Помощь в написании студенческих работ
Антистрессовый сервис

Влияние среды на функциональные и структурные свойства сывороточного альбумина человека

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Выше изложены результаты исследования влияния рН, температуры, ионной силы и, в отдельных случаях, ионов Ct~> SO^ и Са^+ на состояние двух участков мономерной молекулы сывороточного альбумина человека, ответственных за связывание разных классов лигандов. Помимо спектрофлуоресцентной характеристики состояния триптофанового остатка Тгр -214 и связанного АНС, получены данные об изменении… Читать ещё >

Влияние среды на функциональные и структурные свойства сывороточного альбумина человека (реферат, курсовая, диплом, контрольная)

Содержание

  • ВВЩЕНИЕ
  • Часть I. ОБЗОР ЛИТЕРАТУРЫ. Ю
  • Глава I. Физико-химические, структурные и функциональные свойства сывороточных альбуминов. Ю
    • 1. 1. Физико-химические свойства сывороточных альбуминов. Ю
    • 1. 2. Современное представление о структуре молекул сывороточных альбуминов
  • Глава 2. Транспортная и депонирующая функция сывороточных альбуминов
    • 2. 1. Классификация активных центров сывороточных альбуминов
    • 2. *2. Специфические центры для связывания высших жирных кислот (участок I)
      • 2. 3. Центры для связывания L -триптофана и некоторых эндогенных и экзогенных веществ (участок 2)
      • 2. 4. Центры для связывания билирубина и некоторых эндоненных и экзогенных веществ (участок 3)
      • 2. 5. Связывание ионов меди, никеля и других металлов с альбуминами (участок 4)
      • 2. 6. Специфический центр для связывания гемина (участок 5)
      • 2. 7. Центры для связывания некоторых лекарственных веществ (участок 6)
      • 2. 8. Конкурентно-аллостерическое взаимодействие центров
  • Глава 3. Структурные перестройки альбуминов под действием рН, температуры и ионной силы
    • 3. 1. Структурная лабильность молекул сывороточных альбуминов
    • 3. 2. Конформационные состояния альбуминов в области низких значений рН
    • 3. 3. рН-индуцируемые конформационные переходы сывороточных альбуминов в нейтральной и слабо щелочной средах
    • 3. 4. Влияние ионной силы на конформационное состоя -ние сывороточных альбуминов в нейтральной области рН
    • 3. 5. Влияние температуры на конформационное состояние сывороточных альбуминов в нейтральной зоне рН

6.2. Образование гидрофобных участков в области второго домена молекулы сывороточного альбумина. 95.

6.3. Индуцируемые нагреванием изменения состояния в области центра связывания флуоресцирующего зонда. 100.

ГлаЕа 7. Влияние ионной силы и температуры на индуцируемые закислением среды структурные переходы сывороточного альбумина человека. 106.

7.1.

Введение

106.

7.2. Расщепление /V-Гперехода при низких значениях ионной силы и влияния на него температуры.108.

7.3. Двухступенчатый характер /V-? -перехода как проявление нарушения мевдоменной упаковки и вторичной структуры белка. III.

Глава 8. Состояние сывороточного альбумина человека в зоне рН от 5 до 10. 122.

8.1.

Введение

122.

8.2. Флуоресценция остатков триптофана. 123.

8.3. Флуоресценция связанного АНС. 127.

ЗАКЛЮЧЕНИЕ

131.

Основные выводы. 134.

ЛИТЕРАТУРА

137.

Актуальность темы

Кровь позвоночных животных содержит в качестве главного белка сыворотки альбумин. Основная физиологическая функция сывороточного альбумина, по-видимому, заключается в связывании и транспорте с кровью и межклеточной (интерстициальной) жидкостью по всему организму низкомолекулярных метаболитов и случайно попадающих в кровь веществ как органической, так и неорганической природы / 35,116 /.

