Помощь в написании студенческих работ
Антистрессовый сервис

Морфология гетерограниц и транспорт дырок в сверхрешетках GaAs/AlAs (311) А

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Разработан метод создания высококачественных поперечных срезов эпитаксиальных пленок для просвечивающей электронной микроскопии высокого разрешения. Изготовленные с помощью этого метода образцы имеют толщину, постепенно уменьшающуюся до нескольких монослоев, позволяют получить атомное разрешение на большой площади (~0.1 мкм2). Метод применим для различных твердотельных материалов, в том числе… Читать ещё >

Морфология гетерограниц и транспорт дырок в сверхрешетках GaAs/AlAs (311) А (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. СВОЙСТВА ГЕТЕРОСТРУКТУР, ВЫРАЩЕННЫХ НА ПОВЕРХНОСТИ GaAs (311)А. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Электрофизические свойства гетероструктур GaAs/AlGaAs (311)А
    • 1. 2. Морфология поверхности GaAs (311)А и границ разделаОаАзЛАЛАэ (311)А
  • Глава 2. ИССЛЕДОВАНИЕ ТРАНСПОРТА ДЫРОК В СВЕРХРЕШЕТКАХ GaAs/AlAs (311)А
    • 2. 1. Рассеяние носителей заряда в узких квантовых ямах
    • 2. 2. Образцы, методика гальваномагнитных исследований, контроль профиля легирования C-V методом
    • 2. 3. Анизотропия транспорта дырок в плоскости слоев сверхрешеток GaAs/AlAs (311)А
    • 2. 4. Особенности магнетотранспорта дырок в квантующих магнитных полях
  • Глава 3. НОВЫЙ МЕТОД СОЗДАНИЯ ВЫСОКОКАЧЕСТВЕННЫХ ОБРАЗЦОВ ДЛЯ ПРОСВЕЧИВАЮЩЕЙ ЭЛЕКТРОННОЙ МИКРОСКОПИИ ВЫСОКОГО РАЗРЕШЕНИЯ
    • 3. 1. Обзор существующих способов приготовления образцов
    • 3. 2. Контролируемое разрезание свободных пленок хрупкими трещинами. Поперечные срезы для исследования структурного совершенства гетерограниц GaAs/AlAs (311)А
    • 3. 3. Применение разработанного метода для: а) исследования латерального окисления и селективного травления слоев в сверхрешетках GaAs/AlAs
  • Страница б) исследования наночастиц
  • ГЛАВА 4. МОРФОЛОГИЯ ГЕТЕРОГРАНИЦ В СВЕРХРЕШЕТКАХ
  • GaAs/AlAs (311)А И ЕЕ ВЛИЯНИЕ НА ТРАНСПОРТ ДЫРОК В ПЛОСКОСТИ СЛОЕВ
    • 4. 1. Апериодичная анизотропная гофрировка гетерограниц в сверхрешетках GaAs/AlAs (311)А
    • 4. 2. Влияние гофрировки гетерограниц на транспорт дырок в плоскости слоев сверхрешеток GaAs/AlAs (311)А

Актуальность темы

Прогресс в области физики полупроводников в последние годы тесно связан с успехами нанотехнологии, сделавшей возможным создание объектов нано-метровых размеров [1, 2]. В настоящее время общепринятыми методами создания нанообъ-ектов в твердотельных структурах являются электронная и ионная литографии в сочетании с химическим травлением. Эти методы имеют ряд физических ограничений (неизбежные флуктуации и расфокусировка электронного и ионного пучков, шероховатость поверхности после травления и ее загрязнение примесями и дефектами), которые не позволяют в течение уже нескольких лет перейти к размерам объектов менее 5−10 нм и получить требуемые атом-но-гладкие поверхности.

Для преодоления недостатков стандартных методов в последние годы предпринимались многочисленные попытки формирования упорядоченных ансамблей нанообъектов (квантовых проволок и квантовых точек) непосредственно в процессе создания структур, используя явления самоорганизации. В большинстве таких работ нанообъекты формировались в процессе гетероэпитаксии на поверхностях с микрорельефом, который либо создавался предварительной обработкой подложки, либо спонтанно возникал на различных несингулярных поверхностях кристаллов при определённых ростовых условиях. Образованные при этом массивы нанообъектов сильно отличались формой и размерами единичного элемента, распределением по размерам, степенью пространственной упорядоченности. Наибольший интерес представляют системы из одинаковых элементов малого размера (менее 5 нм в 2-х или 3-х измерениях), расположенных с высокой периодичностью — кристаллы из «искусственных атомов». Этим объясняется пристальное внимание к росту на поверхности GaAs (311)А после появления в 1991 г. первого сообщения о фасетировании этой поверхности в процессе молекулярно-лучевой эпитаксии (МЛЭ) и возможности формирования in situ высокопериодичного массива совершенных квантовых проволок [3,4].

Предпринятые в последние несколько лет интенсивные исследования полупроводниковых гетероструктур, выращенных на поверхности GaAs (311)А, показали, что одной из их характерных особенностей является анизотропия электрофизических и оптических свойств в плоскости слоев, которая многими авторами связывалась с периодическим фасетированием гетерограниц высотой 10.2 А и периодом 32 А и наличием массивов квантовых проволок. Однако немногочисленные исследования поперечного сечения многослойных гетероструктур GaAs/А1 As (311)А [4,5] и ростовой поверхности GaAs (311)А [6−8] прямыми методамипросвечивающей электронной микроскопией (ПЭМ) и сканирующей туннельной микроскопией (СТМ) — дали крайне противоречивую информацию о наличии фасетирования и его геометрических параметрах. Полностью отсутствовали исследования транспортных свойств предельно узких квантовых ям GaAs (311)А, ширина которых сравнима с высотой предполагаемого фасетирования (-10 А), хотя именно в этом случае можно было ожидать наибольшего влияния гофрировки гетерограниц на перенос заряда в плоскости слоев, в частности, роста подвижности носителей заряда вдоль проволок вследствие предсказанного для идеальных квантовых проволок подавления процессов упругого рассеяния [9−10]. Таким образом, несмотря на большое число работ, посвященных исследованию свойств гетероструктур GaAs/AlAs (311)А, без ответа оставался ряд существенных вопросов: каковы размеры рельефа гетерограниц GaAs/А1 As (311)Асуществуют ли массивы квантовых проволок в сверхрешетках GaAs/AlAs (311)Ачем вызвана латеральная анизотропия электрофизических свойств сверхрешеток GaAs/AlAs (311)А. Целями диссертационной работы являются:

• выявление причин анизотропии транспортных свойств, характерной для сверхрешеток GaAs/AlAs (311)А;

• выявление наличия рельефа гетерограниц GaAs/AlAs (311)А и определение его геометрических размеров;

• выяснение возможности формирования квантовых проволок непосредственно в процессе МЛЭ на поверхности GaAs (311)А.

Научная новизна работы и значимость полученных результатов.

• Впервые проведены исследования транспорта дырок в серии модулированно легированных бериллием сверхрешеток GaAs/А1 As (311)А с предельно малыми толщинами проводящих слоев GaAs (от 4 до 21 А). Обнаружена сильная латеральная анизотропия подвижности дырок в температурном диапазоне от 77 до 300 К.

• В сверхрешетках GaAs/AlAs (311)А, выращенных методом МЛЭ, обнаружен аперио-дичный волнообразный рельеф гетерограниц глубиной до 6 монослоев (10.2 А). Его особенностью является ярко выраженная анизотропия — гребни ориентированы вдоль направления.

233], в перпендикулярном к нему направлении [011] характерный латеральный масштаб рельефа составляет сотни ангстрем.

• Обнаружено, что слои GaAs и AlAs, выращенные на поверхности GaAs (311)А методом МЛЭ, существенно различаются по характеру гофрировки. Слои GaAs сильно модулированы по толщине в направлении [011], изменения толщины достигают 12-ти монослоев (20.4 А), что при малой средней толщине слоя («20 А) приводит к образованию апериодичных проволокоподобных структур, ориентированных вдоль направления [233]. В то же время изменения толщины слоев AlAs составляют не более 3-х монослоев (5.1 А), а форма рельефа верхней границы слоя повторяет форму рельефа нижней.

Практическая значимость работы.

• Анизотропный рельеф гетерограниц GaAs/AlAs (311)А глубиной до 6 монослоев (10.2 А) может быть использован для формирования структур с квантовыми проволоками непосредственно в процессе молекулярно-лучевой эпитаксии.

• Разработан метод создания высококачественных поперечных срезов эпитаксиальных пленок для просвечивающей электронной микроскопии высокого разрешения. Изготовленные с помощью этого метода образцы имеют толщину, постепенно уменьшающуюся до нескольких монослоев, позволяют получить атомное разрешение на большой площади (~0.1 мкм2). Метод применим для различных твердотельных материалов, в том числе радиационно нестойких (HgCdTe), которые не могут быть препарированы обычно применяемым ионным травлением.

Положения, выносимые на защиту.

В сверхрешетках GaAs/AlAs (311)А, выращенных методом МЛЭ, существует анизотропный апериодичный волнообразный рельеф гетерограниц глубиной до 6 монослоев (10.2 А), гребни которого ориентированы вдоль направления [2 33], а в перпендикулярном к нему направлении [011] характерный латеральный масштаб рельефа составляет сотни ангстрем.

Слои GaAs и AlAs, выращенные на поверхности GaAs (311)А методом МЛЭ, различаются по характеру гофрировки. Слои GaAs модулированы по толщине в направлении [011], изменения толщины достигают 12-ти монослоев (20.4 А), что при малой средней толщине слоя («20 А) приводит к образованию апериодичных проволокоподобных структур, ориентированных вдоль направления [233]. В то же время изменения толщины слоев AlAs составляют не более 3-х монослоев (5.1 А), а форма рельефа верхней границы слоя повторяет форму рельефа нижней.

Анизотропия подвижности двумерного дырочного газа в плоскости слоев сверхрешеток GaAs/AlAs (311)А вызвана апериодичной анизотропной модуляцией ширины GaAs квантовых ям. Анизотропия подвижности дырок зависит от средней ширины квантовой ямы и достигает 7 при средней ширине ямы 21 А.

Разработан метод создания высококачественных поперечных срезов для просвечивающей электронной микроскопии высокого разрешения. Метод основан на освобождении тонкой (<1 мкм) пленки, содержащей исследуемую структуру, от связи с подложкой и разрезании пленки хрупкими трещинами. При исследовании гетерограниц GaAs/AlAs (311)А и (100) продемонстрировано получение срезов, обеспечивающих атомное разрешение на большой площади (-0.1 мкм2), без введения в них дефектов при препарировании.

Основные результаты исследований по теме диссертации опубликованы в следующих работах:

1. Vorob’ev А.В., Gutakovsky А.К., Prinz V.Ya., Preobrazhenskii V.V., Putyato M.A. Interface corrugation in GaAs/AlAs (311)A superlattices. — Appl. Phys. Lett., 2000, v. 77, № 19, pp. 2976 — 2978.

2. Vorob’ev A.B., Gutakovsky A.K., Prinz V.Ya. Cleavage of thin films for X-HREM study of interface quality in heterostructures. — J. Cryst. Growth, 2000, v. 210, pp. 182 — 186.

3. Vorob’ev A.B., Gutakovsky A.K., Prinz V.Ya., Preobrazhenskii V.V., Semyagin B.R. Comparative X-HREM study of (311)A and (100) GaAs/AlAs superlattices. — Inst. Phys. Conf. Ser., 2000, v. 166, pp. 165 — 168.

