernandez, V.M. Nickel and iron-sulphur centers in Desulfovibrio gigas hydrogenase: ESR spectra, redox properties and interactions. Biochim. Biophys. Acta, 1987, 912:98−109.
  69. Casalot L., and Rousset, M. Maturation of the NiFe. hydrogenase. Trends Microbiol., 2001,9:228−236.
  70. Chardin В., Giudici-Orticoni M.-T., De Luca, G., Guigliarelli, В., and Bruschi, M. Hydrogenase in sulfate-reducing bacteria function as chromium reductase. Appl. Microbiol. Biotechnol., 2003, 63:315−321.
  71. Chirwa ES, Wang Y-T: Simultaneous chromium (VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Wat. Res., 2000,34:2376−2384.
  72. Colbeau A., Chabert J., and Vignais, P.M. Purification, molecular properties and localization in the membrane of the hydrogenase of Rhodopseudomonas capsulata. Biochim. Biophys. Acta, 1983, 748:116−127.
  73. Cord-Ruwish R., and Widdel, F. Corroding iron as a hydrogen source for sulphate-reduction in growing cultures of sulphate-reducing bacteria. Appl. Microbiol. Biotechnol, 1986,25(3): 169−174.
  74. Da Silva S., Basseguy, R., and Bergel, A. The role of hydrogenase in the anaerobic mi-crobiologically influence corrosion of steels. Bioelectrochemistry, 2002, 56:7779.
  75. Darensbourg M.Y., Lyon, E.J., Zhao, X., and Georgakaki, I.P. The organometallic active site of Fe. hydrogenase: models and entatic states. Proc. Natl. Acad. Sci. U. S. A., 2003,100:3683−3688.
  76. De Lacey A.L., Hatchikian, E.C., Volbeda, A., Frey, M., Fontecilla-Camps, J.C. and Fernandez, V.M. Infrared-spectrochemical characterization of the NiFe. hydrogenase of Desulfovibrio gigas. J. Am. Chem. Soc, 1997,119:7181−7189.
  77. De Luca G., de Philip, P., Dermoun, Z., Rousset, M., and Vermeglio, A. Reduction of technetium (VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Appl. Environ. Microbiol., 2001, 67:4583−4587.
  78. Dey S., Patke, D.S. Mercury biotransformation and its potential for remediation of mercury contaminated water. J Environ Biol., 2000, 21:47−54.
  79. Dzierzewicz Z., Cwalina, В., Chodurek, E., and Wilczok, T. The relationship between microbial metabolic activity and biocorrosion of carbon steel. Res. Microbiol., 1997,148:785−793.
  80. Eberz G., Hogrefe, C., Kortlucke, C., Kamenski, A., and Friedrich, B. Molecular cloning of structural and regulatory hydrogenase (hox) genes of Alcaligenes eutrophus HI6. J. Bacteriol, 1986,168:636−641.
  81. Ehrenreich A., and Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol., 1994, 60(12):4517−4526.
  82. Evans D.J., and Pickett, C.J. Chemistry and the hydrogenases. Chem. Soc. Rev., 2003, 32:268−275.
  83. Fagan Т., and Mayhew, S. G. Effects of mercurial on hydrogenase from Desulfovibrio vulgaris (Hildenbrough). Biochem. Soc. Trans., 1988,16:178−179.
  84. Fan H.J., and Hall, M.B. Recent theoretical predictions of the active site for the observed forms in the catalytic cycle of Ni-Fe hydrogenase. J. Biol. Inorg. Chem., 2001, 6: 467−473.
  85. Fernandez V.M., Rua, M.L., Reyes, P., Cammack, R., and Hatchikian, E. C. Inhibition of Desulfovibrio gigas hydrogenase with copper salts and other metal ions. Eur. J. Biochem., 1989,185:449−454.
  86. Flickinger M. C., and Drew, S. W Encyclopedia of Bioprocess Technology Fermentation, Biocatalysis and Bio separation. 1999,1−5, John Wiley & Sons.
  87. Foerster S., Stein, M., Brecht, M., Ogata, H., Higuehi, Y., and Lubitz, W. Single crystal EPR studies of the reduced active site of NiFe. hydrogenase from Desulfovibrio vulgaris Miyazaki F. J. Am. Chem. Soc., 2003, 125:83−93.