Различным структурным классам связываемых веществ (называемых обычно лигандами) на молекуле альбумина соответствуют отдельные специфичные центры связывания. Для многих лигандов альбумина известна направленность их транспорта в организме от одних органов и тканей к другим. Так, например, токсические продукты жизнедеятельности и ионы тяжелых металлов должны быть доставлены в соответствующие органы выделения. Такой же метаболит как триптофан доставляется главным образом в центральную нервную систему, где превращается в нейромедиа-тор серотонин. Можно полагать, что в ряде случаев лиганд может не только избирательно освобовдаться в капиллярах определенных тканей, но эта «разгрузка» должна производиться достаточно быстро и полно. Простейшая избирательность «адреса доставки» может быть достигнута снижением равновесной концентрации свободного лиганда в кровеносных капиллярах или межклеточной жидкости тканей-адресатов, вследствие быстрого всасывания и связывания лигандов структурами самой ткани. Не исключено однако, что в органах и тканях существуют специальные специфические механизмы регуляции связывания и освобождения лигандов, взаимодействующих с альбумином.

Одним из механизмов регуляции скорости, прочности и емкости связывания отдельных классов транспортируемых альбумином лигандов может быть изменение в капиллярах и интерстиции отдельных тканей некоторых физико-химических характеристик, таких как рН, ионная сила, ионный состав, температура, то есть направленное отклонение от среднего отдельных компонентов гомеостаза крови и межклеточной жидкости. Предпосылки для такого механизма имеются как в свойствах самого белка-транспортера, так и в известных потенциальных возможностях гомеостатических сдвигов в различных органах и тканях организма. Для сывороточных альбуминов характерны изменения структурных и физико-химических свойств в области средних физиологических значений рН (например, структурный N-В-пе-реход при рН 7−9), температуры (структурная перестройка при 30°- 40°С). Известно и влияние этих переходов на связывание некоторых классов лигандов. Уже это может служить предпосылкой для рассматриваемого механизма регуляции транспорта.

С другой стороны, средние значения основных физико-химических параметров крови крупных кровеносных сосудов (рН 7,4, температура 36−38°С, ионная сила около 0,15) подвержены вариациям от ткани к ткани и при изменении физиологического состояния организма. В зависимости от физиологического состояния, от локализации того или иного органа или ткани в теле теплокровного животного, от температуры и влажности окружающей среды и от специфики и интенсивности биоэнергетических и других метаболических процессов в данной ткани, температура в кровеносных капиллярах и в интерстициальном пространстве может варьировать от 10−15° до 42° / 33,234 /. При физических нагрузках, воспалительных процессах и некоторых нарушениях обмена веществ (например, при кетозе) значение рН в периферических органах и тканях также может сущестЕеннно отличаться от указанной средней величины / 23,231 /. Концентрация ионов Ыа4, К+, Са2*, Mg2+, ро|~и НСО3 в плазме крови человека составляет в среднем соответственно 142−150- 4,5−5,0- 5,0- 1,1- 103- 1,0- 2,0 и 27 мМ. Концентрация осмотически активных веществ (осмолярная концентрация) в сыворотке крови составляет в среднем ~0,3 осмоля/л /232/. Ионный состав плазмы крови обычно постоянен. Однако, при некоторых патологических состояниях, а также при бессолевой диете, усиленном потоотделении и др. могут происходить значительные изменения ионного состава плазмы крови, сопровождающиеся уменьшением содержания в ней /Va*, К+, Са2*" и других ионов / 230,232,235 /.

Такие изменения температуры, рН, ионной силы и ионного состава внутренней среды организма могут оказывать существенное влияние на взаимодействие лигандов с сывороточным альбумином, а значит и на его транспортные функции. Однако даже в нормальном физиологическом состоянии эти параметры могут подвергаться значительным отклонениям от средних значений в капиллярах и межклеточном пространстве отдельных тканей. Причиной таких отклонений могут служить, например, ионообменные процессы в выстилке капилляров и на поверхности клеток. Высокой эффективности таких процессов способствует значительное отношение поверхности к объему в капиллярах и межклеточных щвлях, по сравнению с крупными сосудами.

Цели и задачи работы. Сформулированная выше гипотеза о 1 регуляции транспортной функции сывороточного альбумина физико-химическими факторами среды требует разносторонней проверки и обоснования на молекулярном, морфологическом и физиологическом уровнях. Целью этой работы является выявление молекулярных предпосылок возможности регуляции связывания лигандов физико-химическими факторами среды, которые заложены в свойствах самого сывороточного альбумина.

Для достижения этой цели было проведено исследование комбинированного воздействия изменений температуры, рН, ионной силы и ионного состава на определенные участки в сывороточном альбумине человека in vitro. Метод флуоресценции позволил диагносцировать изменения состояния в окружении единственного триптофанового остатка в белке и в области главного центра связывания красителей. Диагностику проводили по параметрам флуоресценции белкового триптофана (Тгр -214) или связанного красителя АНС (1-анилиннафталин-8-сульфоната), а также по параметрам ассоциации АНС с главными центрами связывания альбумина.