4. Воробьев А. Б., Гутаковский A.K., Принц В. Я., Селезнев В. А. Формирование однослойного массива наночастиц для просвечивающей электронной микроскопии. — ЖТФ, 2000, т. 70, № 6, с. 116−118.

— 875. Panaev I.A., Prinz V.Ya., Vorob’ev A.B., Preobrazhenskii V.V., Semyagin B.R. Transport properties of AlAs/GaAs multilayer structures grown on (311)A GaAs substrates. — Inst. Phys. Conf. Ser., 1997, v. 155, pp. 113−116.

6. Yakunin M.V., Arapov Yu.G., Gorodilov N.A., Neverov V.N., Buldygin S.A., Vorob’ev A.B., Panaev I.A., Prinz V.Ya., Preobrazhensky V.V., Semyagin B.R. Quantum Hall effect in a laterally corrugated layer AlAs/GaAs/AlAs (311)A. — Inst. Phys. Conf. Ser., 1997, v. 155, pp. 739−742.

7. Yakunin M.V., Arapov Yu.G., Gorodilov N.A., Neverov V.N., Buldygin S.A., Vorob’ev A.B., Panaev I.A., Prinz V.Ya., Preobrazhensky V.V., Semyagin B.R. Quantum Hall effect in AlAs/GaAs/AIAs (311)A structures with mixed twoand one-dimensional conductivities. — Abstracts of Invited Lectures and Contributed Papers of 4th International Symposium «Nanostructures: Physics and Technology», St. Petersburg, Russia, 1996, pp. 48−51.

8. Panaev I.A., Prinz V.Ya., Vorob’ev A.B., Preobrazhenskii V.V., Semyagin B.R. Transport properties of AlAs/GaAs multilayer structures grown on (311)A GaAs substrates. — 9th International Conference Superlattices, Microstructures and Microdevices, Liege, Belgium, 1996, ThPPT-38.

9. Prinz V.Ya., Panaev I.A., Vorob’ev A.B., Preobrazhenskii V.V., Semyagin B.R. Gutakovsky A.K. Transport properties of AlGaAs/GaAs multilayer structures grown on (311)A GaAs substrates.

— Abstracts of 2nd International Conference «Physics of Low-Dimensional Structures», Dubna, Russia, 1995.

10. Prinz V.Ya., Panaev I.A., Vorob’ev A.B., Preobrazhenskii V.V., Semyagin B.R. Gutakovsky A.K. Electrical properties of AlGaAs/GaAs multilayer structures grown on (311)A GaAs substrates.

— Abstracts of Invited Lectures and Contributed Papers of 3rd International Symposium «Nanostructures: Physics and Technology», St. Petersburg, Russia, 1995, p. 28.

ЗАКЛЮЧЕНИЕ

.

Работа выполнена в лаборатории трехмерных наноструктур Института физики полупроводников СО РАН под руководством к.ф.-м.н. В .Я. Принца. Автор выражает искреннюю признательность Виктору Яковлевичу Принцу как инициатору и руководителю работы, Игорю Александровичу Панаеву, совместно с которым проводились исследования транспорта дырок на начальном этапе работы, а также всем сотрудникам лаборатории, оказавшим содействие в этих исследованиях.

Настоящая работа была выполнена благодаря помощи сотрудников ИФП СО РАН. Автор благодарен в.н.с. к.ф.-м.н. А. К. Гутаковскому за получение изображений методом высокоразрешающей электронной микроскопиик.ф.-м.н. В. В. Преображенскому, н.с. Б.Р. Се-мягину и н.с. М. А. Путято за выращенные методом МЛЭ гетероструктуры.

Ряд образцов, созданных и исследованных в ходе данной работы, был передан сотрудникам Института физики металлов (г. Екатеринбург) для гальваномагнитных измерений в квантующих магнитных полях. Результаты этих измерений были использованы автором при интерпретации результатов исследования транспорта дырок на основе модели протекания.

Личный вклад соискателя состоит в исследовании транспорта дырок в серии сверхрешеток GaAs/AlAs (311)А с предельно малыми толщинами проводящих слоев GaAs, разработке и применении нового метода создания высококачественных образцов для просвечивающей электронной микроскопии высокого разрешения. Анализ и интерпретация полученных экспериментальных данных, написание статей были выполнены совместно с научным руководителем.

Апробация работы. Результаты диссертационной работы докладывались на следующих международных конференциях:

— 8626th International Symposium on Compound Semiconductors, Berlin, Germany, 1999 8th International Conference on Defects — Recognition, Imaging and Physics in Semiconductors, Na-rita, Japan, 1999.

International Autumn School on New Techniques in Electron Microscopy for Material Science, Halle, Germany, 1999.

23rd International Symposium on Compound Semiconductors, St.-Petersburg, Russia, 1996.

4th International Symposium «Nanostructures: Physics and Technology», St.-Petersburg, Russia,.

3rd International Symposium «Nanostructures: Physics and Technology», St.-Petersburg, Russia, 1995.