  88. Fontecilla-Camps J.C., Frey, M., Garein, E., Hatchikian, C., Montet, Y., Piras, C., Vernede, X., and Volbeda, A. Hydrogenase: a hydrogen-metabolizing enzyme.
  89. What do the crystal structures tell us about its mode of action? Biochimie, 1997,79:661−666.
  90. Gadd G.M. Accumulation of metals by microorganisms and algae. (Ed. R. H.-J. Wein-heim et al.: VCH, 1988,6b:401−433.
  91. Garcin E., Vernede, X., Hatchikian, E.C., Volbeda, A., Frey, M., and Fontecilla-Camps, J.C. The crystal structure of a reduced NiFeSe. hydrogenase provides an image of the activated catalytic center. Structure Fold Des., 1999, 7: 557−566.
  92. Georgakaki LP., Miller, M. L., and Darensbourg, M. Y. Requirements for functional models of the iron hydrogenase active site: D2/H2O exchange activity in ((р,-SMe)(^-pdt)Fe (CO)2(PMe3).2+)[BF4"]. Inorg. Chem., 2003, 42:2489−2494.
  93. Graf E.G. and Thauer, R.K. Hydrogenase From Methanobacterium-Thermoautotrophicum a nickel-containing enzyme. FEBSLett., 1981,136(1):165−169.
  94. Gogotov I.N., Zorin, N.A., Serebriakova, L.T., and Kondratieva, E.N. The properties of hydrogenase from Thiocapsa roseopersicina. Biochim. Biophys. Acta, 1978, 523:335−343.
  95. Happe T, Hemschemeier, A., Winkler, M., and Kaminski, A. Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Sci., 2002, 7:246−250.
  96. Happe R.P., Roseboom, W., and Albracht, S.P.J. Pre-steady-state kinetics of the reactions of the NiFe.-hydrogenase from Chromatium vino sum with H2 and CO. Eur. J. Biochem., 1999,259:602−608.
  97. Happe R.P., Roseboom, W., Pierik, A.J., Albracht, S.P.J., and Bagley, K.A. Biological activation of hydrogen. Nature 1997,385:126.
  98. Happe Т., and Kaminski, A. Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur. J. Biochem., 2002,269:1022−1032.
  99. Harder E.C. Iron depositing bacteria and their geologic relations. Governmental Printing Office, Washington, D.C., 1919.
  100. Higuchi Y., Ogata, H., Miki, K., Yasuoka, N., and Yagi, T. Removal of the bridging ligand atom at the Ni-Fe active site of NiFe. hydrogenase upon reduction with
  101. Нг, as revealed by X-ray structure analysis at 1.4 A resolution. Structure, 1999, 7: 549−556.
  102. Higuchi Y., Toujou, F., Tsukamoto, K., and Yagi, T. The presence of a SO molecule in NiFe.-hydrogenase from Desulfovibrio vulgaris Miyazaki as detected by mass spectrometry. J. Inorg. Biochem., 2000, 80: 205−211.
  103. Higuchi Y., Yagi, Т., and Yasuoka, N. Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure, 1997, 5:1671−1680.
  104. Hobman J.L., Wilson, J.W., and Brown, N. L: Microbial mercury reduction. In Environmental Microbe-Metal Interactions. Edited by Lovley DR. ASM Press, 2000, pp. 177−197.
  105. Hopper S., Babst, M., Schlensog, V., Fischer, H.M., Hennecke, H., and Bock, A. Regulated expression in vitro of genes coding for formate hydrogenlyase components of Escherichia coli. J. Biol. Chem., 1994,269:19 597−19 604.
  106. Horikoshi Т., Akajama A., and Sakaguchi, T. Uptakeof uranium from seawater by Synechococcus elongatus. J.Ferment. Technol., 1979,57:191.
  107. Houchins J.P., and Burris R.H. Physiological reactions of the reversible hydrogenase from Anabaena 7120. Plant Physiol., 1981, 68:717−721.
  108. Kamachi Т., Uno, S., Hiraishi, Т., and Okura, I. Purification and properties of intact hydrogenase from Desulfovibrio vulgaris (Miyazaki) J. Mol. Catalysis A: Chemical, 1995,95:93−98.