Реально эта задача решалась в следующих конкретных исследованиях:

1. Изучение влияния ионов на состояние сывороточного альбумина человека в Nформе (рН 6−7).

2. Изучение влияния температуры в физиологическом ее диапазоне на Nформу сывороточного альбумина.

3. Изучение комплексного влияния температуры и ионной силы на кислотные перестройки N-F и f-E сывороточного альбумина.

4. Изучение влияния температуры и ионной силы на рН-инду-цируемые перестройки сывороточного альбумина в зоне рН от.

5 до 10 (главным образом, N — Впереход).

Научная новизна. На единообразном препарате мономерного сывороточного альбумина человека проведено систематическое исследование влияния рН (от 2 до 10), температуры (от 10 до 45°), ионной силы (от 0,001 до 0,2) и природы анионов (хлорид или сульфат) на структурно-физическое состояние двух локальных участков молекулы и способность связывать краситель в одном из специфических центров связывания лигандов. Получены прямые экспериментальные доказательства того, что даже сравнительно небольшие изменения рН и температуры способны существенно изменять сродство альбумина к лигандам. Это означает, что эти физико-химические факторы среды могут в принципе регулировать «загрузку» и «разгрузку» специфических центров связывания альбумина, то есть регулировать его транспортную функцию.

Охарактеризовано влияние температуры и ионной силы раствора на рН-индуцируемые перестройки альбумина. Обнаружено расщепление N-Fперехода на две перестройки при повышении температуры и понижении ионной силы. Обнаружена конкуренция вторичных центров связывания красителя с длинноцепочечными ненасыщенными жирными кислотами.

Практическая ценность. Полученные результаты можно рассматривать как вклад в общую молекулярную теорию транспортной функции сывороточного альбумина. Их необходимо учитывать как в развитии молекулярно-биофизических представлений о транспортной функции крови, так и в физиологических и фармакологических исследованиях распределения веществ, в частности лекарств (фармакокинетика) в организме. Полученные данные и развиваемые подходы могут быть также полезны при изучении нарушений гомеостаза в организме в особых физиологических и патологических состояниях.

Апробация работы. Материалы диссертации докладывались на 1У Всесоюзной конференции по спектроскопии биополимеров (Харьков, 1981 г.) и на Совете уполномоченных стран СЭВ и СФРЮ по проблеме «Биофизика» (Улан-Батор, 1984 г.).

Публикации. По теме диссертации опубликованы 4 статьи и тезисы двух докладов.

Часть I. ОБЗОР ЛИТЕРАТУРЫ.

ОСНОВНЫЕ ВЫВОДЫ.

1. В Nформе сывороточного альбумина человека (рН 6,5−7) при 20 °C изменение концентрации NaCl от 0,001 до 0, ЗМ не изменяет флуоресцентных свойств и, следовательно, окружения Тгр-214, но изменяет положение спектра и интенсивность флуоресценции связанного АНС в диапазоне концентраций NaCCjxo О ДМ. Этот эффект сопровождается уменьшением сродства белка к АНС как в главном, так и в двух вторичных центрах связывания. Механизм этого эффекта связан с аллостерическим влиянием связывания ионов tt~ на центр связывания красителя (отрицательная кооперативность). Этот эффект может иметь регуляторное значение для транспорта веществ альбумином.

2. С ростом концентрации А/аС?до ОДМ резко падает сродство альбумина в N-форме к ионам Са2+.

3. Связывание ионов Са^+ приводит к коротковолновому сдвигу спектров флуоресценции ТГр -214 в М-форме альбумина.

4. Додеци л сульфат и пальмитат в концентрации 10″ «% сильно конкурируют с АНС за связывание по вторичным центрам молекулы альбумина в Жформе.

5. При изменении температуры от 30 до 42 °C /Кформа сывороточного альбумина человека претерпевает структурную перестройку (^?/2 — 35 * 36°С). Эта перестройка сказывается на состоянии окружения триптофана лишь при низкой ионной силе и (или) сниженном рН (5,6). В то же время в центрах связывания АНС эта перестройка осуществляется и при рН 7 и ионной силе 0,2. Этот факт дает основание предполагать, что изменение температуры, рН и (или) ионной силы может служить дифференциальным тонким регулятором, по-разному влияющим на сродство лигандов, связываемых в этих двух центрах связывания.