Показать весь текст

Список литературы

  1. .И. История и будущее полупроводниковых гетероструктур. — ФТП, 1998, т. 32, № 1, с. 3−18.
  2. Н.Н., Устинов В. М., Щукин В. А., Копьев П. С., Алферов Ж. И., Бимберг Д. Гетероструктуры с квантовыми точками: получение, свойства, лазеры. Обзор. ФТП, 1998, т. 32, № 4, с. 385−410.
  3. Notzel R., Ledentsov N.N., Daweritz L., Hohenstein M., Ploog K. Direct synthesis of corrugated superlattices on non-(100)-oriented surfaces. Phys. Rev. Lett., 1991, v. 67, pp. 3812−3815.
  4. Notzel R., Ledentsov N.N., Daweritz L., Ploog K., Hohenstein M. Semiconductor quantum-wire structures directly grown on high-index surfaces. Phys. Rev. B, 1992, v. 45, № 7, pp. 35 073 515.
  5. Hsu Y., Wang W.I., Kuan T.S. Molecular beam epitaxial GaAs/AlAs superlattices in the (311) orientation. Phys. Rev. B, 1994, v. 50, № 7, pp. 4973−4975.
  6. Geelhaar L., Marquez J., Jacobi K. Step structure of the GaAs (113)A studied by scanning tunneling microscopy. Phys. Rev. B, 1999, v.60, № 23, pp. 15 890−15 895.
  7. Wu C.-C., Lin C.-J. Impurity-limited mobility of semiconducting thin wires in n-type gallium arsenide. J. Appl. Phys., 1998, v. 83, № 3, pp. 1390−1395.
  8. P. Рост кристаллов полупроводниковых соединений AniBv на модели. В кн. Полупроводниковые соединения AniBv// ред. Р. Виллардсон и X. Гёринг. М., 1967, с. 344 363.
  9. Wang W. I., Marks R. F., Vina L. High-purity GaAs grown by molecular-beam epitaxy. J. Appl. Phys., 1986, v. 59, № 3, pp. 937−939.
  10. Wang W.I., Mendez E.E., Kuan T.S., Esaki L. Crystal orientation dependence of silicon doping in molecular beam epitaxial AlGaAs/GaAs heterostructures. Appl. Phys. Lett., 1985, v. 47, № 8, pp. 826−828.
  11. Fukunaga Т., Takamori Т., Nakashima H. Photoluminescence from AlGaAs-GaAs single quantum wells grown on variously oriented GaAs substrate by MBE. J. Cryst. Growth, 1987, v. 81, pp. 85−90.
  12. K., Goto S., Kusano С. (311)A substrates supression of Be transport during GaAs molecular beam epitaxy. Appl.Phys.Lett., 1991, v. 58, № 25, pp.2939−2941.
  13. Li W.Q., Bhattacharya P.K., Kwok S.H., Merlin R. Molecular-beam epitaxial growth and characterization of silicon-doped AlGaAs and GaAs on (311)A GaAs substrates and their device application. J.Appl.Phys., 1992, v. 72, № 7, pp. 3129−3135.
  14. Pavesi L., Henini M., Johnston D. Influence of the As overpressure during the molecular beam epitaxy growth of Si-doped (211)A and (311)A GaAs. Appl.Phys.Lett., 1995, v. 66, № 21, pp. 2846−2848.
  15. Sakamoto N., Hirakawa K., Ikoma T. Conduction-type conversion in Si-doped (311)A GaAs grown by molecular beam epitaxy. Appl.Phys.Lett., 1995, v. 67, № 10, pp. 1444−1446.
  16. Takebe Т., Fujii M., Yamamoto Т., Fujita K., Watanabe T. Orientation-dependent Ga surface diffusion in molecular beam epitaxy of GaAs on GaAs patterned substrates. J. Appl. Phys., 1997, v. 81, № 11, pp. 7273−7281.
  17. Zhang J.M., Cardona M., Peng Z.L., Horikoshi Y. Raman scattering studies on Si-doped GaAs grown by hydrogen-assisted molecular beam epitaxy. Appl. Phys. Lett., 1997, v. 71, № 13, pp.1813−1815.
  18. Takahashi M., Hirai M., Fujita K., Egami N., Iga K. Growth and fabrication of strained-layer InGaAs/GaAs quantum well lasers grown on GaAs (311)A substrates using a silicon dopant. J. Appl. Phys., 1997, v. 82, № 9, p. 4551−4557.
  19. Park Y.P., Son C., Kim S., Kim Y., Kim E.K. Min S., Choi I. Effect of atomic bond structure on crystallographic orientation dependence of carbon doping in GaAs. J. Appl. Phys., 1998, v. 83, № 5, p. 2519−2523.
  20. Miller D.L. Lateral p-n junction formation in GaAs molecular beam epitaxy by crystal plane dependent doping. Appl. Phys. Lett., 1985, v. 47, № 12, pp. 1309−1311.
  21. Evans R.J., Burke T.M., Burroughes J.H., Grimshaw M.P., Ritchie D.A., Pepper M. Variation of the confinement potential of a quasi-one-dimensional electron gas by lateral p-n junctions. -Appl. Phys. Lett., 1996, v. 68, № 12, pp. 1708−1710.
  22. Vaccaro P.O., Ohnishi H., Fujita K. A light-emitting device using a lateral junction grown by molecular beam epitaxy on GaAs (31 l) A-oriented substrates. Appl. Phys. Lett., 1998, v. 72, № 7, pp. 818−820.
  23. Takahashi M., Hirai M., Fujita K., Egami N., Iga K. Growth and fabrication of strained-layer InGaAs/GaAs quantum well lasers grown on GaAs (311)A substrates using only a silicon dopant. -J. Appl. Phys., 1997, v. 82, № 9, pp. 4551−4557.
  24. Vaccaro P.O., Ohnishi H., Fujita K. Lateral-junction vertical-cavity surface-emitting laser grown by molecular-beam epitaxy on a GaAs (31 l) A-oriented substrate. Appl. Phys. Lett., 1999, v. 74, № 9, pp. 3854−3856.