  109. Kashefi К., Tor, J. M., Nevin, K. P., and Lovley, D. R. Reductive precipitation of gold by dissimilatory Fe (III)-reducing Bacteria and Archaea. Appl. Environ. Microbiol, 2001,67:3275−3279.
  110. Kayall A., and Rauchfuss, T.B. Protonation studies of the new iron carbonyl cyanide trans-Fe (CO)3(CN)2.2″: implications with respect to hydrogenases. Inorg. Chem., 2003, 42: 5046−5048.
  111. Khatipov E., Miyake, M., Miyake, J., and Asada, Y. Polyhydroxybutirate accumulation and hydrogen evolution by Rhodobacter sphaeroides as a function of nitrogen availability. In Biohydrogen, ed. Zaborsky O.R. 1998. Plenum Press, New York. P. 157−161.
  112. Kobayashi M., and Kurata, S.I. The mass culture and cell utilization of photosynthetic bacteria. Proc. Biochem., 1978,13:27−30.
  113. Kosourov S., Seibert, M., and Ghirardi, M.L. Effect of extracellular pH on the metabolic pathways in sulfur-deprived H2-producing Chlamydomonas reinhardii cultures. Plant Cell Physiol, 2003, 44(2):146−155.
  114. Madigan M.T., Martinko, J.M., and Parker, J. Prokaryotic diversity: Bacteria. In: Brock biology of microorganisms, 8th ed. Ed M.T. Madigan, 1997, Prentice-Hall, Inc., New Jersey. P. 636−740.
  115. Magalon A., and Bock, A. Dissection of the maturation reactions of the NiFe.-hydrogenase 3 from Escherichia coli taking place after nickel incorporation. FEBSLett., 2000, 473:254−258.
  116. Malkin R. Iron-Sulfur Proteins, (Lovenberg, W., ed.). Academic Press, N. Y., 1973, 2:118.
  117. Maroney M.J., and Bryngelson, P.A. Speectroscopic and model studies of the Ni-Fe hydrogenase reaction mechanism. J. Biol. Inorg. Chem., 2001, 6:453−459.
  118. Maroti G., Fodor, B.D., Rakhely, G., Kovacs, A.T., Arvani, S., and Kovacs, K.L. Accessory proteins functioning selectively and pleiotropically in the biosynthesis of NiFe.-hydrogenases in Thiocapsa roseopersicina. Eur. J. Biochem., 2003, 270:2218−2227.
  119. Massanz C., Fernandez, V.M., and Friedrich, B. C-terminal extension of the-activating subunit, HoxH, directs maturation of the NAD-reducing hydrogenase in Alca-ligenes eutrophus. Eur. J. Biochem., 1997, 245: 441−448.
  120. Mc Tavish H., Sayavedra-Soto, L.A., and Arp, D J. Comparison of isotope exchange, H2 evolution, and H2 oxidation activities of Azotobacter vinelandii hydrogenase. Biochim. Biophys. Acta, 1996,1294:183−190.
  121. Melis A., and Happe, T. Hydrogen production. Green algae as a source of energy. Plant physiol, 2001,127:740−748.
  122. Meyer V., Kelley, B.C., and Vignais, P.M. Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria. Biochimie, 1978, 60:245.
  123. Michel C., Brugna, M., Aubert, C., Bernadac, A., and Bruschi, M. Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Appl. Microbiol. Biotechnol., 2001,55:95−100.
  124. Miyake J. The science of biohydrogen. In Biohydrogen, ed. Zaborsky O.R. 1998. Plenum Press, New York. P. 7−18.
  125. Moore M. D., and Kaplan, S. Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth. ASM News, 1994, 60(l):17−23.
  126. Muller A., Tscherny, I., Kappl, R., Hatchikian, E.C., Huttermann, J., and Cammack, R.
  127. Hydrogenases in the «active» state: determination of g-matrix axes and electron spin distribution in the active site by .H ENDOR spectroscopy. J. Biol. Inorg. Chem., 2002,7:177−194.
  128. Nehring J.L., and Heinekey, D.M. Dinuclear iron isonitrile complexes: models for the iron hydrogenase active site. Inorg. Chem., 2003, 42:4288−4292.