6. В ходе этого температурно-индуцируемого перехода при рН 7 и ионной силе 0,2 растет сродство альбумина к АНС в главном и во вторичных центрах связывания, а число вторичных центров увеличивается от 2 до 3. Предполагается, что этот эффект связан с диссоциацией хлорида, являющегося аллостерическим ингибитором связывания АНС.

7. Понижение ионной силы и (или) нагревание приводит к расщеплению N-Fперехода в сьтороточном альбумине на две стадиии Fi~Fz, что сопровождается двухступенчатым сдвигом максимума спектра флуоресценции триптофана (341,5-* 338,5 -^ 332нм), различными по направлению и амплитуде изменениями положения спектра и выхода флуоресценции АНС. При нагревании до 37° и понижении ионной силы <0,01.

N-F< -стадия смещается от рН~4 до рН >5,5. На стадии /Vсродство белка к АНС практически не изменяется, а на стадии Fi-Fz происходит падение сродства в главном центре и разрушение вторичных центров связывания красителя. Это означает, что при одновременном повышении температуры и сильном закислении (например, в зоне воспаления) должна происходить диссоциация лигандоь, связываемых в тех же участках, что и АНС.

8. При изменении рН от 6,7 до 5,7 при низкой ионной силе происходит изменение окружения остатков триптофана, сопровождаемое коротковолновым сдвигом спектра флуоресценции. Амплитуда сдвига растет с ростом температуры. Возможно, это изменение соответствует Af -^-переходу. В свойствах связанного АНС этих изменений не наблюдается.

9. NВ-переход сывороточного альбумина человека (рН 7−9,5) влияет на состояние как Тгр -214, так и центров связывания АНС. С ростом рН NВ-переход быстро сменяется щелочной деградацией белка, которая вызывает диссоциацию практически всего связанного АНС. Нагревание, не изменяя положения в шкале рН /V-В-перехода, сильно смещает в сторону низких рН процесс щелочной деградации. При низкой ионной силе N-В-переход смещается к более низким значениям рН и наблюдается В-А-перестройка белка (коротковолновый сдвиг спектров флуоресценции АНС).

10. Полученные нами данные, в совокупности с литературными говорят о том, что смещение рН, температуры, ионной силы и (или) ионного состава от средних гомеостатических значений может сильно и по-разному влиять на состояние двух центров на поверхности мономерной молекулы сывороточного альбумина человека — окрестности Try? -214 и области главного центра связывания АНС («билирубинового» центра). Этот, а также другие факты, полученные в этой работе, говорят в пользу того, что сывороточный альбумин можно рассматривать как многоцентрогое дифференциально управляемое молекулярное устройство для специфического транспорта низкомолекулярных веществ.

В заключение выражаю глубокую благодарность своим научным руководителям — доктору биологических наук Эдуарду Ароновичу Бурштейну и кандидату физико-математических наук Д. Нямаа за внимание, руководство, полезные советы и постоянную поддержкувыражаю искреннюю благодарность также Л. П. Калиниченко, А. В. Ткаченко, И. Б. Заводнику, А. С. Модестовой и всем сотрудникам Группы спектроскопии биополимеров ИШ АН СССР за неоценимую помощь, поддержку при выполнении работы.

Выражаю признательность дирекции Института Физики и Техники АН МНР, всем коллегам сектора биофизики Института Физики и Техники АН МНР за предоставленную возможность завершить работу.

— 131 -ЗАКЛЮЧЕНИЕ.

Выше изложены результаты исследования влияния рН, температуры, ионной силы и, в отдельных случаях, ионов Ct~> SO^ и Са^+ на состояние двух участков мономерной молекулы сывороточного альбумина человека, ответственных за связывание разных классов лигандов. Помимо спектрофлуоресцентной характеристики состояния триптофанового остатка Тгр -214 и связанного АНС, получены данные об изменении «билирубинового» центра связывания АНС, В ходе этого исследования удалось систематически оценить влияние до^денатурационных изменений температуры и ионной силы на состояние этих участков во всех основных формах альбумина, существующих при различных значениях рН. Уточнен специфический механизм влияния ионов на связывание АНС и ионов и установлено, что в его основе лежит аллостерическая кооперативность. Удалось уточнить, что додецилсульфат и пальмитат конкурируют с АНС за вторичные центры связывания красителя. Обнаружен инициируемый понижением ионной силы и нагреванием переход в окружении триптофана при рН 6,2.