  25. Ilegems M. Berillium doping and diffusion in molecular-beam epitaxy of GaAs and AlxGai.xAs. J. Appl. Phys, 1977, v. 48, № 3, pp. 1278−1287.
  26. Miller D.L., Asbeck P.M. Be redistribution during growth of GaAs and AlGaAs by molecular beam epitaxy. J. Appl. Phys, 1985, v. 57, № 6, pp. 1816−1822.
  27. Wang W. I., Mendez E. E., Iye Y., Lee В., Kim M. H., Stillman G. E. High mobility two-dimensional hole gas in an Alo.26Gao.74As/GaAs heterojunction. J. Appl. Phys., 1986, v. 60, № 5, p. 1834−1835.
  28. В.Я., Панаев И. А., Преображенский B.B., Семягин Б. Р. Высокотемпературная анизотропия проводимости сверхрешеток GaAs квантовых проволок, выращенных на фасе-тированных поверхностях (311)А. Письма в ЖЭТФ, 1994, т. 60, № 3, с. 209 — 212.
  29. Heremans J.J., Santos М.В., Shayegan М. Transverse magnetic focusing and the dispersion of GaAs 2D holes at (311)A heterojunctions Surf. Sci., 1994, v. 305, p. 348−352.
  30. Heremans J.J., Santos M.B., Hirakawa K., Shayegan M. Mobility anisotropy of two-dimensional hole systems in (311)A GaAs/AlxGaixAs heterojunctions. J. Appl. Phys., 1994, v. 76, № 3, p. 1980−1982.
  31. Henini M., Rodgers P.J., Crump P.A., Gallagher B.L. Growth and electrical transport properties of very high mobility two-dimensional hole gases displaying persistent photoconductivity. Appl. Phys. Lett., 1994, v. 65, № 16, pp. 2054−2056.
  32. Henini M., Rodgers P.J., Crump P.A., Gallagher B.L., Hill G. The growth and physics of ultra-high-mobility two-dimensional hole gas on (311)A GaAs surface. J. Cryst. Growth, 1995, v. 150, p. 451−454.
  33. Galbiati N., Pavesi L., Grilli E., Guzzi M., Henini M. Be doping of (311)A and (100) Alo.24Gao.76As grown by molecular beam epitaxy. Appl. Phys. Lett., 1996, v. 69, № 27, pp. 42 154 217.
  34. Simmons M.Y., Hamilton A.R., Stevens A.J., Ritchie D.A., Pepper M., Kurobe A. Fabrication of high-mobility in situ back-gated (311)A hole gas heterojunction. Appl. Phys. Lett., v.70, 1997, № 20, p. 2750−2752.
  35. Papadakis S.J., De Poortere E.P., Shayegan M. Confinement symmetry, mobility anisotropy, and metallic behavior in (311)A GaAs two-dimensional holes. Phys. Rev. B, 2000, v. 62, № 23, pp. 15 375−15 378.
  36. Kalt Н., Notzel R., Ploog К., Giessen Н. Quantum-confined electron-hole droplets. Phys. Stat. Sol. (b), 1992, v. 173, pp. 389−396.
  37. Notzel R., Ledentsov N.N., Ploog K. Confined excitons in corrugated GaAs/AlAs superlattices. Phys. Rev. B, 1993, v. 47, № 3, pp. 1299−1304.
  38. Brandt O., Kanamoto K., Tokuda Y., Tsukada N. Optical properies of a high-quality (311)-oriented GaAs/Al0.33Ga0.67As single quantum well. Phys. Rev. B, 1993, v. 48, № 23, pp. 1 759 917 602.
  39. M.B., Берковиц В. Л., Гусев A.O., Ивченко Е. Л., Копьев П. С., Леденцов Н. Н., Несвижский А. И. Оптическая анизотропия сверхрешеток GaAs/AlAs, выращенных вдоль направления 113. ФТТ, 1994, т. 36, № 4, с. 1098−1105.
  40. Bacquet G., Hassen F., Lauret N., Armelles G., Dominguez P. S., Gonzalez L. Optical properties of (113) GaAs/AlAs superlattices grown by molecular beam epitaxy and atomic layer molecular beam epitaxy. J. Appl. Phys., 1995, v. 77, № 1, pp. 339−342.
  41. Kajikava Y., Brandt O., Kanamoto K., Tsukada N. Optical anisotropy of (1 IN) and vicinal (001) quantum wells, J. Cryst. Growth, 1995, v. 150, pp. 431−435.
  42. Ribeiro E., Cerdeira F., Cantarero A. Experimental evidence of anisotropy in the Eo and Ei optical spectra of corrugated GaAs/AlAs quantum-wire superlattices. Phys. Rev. B, 1995, v. 51, № 12, pp. 7890−7893.
  43. Santos P. V., Cantarero A., Cardona M., Notzel R., Ploog K. Optical properties of (311)-oriented GaAs/ALAs superlattices. Phys. Rev. B, 1995, v. 52, № 3, pp. 1970−1977.
  44. Oestraich M., Heberle A.P., Ruhle W.W., Notzel R., Ploog K. Extreme anisotropy of the g-factor in quantum wires. Europhys. Lett., 1995, v. 31, № 7, pp. 399−404.
  45. Luerfien D., Dinger A., Kalt H., Braun W., Notzel R., Ploog K., Ttimmler J., Geurts J. Interface structure of (001) and (113)A GaAs/AlAs superlattices. Phys. Rev. B, 1995, v. 57, № 3, pp. 1631−1636.
  46. Chadi D.J. Atomic and electronic structures of (111), (211), and (311) surfaces of GaAs. J. Vac. Sci. Technol. B, 1985, v. 3, № 4, pp. 1167−1169.
  47. Ikonic Z., Srivastava G.P., Inkson J.C. Electronic structure of 311.-grown (GaAs)m (AlAs)n superlattices. Phys. Rev. B, 1994, v. 49, № 15, pp. 10 749−10 752.
  48. Saito Т., Hashimoto Y., Ikoma T. Band discontinuity at the (311)A GaAs/AIAs interface and possibility of its control by Si insertion layers. Phys. Rev. B, 1994, v. 50, № 23, pp. 17 242−17 248.
  49. Goldoni G., Peeters F.M. Hole subbands and effective masses in p-doped 113.-grown het-erojunctions. Phys. Rev. B, 1995, v. 51, № 24, pp. 17 806−17 813.