  129. Nedoluzhko A.I., Shumilin, I.A., Mazhorova, L.E., Popov, V.O., and Nikandrov, V.V.
  130. Enzymatic oxidation of cadmium and lead metals photodeposited on cadmium sulfide. Bioelectrochemistry, 2000, 53:61−71.
  131. Nicholas D.J.D., Fisher, D.J., Redmond, W.J., Wright, M.A. Some aspects of hydrogenase activity and nitrogen fixation in Azotobacter-Spp and in Clostridium-Pasteurianum. J. Gen. Microbiol., 1960,22(1): 191−205.
  132. Nicolet Y., Piras, C., Legrand, P., Hatchikian, C.E., and Fontecilla-Camps, J.C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure FoldDes., 1999, 7:13−23.
  133. Noda K., Zorin, N.A., Nakamura, C., Miyake, M., Gogotov, I.N., Asada, Y., Akutsu, H., and Miyaki, J. Langmuir-Blodgett film of hydrogenase for electrochemical hydrogen production. Thin Solid Films, 1998, 327−329:639−642.
  134. Odermatt A, and Solioz, M. Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J. Biol. Chem., 1995, 270:4349−4354.
  135. Olson J.W., and Maier, R.J. Dual roles of Bradyrhizobium japonicum nickelin protein in nickel storage and GTP-dependent Ni mobilization. J. Bacteriol., 2000, 182:1702−1705.
  136. Pankhania I. Hydrogen metabolism in sulphate-reducing bacteria and role in anaerobic corrosion. Biofouling, 1988,1:27−47.
  137. Park C.H., Keyhan, M., Wielinga, В., Fendorf, S, and Matin, A. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl. Environ. Microbiol., 2000, 66:1788−1795.
  138. R. В., Darren, M., Gentry, В., Rapp-Giles, J., Casalot, L., and Wall, J.D. Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome C3 mutant. Appl. Environ. Microbiol, 2002, 68:3129−3132.
  139. Perego P., and Fabiano, B. Corrosion, microbial. Encyclopedia of Bioprocess Technology Fermentation, Biocatalysis, and Bioseparation (Ed. Flickinger, M.C., and Drew, S.W.). 1999. John Wiley & Sons, 1−5:717−729.
  140. Peters J.W., Lanzilotta, W.N., Lemon, B.J., and Seefeldt, L.C. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science, 1998,282: 1853−1858.
  141. Piimpel Т., L. E. Macaskie, J. A. Finlay, L. Diels, and M. Tsezos. Nickel removal from nickel-plating wastewater using a biologically active moving-bed sand filter. BioMetals, 2003,16:567−581.
  142. Rakhely G., Colbeau, A., Garin, J., Vignais, P.M., and Kovacs, K.L. Unusual organization of the genes coding for HydSL, the stable NiFe. hydrogenase in the pho-tosynthetic bacterium Thiocapsa roseopersicina BBS. J. Bacteriol., 1998, 180:1460−1465.
  143. Rasmussen L.D., Sorenson, S.J., Turner, R.R., and Barkay, T. Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol. Biochem., 2000,32:639−646.
  144. Reissman S., Hochleitner, E., Wang, H., Paschos, A., Lottspeich, F., Glass, R.S., and Bock, A. Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science, 2003,299:1067−1070.
  145. Richard D.J., Sawers, G., Sargent, F., McWalter, L., and Boxer, D.H. Transcriptional regulation in response to oxygen and nitrate of the operons encoding the NiFe. hydrogenases 1 and 2 of Escherichia coli. Microbiology, 1999,145: 2903−12.
  146. Robson R. The assembly line. In Hydrogen as a fuel: learning from Nature. London and New York: Taylor and Francis, 2001, pp. 57−72.
  147. Roessler P. and Lien, S. Anionic modulation of the catalytic activity of hydrogenase from Chlamydomonas reinhardtii. Arch. Biochem. Biophys., 1982,213:31−44.
  148. Sabatini D.D., Miller, F., Barrnet, RJ. Aldehyde fixation for morphological end enzyme histochemical studies with the electro microscope. J. Histochem. Cytochem., 1964,12:57−71.