Эти результаты позволили во многих отношениях уточнить поведение сывороточного альбумина при изменении главных физико-химических условий среды. Однако, в рамках более общей задачи выяснения молекулярных предпосылок регуляции транспортной функции сывороточного альбумина, эти данные имеют вспомогательное значение. Наряду с литературными данными эти результаты и измеренные нами параметры связывания АНС в различных условиях позволяют заключить, что сывороточный альбумин обладает свойствами легко и дифференцированно регулируемого устройства, способного управляемо связывать лиганды одного типа при одних условиях и освобождать их — при других, в то время как лиганды другого типа, связываемые в других участках, при таком изменении условий сродства либо не изменяют, либо изменяют противоположным к первой группе образом. Когда мы говорим о «легкости» такой регуляции, то имеем в виду, что значительное изменение сродства и емкости связывания для определенных центров достигается сравнительно небольшими смещениями каждого из регуляторных параметров.

Это иллюстрируется уже тем, что в средних условиях гоме-остаза, поддерживаемых в крупных кровеносных сосудах в нормальном физиологическом состоянии: рН~7,4, температура 36,5−37°, ионная сила 0,1−0,15, концентрация хлоридов 0,01−0ДМ и т. д., — состояние сывороточного альбумина человека соответствует смеси соизмеримых концентраций Nи В-форм (см. гл.8) — /У-форма находится в равновесии между высокотемпературной и низкотемпературной формами (см. гл.6) — центры связывания хлорида лишь частично заполнены (см. гл.5). Это означает, что физиологически небольшие смещения по любому из физико-химических параметров гомеостаза должно сместить это сложное равновесие форм альбумина, усилив сродство к одним лигандам и ослабив-к другим.

Этот вывод уже на нынешнем уровне знаний можно сделать твердо. Более значительные смещения гомеостаза необходимы для того, чтобы регуляторной стала перестройка окружения триптофана при рН около 6 или В-А-переход и, тем более, N-Z^ и Fi — Fzпереходы. Однако в экспериментальных физиологических (например, физическая перегрузка) или патологических состояниях эти механизмы вполне вероятны.

Дальнейшие исследования в этом направлении должны, по-видимому, проводиться в трех направлениях. Во-первых, необходимо выяснить дополнительные регуляторные факторы среды те или иные ионы или органические вещества, которые избирательно влияют на связывание лигандов отдельных классов. Во-вторых, необходимо информацию о влиянии уже изучавшихся факторов распространить на все главные типы центров связывания (6 типов по классификации Краг-Хансена / 116 /). И, наконец, в-третьих, необходимы исследования на физиологических системах (переживающие органы) или на целом организме с целью выяснения границ вариации отдельных регуляторных факторов в капиллярах и межклеточном пространстве различных органов и тканей в нормальном и экстремальных физиологических и патофизиологических состояниях.