  50. E.JI., Киселев А. А. Квазиодномерные состояния электрона в двойной квантовой яме с Н-образной связью. Письма в ЖЭТФ, 1993, т. 58, № 1, с. 31−34.
  51. Kiselev А.А., Rossler U. Quantum well with corrugated interfaces: Theory of electron states. -Phys. Rev. B, 1994, v. 50, № 19, pp. 14 283−14 286
  52. Li S.-S., Xia J.-B. Effective-mass theory for GaAs/GaixAlxAs quantum wires and corrugated superlattices grown on (31 l)-oriented substrates. Phys. Rev. B, 1994, v. 50, № 12, pp. 8602−8608.
  53. Li S.-S., Xia J.-B. Exciton states in the GaAs/Gai.xAlxAs and corrugated superlattices grown on (31 l)-oriented substrates. Phys. Rev. B, 1995, v. 51, № 23, pp. 17 203−17 206.
  54. Notzel R., Ploog K. Direct synthesis of GaAs quantum-wire structures by molecular beam epitaxy on (311) surfaces. J. Vac. Sci. Technol. A, 1992, v. 10, № 4, pp. 617−622.
  55. Notzel R., Ploog K. Surface and interface ordering on non-(100)-oriented GaAs substrates. -J. Vac. Sci. Technol. B, 1992, v. 10, № 4, pp. 2034−2039.
  56. Notzel R., Daweritz L., Ploog K. Surface structure of high- and low-index GaAs surfaces: direct formation of quantum-dot and quantum-wire structures. J. Cryst. Growth, 1993, v. 127, pp. 858−862.
  57. Hsu Y., Wang W.I., Kuan T.S. Study of interface abruptness of molecular beam epitaxial GaAs/AlAs superlattices grown on GaAs (311) and (100) substrates. J. Vac. Sci. Technol. B, 1996, v.14, № 3, pp.2286−2289.
  58. Platen J., Kley A., Setzer C., Jacobi K., Ruggerone P., Sheffler M. The importance of high-index surfaces for the morphology of GaAs quantum dots. J. Appl. Phys., 1999, v. 85, № 7, pp. 3597−3601.
  59. Notzel R., Temmyo J., Tamamura T. Tunability of one-dimensional self-faceting on GaAs (311)A surfaces by metalorganic vapor-phase epitaxy. Appl. Phys. Lett., 1994, v. 64, № 26, pp.3557−3559.
  60. Pristovsek M., Menhal H., Wehnert Т., Zettler J.-T., Schmidtling Т., Esser N., Richter W., Setzer C., Platen J., Jacobi K. Reconstruction of the GaAs (113) surface. J. Cryst. Growth., 1998, v. 195, pp. 1−5.
  61. Vaccaro P.O., Fujita K., Watanabe T. Spontaneous formation of nanostructures in InxGai. xAs epilayers grown by molecular beam epitaxy on GaAs non-(100)-oriented substrates. -Jpn. J. Appl. Phys., 1997, v. 36, part 1, № 3B, pp. 1948−1954.
  62. Temmyo J., Tamamura T. Self-organizing semiconductor epitaxial films by Turing instability. Jpn. J. Appl. Phys., 1998, v. 37, part 1, № 3B, pp. 1487−1492.
  63. De Caro L., Tapfer L. Elastic lattice deformation of semiconductor heterostructures grown on arbitrarily oriented substrate surfaces. Phys. Rev. B, 1993, v. 48, № 4, pp. 2298−2303.
  64. Notzel R., Menninger J., Ramsteiner M., Ruiz A., Schonherr H.-P., Ploog K.H. Selectivity of growth on patterned GaAs (311)A substrates. Appl. Phys. Lett., 1996, v. 68, № 8, p. 1132−1134.
  65. Notzel R., Ramsteiner M., Menninger J., Trampert A., Schonherr H.-P., Daweritz L., Ploog K.H. Patterned growth on high-index GaAs (nil) substrates: Application to sidewall quantum wires. J. Appl. Phys., 1996, v. 80, № 7, pp. 4108−4111.
  66. Richter A., Suptitz M., Heinrich D., Lienau Ch., Elsaesser Т., Ramsteiner M., Notzel R., Ploog K.H. Exciton transport into a single quantum wire studied by picosecond near-field optical spectroscopy. Appl. Phys. Lett., 1998, v. 73, № 15, pp. 2176−2178.
  67. Santos P.V., Notzel R., Ploog K.H. Polarization anisotropy in quasiplanar sidewall quantum wires on patterned GaAs (311)A substrates. J. Appl. Phys., 1999, v. 85, № 12, pp. 8228−8234.
  68. Fricke J., Notzel R., Jahn U., Niu Zh., Schonherr H.-P., Ramsteiner M., Ploog K.H. Patterned growth on GaAs (311)A substrates: Engineering of growth selectivity for lateral semiconductor nanostructures. J. Appl. Phys., 1999, v. 86, № 5, pp. 2896−2900.
  69. Т., Фаулер А., Стерн Ф. Электронные свойства двумерных систем. М., «Мир», 1985.-9894. Prange R.E., Nee T.-W. Quantum spectroscopy of the low-field oscillation in the surface impedance. -Phys. Rev., 1968, v. 168, № 3, pp. 779−786.
  70. Gold A. Metal insulator transition due to surface roughness scattering in a quantum well. -Solid State Commun., 1986, v. 60, № 6, pp. 531−534.
  71. Gold A. Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature. Phys. Rev. B, 1987, v. 35, № 2, pp. 723−733.
  72. Sakaki H., Noda Т., Hirakawa К., Tanaka M., Matsusue T. Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett., 1987, v. 51, № 23, pp. 1934−1936.
  73. Noda Т., Tanaka M., Sakaki H. Correlation length of interface roughness and its enhancement in molecular beam epitaxy grown GaAs/AlAs quantum wells studied by mobility measurement. Appl. Phys. Lett, 1990, v. 57, № 16, pp. 1651−1653.