  149. Salyi S., Kritikos, M., Akermark, В., and Sun, L. Synthesis of an amino-functionalized model of the Fe-only hydrogenase active site. Chemistry, 2003, 9:557−60.
  150. Sapra R., Bagramyan, K., and Adams, M.W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl. Acad. Sci. USA, 2003, 100:7545−7550.
  151. Sasaki K. Hydrogen and 5-aminolevulinic acid production by photosynthetic bacteria. In Biohydrogen, ed. Zaborsky O.R. 1998. Plenum Press, New York. P. 133−142.
  152. Schmiechen H., Wittig H., and Martin S. Entfernung von Schwermetallen aus abwassern mittels Sorption an biopolimer aus Microorganismus Ectothiorodospira shaposhnikovii. Umveltbiotechnologie, 1991,1:38−41.
  153. Sciotti M.A., Chanfon, A., Hennecke, H., and Fischer, H.M. Disparate oxygen responsiveness of two regulatory cascades that control expression of symbiotic genes in Bradyrhizobium japonicum. J. Bacteriol., 2003,185:5639−5642.
  154. Sellman D., Geipel, F., Heinemann, F.W. (NEt (4))(2)Fe (CN)(2)(CO)('S (3)').: an iron thiolate complex modeling the [Fe (CN)(2)(CO)(S-Cys)(2)] site of [NiFe] hydrogenase centers. Chemistry, 2002, 8:958−966.
  155. Sherman M.B., Orlova, E.V., Smirnova, E.A., Hovmoller, S., and Zorin, N.A. Three-dimensional structure of the nickel-containing hydrogenase from Thiocapsa roseopersicina. J. Bacteriol., 1991,173(8):2576−2580.
  156. Shumate S.E., Stranberg G.W. Comprehensive biotechnology. Eds. Moo-Young M., Robinson C.N., Howell J.A. N.Y.: Pergamon Press. 1985. P.235−247.
  157. Sieghbahn P.E.M., Blomberg, M.R.A., Wirstam nee Pavlov, M., and Crabtree, R.H. The mechanism of the Ni-Fe-hydrogenases: a quantum chemical perspective. J. Biol Inorg. Chem., 2001, 6:460−466.
  158. Silver S., and Phung Le T. Bacterial heavy metal resistance: New surprises, Annu. Rev. Microbiol, 1996, 50:753−789.
  159. Silver S., and Walderhaug, M. Gene regulation of plasmid- and chromosomal determined inorganic ion transport in bacteria. Microbiol Rev., 1992, 56:195−228.
  160. Smith W.L., and Gadd, G.M. Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J. Appl. Microbiol, 2000, 88:983−991.
  161. Stephenson M., and Stickland, L.H. Hydrogenase. A Bacterial enzyme activating molecular hydrogen. Biochem. J., 1931, 25:205−214.
  162. Straub K.L., Benz, M, Schink, В., and Widdel, F. Anaerobic, nitrate-dependent microbial oxidations of ferrous iron. Appl Environ Microbiol, 1996, 62:1458−1460.
  163. Thauer R.K., Klein, A.R., and Hartmann, G.C. Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chem. Rev., 1996,96: 3031−3042.
  164. Tibelius K.N., and Knowles, R. Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide and acetylene. J. Bacteriol., 1984, 160(1):103−106.
  165. Tsygankov A.A., Hirata, Y., Miyake, M., Asada, Y., and Miyake, J. Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photopro-duction. J. Ferment Bioeng., 1994, 77:575−578.
  166. Turner J.S. and Robinson N.J. Cyanobacterial metallothioneins: biochemistry and molecular genetics. J. Industr. Microbiol, 1995,14:259−264.
  167. Vignais P.M. and Colbeau, A. Molecular biology of microbial hydrogenases. Cur. Issues Mol. Biol, 2004, 6:159−188.
  168. Vignais P.M., Henry, M.F., Berlier, Y., and Lespinat, P.A. Effect of pH on H2−3H2exchange, H2 production and H2 uptake, catalysed by the membrane-boundhydrogenase of Paracoccus denitrificans. Bichem. Biophys. Acta, 1982, 681:519−529.