Показать весь текст

Список литературы

  1. С.Л., Нисенбаум Г. Д., Конев С. В., Окунь И. М. Исследование конформационной гетерогенности нэтибных белков методом фотохемилюминесценции.-Мол.биол., т.1970,т.4,в.2, с.184−189.
  2. Бондаренко М.И. .Калашников Б. В., Каплан Б. А., Боловин Л. М. Изучение обмена альбумина с помощью радиометрии всего тела у здоровых людей.-Мед.радиол., 1979, т.24,1Ю, с.17−25.
  3. Э.А. Собственная люминесценция белка (Природа и применение).-Итоги Науки и Техники, Биофизика, М., ВИНИТИ, 1977, т.7,190с.
  4. Э.А. Люминесценция белка.Природа и применение. В кн. Итоги Науки и техники. Молекулярная биология, М., ВИНИТИ, 1973, т.3,с.127−214,
  5. Э.А. Люминесценция белковых хромофоров (Модельные исследования), Итоги Науки и техники, Биофизика, М., ВИНИТИ, 1976, т.6,213с.
  6. Э.А. Изучение быстрой подвижности белковых структур методами собственной флуоресценции.-В кн. Равновесная динамика нативной структуры белка, Пущино, 1977, с.60−83.
  7. Э.А. Собственная люминесценция белка как метод изучения быстрой структурной динамики.-Мол.биол., 1983, т.17,с.455−467.
  8. Э.А. Люминесценция белка.-М., Наука, 1983,297с.
  9. Э.А. Принципы метода.Растворы триптофана, тирозина и денатурированных белков.-Биофизика, 1968, т.13,в.3,с.433−442.
  10. Н.С., Бурштейн Э. А. Триптофаногая флуоресценция белков в растворах.Положение максимума спектра флуоресценции. -Мол. Биол., 1970, т.4,в.5,с.743−747.
  11. Владимиров Ю. А. Фотохимия и люминесценция белков.-М., Наука, 1965, 232с.
  12. Добрецов Г. Е. Исследование структуры белков методом флуоресцентных зондов.-В кн.,-Итоги Науки и Техники, Мол.биол., М. ВИНИТИ, 1975, т.6,с.34−105.
  13. В.П., Кирюхин И. Ф., Троицкий Г. В. Обратимые температурные переходы нативных глобулинов и яичного альбумина.-Мол.биол., 1970, т.4,в.5,с.655−662.
  14. Жоли М. Физическая химия денатурации белков.-М., Мир, 1968, 364с.14а.Иванов К. П. Биоэнергетика и температурный гомеостазис.-Д., Наука, 1972,172с.
  15. М.Н., Веденкина Н. С., Бурштейн Э. А. Флуоресценция триптофановых остатков сывороточных альбуминов.-Мол.биол., 1971, т.5,в.2,с, 214−224.
  16. М.Н., Веденкина Н. С., Бурштейн Э. А. Флуоресцентные исследования состояния триптофана в молекулах сывороточных альбуминов в Н- и F -формах.-Тез.докл.Совещание по ультрафиолетовой спектроскопии ароматических групп белка. Пущино, 1969, с. 47.
  17. С.В., Аксенцев С. П., Черницкий Е. А. Кооперативные переходы белков в клетке.-Минск, Наука и Техника, 1970,181с.
  18. С.В., Волотовский И. Д. 0 связи между конформацией и ультрафиолетовой люминесценцией белков.-Биофизика., 1967, т.12,в.2,с.200−205.
  19. С.В., Мажуль В. М., Черницкий Е. А. 0 существовании форм нативного белка с различной степенью подвижностирадикалов.-Доклады АН СОТ, 1968, т.183,№ 5,с.1201−1204.
  20. С.В. Электронно-возбужденные состояния биополимеров. -Минск, Наука и Техника, 1965,186с.
  21. Мак-Мюррей У. Обмен веществ у человека.-М., Мир, 1980,368с.
  22. Нямаа Д., Бат-Эрдэнэ 0., Бурштейн Э. А. Влияние среды на структурные и функциональные свойства сывороточных альбуминов Л. Влияние ионной силы раствора на сывороточный альбумин человека в /V-форме.-Мол.биол., 1984, т.
  23. Нямаа Д., Бат-Эрдэнэ 0., Бурштейн Э. А. Влияние среды на структурные и функциональные свойства сывороточных альбуминов. П. Влияние температуры на у- форму альбумина.-Мол. биол., 1984, т.
  24. Д. Спектрально-люминесцентное исследование структурных изменений сывороточных альбуминов и фибриногена.-Дисс.канд.-физ.-мат.наук.Минск, 1974,160с.
  25. Паркер С. Фотолюминесценция растворов.-М., Мир, 1972,503с.
  26. П.Л. Вода и ее роль в биологических системах.-Биофизика, 1968, т.13,в.I, с.163−177.