  74. Kulbachinskii V.A., Kytin V.G., Kadushkin V.I., Shangina E.L., de Visser A. Quantum corrections to the conductivity and quantum Hall effect in GaAs-GaAlAs multiple quantum well structures. J. Appl. Phys., 1994, v. 75, № 4, pp. 2081−2085.
  75. Meyer J.R., Arnold D.J., Hoffman C.A., Bartoli F.J. Interface roughness limited electron mobility in HgTe-CdTe superlattices. Appl. Phys. Lett., 1991, v. 58, № 22, pp. 2523−2525.
  76. Hoffman C.A., Meyer J.R., Youngdale E.R., Bartoli F.J., Miles R.H. Interface roughness scattering in semiconducting and semimetallic InAs-GaixInxSb superlattices. Appl. Phys. Lett., 1993, v. 63, № 16, pp. 2210−2212.
  77. Mitchell W.C., Brown G.J., Lo I., Elhamri S., Ahoujja M., Ravindran K., Newrock R.S., Razeghi M., He X. Interface roughness scattering in thin, undoped GalnP/GaAs quantum wells. -Appl. Phys. Lett., 1994, v. 65, № 12, pp. 1578−1580.
  78. Nag B.R., Mukhopadhyay S., Das M. Interface roughness scattering-limited mobility in AlAs/GaAs and Gao.5Ino.5P/GaAs wells. J. Appl. Phys., 1999, v. 86, № 1, pp. 459−463.
  79. Мои C.-Y., Hong T.-m. Transport in quantum wells in the presence of interface roughness. -Phys. Rev. B, 2000, v. 61, № 19, pp. 12 612−12 615.
  80. Goodnick S.M., Ferry D.K., Wilmsen C.W., Liliental Z., Fathy D., Krivanek O.L. Surface roughness at the Si (100)-Si02 interface. — Phys. Rev. B, 1985, v. 32, № 12, pp. 8171−8186.
  81. Lew A.Y., Zuo S.L., Yu E.T., Miles R.H. Correlation between atomic-scale structure and mobility anisotroty in InAs/GaixInxSb superlattices. Phys. Rev. B, 1998, v. 57, № 11, pp. 65 346 539.
  82. Lay T.S., Heremans J.J., Suen Y.W., Santos M.B., Hirakawa K., Shayegan M., Zrenner A. High-quality two-dimensional electron systems confined in an AlAs quantum well. Appl. Phys. Lett., 1993, v. 62, № 24, pp. 3120−3122.
  83. Feenstra R.M., Lutz M.A. Scattering from strain variations in high-mobility Si/SiGe het-erostructures. J. Appl. Phys., 1995, v. 78, № 10, pp. 6091−6097.
  84. В.А., Вьюрков B.B. Проводимость квантового канала с шероховатыми стенками. Микроэлектроника, 1997, т. 26, № 3, с. 216−219.
  85. Yang В., Cheng Y., Wang Z., Liang J., Liao Q., Lin L., Zhu Z., Xu В., Li W. Interface roughness scattering in GaAs-AlGaAs modulation-doped heterostructures. Appl. Phys. Lett., 1994, v. 65, № 26, pp. 3329−3331.
  86. П.В., Кривченков В. Д. Квантовая механика с задачами. М.: Наука, 1976.
  87. П., Ортон Дж.В. Методы измерения электрических свойств полупроводников. -Зарубежная радиоэлектроника, 1981, т. 1, с. 3 50, т. 2, с. 3−49.
  88. Е.В. Гальваномагнитные эффекты и методы их исследования. М.: Радио и связь, 1990.
  89. Pavesi L., Guzzi М. Photoluminescence of AlxGai. xAs alloys. J. Appl. Phys, 1994, v. 75, № 10, pp. 4779−4842.
  90. Stormer H.L., Tsang W.-T. Two-dimensional hole gas at a semiconductor heterojunction interface. Appl. Phys. Lett., 1980, v. 36, № 8, pp. 685−687.
  91. Stormer H.L., Gossard A.C., Wiegmann W., Blondel R., Baldwin K. Temperature dependence of the mobility of two-dimensional hole system in modulation-doped GaAs-(AlGa)As. Appl. Phys. Lett., 1984, v. 44, № 1, pp. 139−141
  92. Wang W. I, Mendez E.E., Stern F. High mobility hole gas and valence-band offset in modulation-doped p-AlGaAs/GaAs heterojunctions. Appl. Phys. Lett., 1984, v. 45, № 6, pp. 639−641.
  93. Mendez E.E., Wang W.I. Temperature dependence of hole mobility in GaAs-GaixAlxAs heterojunctions. Appl. Phys. Lett., 1985, v. 46, № 12, pp. 1159−1161.
  94. Syphers D.A., Martin K.P., Higgins R. J. Determination of transport coefficients in high mobility heterostructure systems in the presence of parallel conduction. Appl. Phys. Lett., 1986, v. 49, № 9, pp. 534−536.
  95. Г. А., Цидильковский И. М. Токовые неустойчивости в rc-GaAs в сильных магнитных полях. ФТП, 1983, т. 17, № 5, с. 850−853.
  96. Г., Гориндж М.Дж. Просвечивающая электронная микроскопия материалов. -М, «Наука», 1983.
  97. McCaffrey J.P. Small-angle cleavage of semiconductors for transmission electron microscopy. Ultramicroscopy, 1991, v. 38, pp. 149−157.
  98. Barna A. Modern preparation technique: Ion beam thinning for ТЕМ, possibilities and limits. International Autumn School on New Techniques in Electron Microscopy for Material Science, Halle, Germany, 1999.
  99. Sabinina I.V., Gutakovsky A.K. Preparation of ТЕМ samples from compound semiconductors by chemomechanical polishing. Ultramicroscopy, 1992, v. 45, pp. 411—415.
  100. Kawasaki M., Yoshioka Т., Shiojiri M. A new specimen preparation method for cross-section ТЕМ using diamond powders. J. Electron Microscopy, 1999, v. 48, № 2, pp. 131−137.