  169. VignaisP.M., Billoud, В., and Meyer, J. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev., 2001, 25:455−501.
  170. Vignais P.M., Cournac, L., Hatchikian, E.C., Elsen, S., Serebryakova, L., Zorin, N., and Dimon, B. Continuous monitoring of the activation and activity of NiFe.-hydrogenases by membrane-inlet mass spectrometry. Int. J. Hydrogen En., 2002,27:1441−1448.
  171. Vignais P.M., Toussaint В., Colbeau A. Regulation of hydrogenase gene expression. В Blankenship, R.E. Madigan, M.T., Bauer C.E. (eds): Anoxugenic Photosyn-thetic bacteria, Netherlands, 1995, Chapter 55, pp. 1175−1190
  172. Vignais P.M., Toussaint, B. and Colbeau, A. Regulation of hydrogenase gene expression In Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds): Anoxygenic Photo-synthetic Bacteria, 1995, Chapter 55, pp 1175−1190
  173. Vignais P.M., Willison, J.C., and Colbeau, A. H2 respiration In D. Zannoni (ed.), Respiration in Archaea and Bacteria. Vol. 2. Diversity of Prokaryotic systems. Ch. IX. (Kluwer Academic Publishers, Dordrecht, The Netherlands). 2003.
  174. Volbeda A., Charon, M.H., Piras, C., Hatchikian, E.C., Frey, M., and Fontecilla-Camps, J.C. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 1995,373: 580−587.
  175. Volbeda A., Montet, Y., Vernede, X., Hatchikian, E. C., and Fontecilla-Camps, J. C.
  176. High-resolution crystallographic analysis of Desulfovibrio fructosovorans NiFe. hydrogenase. Intern. J. Hydrogen Energy, 2002, 27: 1449−1461.
  177. Von Kiihr W., and Van der Vlugt. Graphication of cast iron as an electrochemical in anaerobic soils. Water (The Hague), 1934,18:147−165.
  178. Voncken F.G.J., Boxma, В., van Hoek, A.H., Akhmanova, A.S., Vogels, G.D., Huynen, M., Veenhuis, M., and Hackstein, J.H. A hydrogenosomal Fe.- hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene, 2002,284:103−112.
  179. Vrati S. Single cell protein production by photosynthetic bacteria grown on the clarified effluents of biogas plant. Appl. Microbiol. Bioechnol., 1984,19:199−202.
  180. Warthman R., Pfennig, N., and Cypionka, H. The quantшn requirement for H2 production by anoxygenic phototrophic bacteria. Appl. Microbiol. Biotechnol., 1993, 39:358−362.
  181. Woolfolk C. A., and Whiteley, H. R. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. J. Bacteriol., 1962, 84:647−658.
  182. Wu L.F., and Mandrand, M.A. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol. Rev., 1993,10:243−269.
  183. Wykoff D.D., Davies J.P., Melis A., Grossman A.R. The regulation of photosynthetic electron transport during nutrient deprivation on Chlamydomonas reinhardtii. Plant Physiol, 1998,117:129−139.
  184. Zhao X., Georgakaki, I.P., Miller, M. L, Mejia-Rodrigue, R., Chiang, C.Y., and Darens-bourg, M.Y. Catalysis of H2/D2 scrambling and other H/D exchange processes by Fe.-hydrogenase model complexes. Inorg. Chem., 2002, 41:3917−3928.
  185. Zhao X., Georgakaki, I.P., Miller, M.L., Yarbrough, J.C., and Darensbourg, M.Y. H/D exchange reactions in dinuclear iron thiolates as activity assay models of Fe-H2ase. J. Am. Chem. Soc., 2001,123:9710−9711.
  186. Zorin N. A. Application of hydrogenase from Thiocapsa roseopersicina for renewable energy model systems. In Biohydrogen III, 2004 (in press).
  187. Zorin N.A., Dimon, В., Gagnon, J., Gallard, J., Carrier, P., and Vignais, P. M. Inhibition by iodoacetamide and acetylene of the H-D-exchange reaction catalyzed by Thiocapsa roseopersicina hydrogenase. Eur. J. Biochem., 1996,241:675−681.
  188. Zorin N.A., Lindblad, P. Localization of hydrogenase in the purpule sulphur bacterium Thiocapsa roseopersicina. Arch Microbiol., 1993,160:1−5.
Заполнить форму текущей работой