  27. О.Б., Финкельштейн А. В. Связь вторичной структуры глобулярных белков с их первичной структурой.-Биофизика, 1970, т.15,в.5,с.757−767.
  28. В.Л., Бурштейн Э. А. Изучение флуоресцентным методом связывания додецилсульфата сывороточными альбуминами.-Тез. докл.Всес.совещ.по ультрафиолетовой спектроскопии ароматических групп белка. Пущино, 1969, с. 50.
  29. В. И. Добрецов Г. Е., Мишнев В. Е., Клебанов Г. И., Владимиров Ю. А. З-метоксибенза'грон флуоресцирующий зонд, чувствительный к конформационным изменениям в белках .-Биофи зика, 1974, т.19,в Л, с.30−33.
  30. Г. В., Завьялов В. П., Кирюхин И. Ф. Обратимые конформационные переходы белков в области физиологических т емп ератур.-Би охимия, 1971, т.36,в.6,с.II07-III4.
  31. Шмидт-Ниольсен К. Физиология животных Приспособление и среда.-М., Мир, 1982,414с.
  32. С.Э. Физико-химические факторы биологической эволюции. -М., Наука, 1979, 244с.
  33. С.И. Транспортная функция сывороточного альбумина.-Бухарест, 1975,183с.
  34. Черницкий Е.А., Мажуль В. М., Исследование конформационных переходов сывороточного альбумина быка в кислой области люминесцентным методом.-Биофизика, 1970, т.15,в.3,с.408−415.
  35. Е.А. Люминесценция и структурная лабильность белков в растворе и клетке.-Минск, Наука и Техника, 1972, 202с.37а.Чеснокова С. А., Кулланда К. М., Физиология в таблицах и схемах.-М., Медицина, 1968,240с.
  36. Adams P.A. and Berman M.C. Kinetics and mechanism of the interaction between human serum albumin and mono-meric haemin. Biochem.J., 1980, v, 191, H 1, p.95−102.
  37. Ahlfors C, E. Competitive interaction of biliverdin and bilirubin only at the primary bilirubin binding site on Human Albumin. Anal.Biochem., 1981, v.110, If 2, p.295−307.
  38. Andersson L.O. The heterogeneity of bovine serum albumin. Biochim.Biophys.Acta., 1966, v.117, N 1, p. 115−133.
  39. Anderson J.A., Chang H.W. and Grandjean C. J, Nature of the binding site of pyridoxal 5'-phosphate to bovine serum albumin. Biochemistry, 1971, v.10, N 12, p.2408−2414.
  40. Aoki K., Sato K., Nagaoka S., Kamada M., Hiramatsu K. Heat denaturation of bovine serum albumin in alkaline pH region. Biochim.Biophys.Acta, 1973, v.328, N 2, p.323−333.
  41. Aoki K. and Poster J.F. Electrophoretic and hydrogen ion binding behavior of Bovine plasma Albumin in the presence of 0.02 M thiocyanate ion. J.Amer.Chem.Soc., 1957, v.79, N 13, p.3393−3396.
  42. Aoki К. and Poster J.P. Electrophoretic behavior of Bovine Plasma Albumin at low pH. J.Amer.Chem.Soc., 1957, v.79, N 13, p.3385−3393.
  43. Aoki K., Poster J.P. Electrophoretic demonstration of the isomerization of bovine plasma albumin at low pH.-J.Amer.Chem.Soc., 1956, v.78, Ж 14, p.3538−3540.
  44. Aoki K., Poster J.P. Limited hydrolysis of bovine plasma albumin at neutral and alkaline pH catalyzed by associated proteinases. Biochemistry, 1975, v.14,1. 16, p. 3566−3572.
  45. Arvidsson E.O., Green P.A. and Laurell S. Branching and hydrophobic bonding. Partition equilibrums and serum albumin binding of palmitic and phytamic acids. J. Biol.Chem., 1971, v.246, N 17, p.5373−5379.
  46. Ashbrook J.D., Spector A.A. and Fletcher J.E. Medium chain fatty acid binding to Human Plasma Albumin. J. Biol.Chem., 1972, v.247, N 10, p.7038−7042.
  47. Azzi A., Chance В., Radda G.K. and Lee C.P. A Fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc.Hat.Acad.Scin. USA, 1969, v.62, H 2, p.612−619.
  48. Beaven G.H., Chen S.-H., D’albis A., Gratzer W.B. Spectroscopic study of the hemin-human serum albumin system. Eur, J.Biochem., 1974, v.41, И 3, p.539−546.
  49. Behrens P.Q., Spiekerman A.M. and Brown J.R. Structure of human serum albumin. Fed.Proc., 1975, v.34, N 3, p.591.