  101. Kallstenius T. Sample preparation of InGaAsP/InP-based lasers for plan-view transmission electron microscopy using selective chemical thinning. J. Electrochem. Soc., 1999, v. 146, № 2, pp. 758−760.
  102. Prinz V.Ya., Seleznev V.A., Gutakovsky A.K. Novel technique for fabrication one- and two-dimensional system. Surf. Sci., 1996, v. 361/362, pp. 886−889.
  103. Yablonovitch E., Gmitter Т., Harbison J.P., Bhat R. Extreme selectivity in the lift-off epitaxial GaAs films. Appl. Phys. Lett., 1987, v. 51, № 28, pp. 2222−2224.
  104. Otsubo M., Oda Т., Kumabe H., Miki H. Preferential etching of GaAs through photoresist mask. J. Electrochem. Soc., 1976, v. 123, № 5, pp. 676−680.
  105. Juang C., Kuhn K.J., Darling R.B. Selective etching of GaAs and Alo.3oGao.7oAs with citric acid/hydrogen peroxide solutions. J. Vac. Sci. Technol. B, 1990, v. 8, № 5, pp. 1122−1124.
  106. Zhao R., Lau W.S., Chong T.C., Li M.F. A comparison of the selective etching characteristics of conventional and low-temperature-grown GaAs over AlAs by various etching solutions. -Jpn. J. Appl. Phys., 1996, v. 35, part 1, № 1 A, pp. 22−25.
  107. Kitano Т., Izumi S., Minami H., Ishikawa Т., Sato K., Sonoda Т., Otsubo M. Selective wet etching for highly uniform GaAs/Alo.isGao.85As heterostructure field effect transistors. J. Vac. Sci. Technol. B, 1997, v. 15, № 1, pp. 167−170.
  108. Carter-Coman C., Bicknell-Tassius R., Benz R.G., Brown A.S., Jokerst N.M. Analysis of GaAs substrate removal etching with citric acid: H202 and NLLOHrFbCb for application to compliant substrates. J. Electrochem. Soc., 1997, v. 144, № 2, pp. L29-L31.
  109. Kim J.-H., Lim D.H., Yang G.M. Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H202 and de-ionized H202/buffered oxide etch. J. Vac. Sci. Technol. B, 1998, v. 16, № 2, pp. 558−560.
  110. Moon E.-A., Lee J.-L. Selective wet etching og GaAs on AlxGai-xAs for Al-GaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor. J. Appl. Phys., 1998, v. 84, № 7, pp. 3933−3938.
  111. Takamori Т., Takemasa K., Kamijoh T. Interface structure of selectively oxidized AlAs/GaAs. Appl. Phys. Lett., 1996, v. 69, № 5, pp. 659−661.
  112. Reinhardt F., Dwir В., Kapon E. Oxidation of GaAs/AlGaAs heterostructures studied by atomic force microscopy in air. Appl. Phys. Lett., 1996, v. 68, № 22, pp. 3168−3170.
  113. Ozdemir M., Zangwill A. Morphological equilibration of a corrugated crystalline surface. -Phys. Rev. B, 1990, v. 42, № 8, pp. 5013−5024.
  114. Shchukin V.A., Borovkov A.I., Ledentsov N.N., Kop’ev P. S. Theory of quantum-wire formation on corrugated surfaces. Phys. Rev. B, 1995, v. 51, № 24, pp. 17 767−17 779.
  115. Shchukin V.A., Bimberg D. Spontaneous ordering of nanostructures on ciystal surfaces. -Rev. Mod. Phys., 1999, v. 71, № 4, pp. 1125−1171.
  116. Fukui Т., Saito H. Natural superstep formed on GaAs vicinal surface by metalorganic chemical vapor deposition. Jap. J. Appl. Phys., 1990, v. 29, № 3, pp. L483-L485.
  117. Kasu M., Kobayashi N. Equilibrium multiatomic step structure of GaAs (OOl) vicinal surfaces grown by metalorganic chemical vapor deposition. Appl. Phys. Lett., 1993, v. 62, № 11, pp. 1262−1264.
  118. Kato Т., Takeuchi Т., Inoue Y., Hasegawa S., Inoue K., Nakashima H. Stacked GaAs multi-quantum wires grown on vicinal GaAs (llO) surfaces by molecular beam epitaxy. Appl. Phys. Lett., 1998, v. 72, № 4, pp. 465−467.
  119. .И., Эфрос A.JT. Электронные свойства легированных полупроводников. -Москва, «Наука», 1979.
  120. Шик А. Я. Эффект Холла и подвижность электронов в неоднородных полупроводниках. Письма в ЖЭТФ, 1974, т. 20, № 1, с. 14−16.
  121. .И. Критическое поведение коэффициента Холла вблизи порога протекания. ЖЭТФ, 1977, т. 72, № 1, с. 288−295.
  122. В.Г., Шик А.Я., Шкловский Б. И. К теории эффекта Холла в случайно-неоднородных полупроводниках. ФТП, 1982, т. 16, № 8, с. 1406−1410.
  123. Шик А. Я. Перколяционный эффект Холла в сильном магнитном поле. ФТП, 1983, т. 17, № 12, с. 2220−2222.
  124. Motohisa J., Tanaka М., Sakaki Н. Anisotropic transport and nonparabolic miniband in a novel in-plane superlattice consisting of a grid-inserted selectively doped heterojunction. Appl. Phys. Lett., 1989, v. 55, № 12, pp. 1214−1216.- 104
  125. Notzel R., Eissler D., Hohenstein M., Ploog K. Periodic mesoscopic step arrays by step bunching on high-index GaAs surfaces. J. Appl. Phys., 1993, v. 74, № 1, pp. 431−435.
  126. Pashley M.D. Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs (OOl) and ZnSe (OOl). Phys. Rev. B, 1989, v. 40, № 15, pp. 1 048 110 487.
Заполнить форму текущей работой