  50. Bensen E.S., Hallaway E. and Lumry R.W. Deuteriuro--Hydrogen exchange analysis of pH-dependent transitions in bovine plasma albumin. J.Biol.Chem., 1964, v.239, N 1, p.122−127.
  51. Birkett D.J., Myers S.P. and Sudlow G. Effects of fatty acids on two specific drug binding sites on human serum albumin. Mol.phar., 1977, v.13, И 6, p.987−992.
  52. Bloomfield V. The structure of bovine serum albumin at low pH. Biochemistry, 1966, 1966, v.5, N 2, p.684--691.
  53. Breslow E. Comparison of cupric ion-binding sites in myoglobin derivatives and serum albumin. J.Biol.Chem., 1964, v.239, Ж Ю, p.3252−3259.
  54. Brodersen R. Competitive binding of bilirubin and drug to human serum albumin studied by enzymatic oxidation. J.Clin.Invest., 1974, v.54, N 10, p.1353−1364.
  55. Brodersen R. Bilirubin solubility and interaction with albumin and phospholipid. J.Biol.Chem., 1979, v.254, N 7, p.2364−2369.
  56. Brown J.R. Serum albumin- Aminoacid sequence.1. «Albumin structure function and Uses» (Rosenoer V.M., Oratz M. and Rothschid M.A. eds), Pergamon press, Elmsford, New York and Oxford, 1977, p.27−53.
  57. Brown J.R. Structure of bovine serum albumin. Fed. Proc., 1975, v.34, If 3, p.591.
  58. Brown J.R. Evolution of serum albumin. Fed.Proc., 1976, v.35, H 7, p.1621.
  59. Brown J.R. Structure of serum albumin disulfide bridges. Fed.proc., 1974, v.33, N 5, p.1389.
  60. Brown J.R. Structure and evolution of serum albumin. In «Albumin: Structure, biosynthesis, function» 11th F.E.B.S. (Fed.Eur.Biochem.Soc.). Meeting, Copenhagen, ed. by T. Peters and I.Sjoholm. Pergamon press, Oxford, 1977, v.50, p.11−20.
  61. Brown K.F. and Crooks M.J. Displacement of tolbutamide, glibenclamide and chlorpropamide from serum albumin by anionic drugs. Biochem.Pharmacol., 1976, v.25, N 9, p.1175−1178.
  62. Bull Т.Е., Halle B. and Lindman B. Internal motion at the chloride binding sites of human serum albumin by UMR relaxation studies. FEBS lett., 1978, v.86, N 1, p.25−28.
  63. Bushueva T.L., Busel E.P., Burshtein E.A. Relationship of thermal quenching of protein fluorescence to intramolecular structural mobility. Biochem.Biophys. Acta, 1978, v.539, N 1, p.141−152.
  64. Calissano P., Moare R.W. and Friesen A. Effect of calcium ion on S-100, a protein of the nervous system. -Biochemistry, 1969, v.8, N11, p.4318−4326.
  65. Callan W.M. and Sunderman F.W.Jr. Species variations in63binding of pNi (II) by serum albumin. Res.Commun. Chem.Pathol.Pharm., 1973, v.5, H 2, p.459−472.
  66. Chen R.F. Fluorescence spectra of human serum albumin in the pH region of the H-F transition. — Biochim. Biophys. Acta, 1966, v.120, Ж 1, p.169−171.
  67. Chen R.F. Removal of fatty acids from serum albumin by charcoal treatment. J.Biol.Chem., 1967, v.242, К 2, p.173−181.
  68. Chou P.Y. and Fasman G.D. Prediction of protein conformation. Biochemistry, 1974, v.13, N 2, p.222−245.
  69. Clark P., Rachinsky M.R., Foster J.F. Moving boundary electrophoresis behavior and acid isomerization of human mercaptalbumin. J.Biol.Chem., 1962, v.237,1. П 8, p.2509−2513.
  70. Cornell Ch.N., Kaplan L.J. Spin-label studies of the sulfhydryl environment in bovine plasma albumin. I. The N-F transition and acid expansion. Biochemistry, 1978, v.17, N 9, p.1750−1754.
  71. Cunningham V.J., Hay L., Stoner H.B. The binding of L-tryptophan to serum albumins in the presence of non--esterified fatty acids. Biochem.J., 1975, v.146,1. N 3, p.653−658.
  72. Daniel E., Weber G. Cooperative effects in binding by bovin serum albumin. I. The binding of 1-anilino-8--naphthalenesulfonate Fluorimetric titrations. Biochemistry, 1966, v.5, N 6, p.1893−1900.
  73. Decker R.Y. and Foster J.F. Amphoteric behaviour of bovine plasma albumin and its detergent complexes. -J.Biol.Chem., 1967, v.242, IT 7, p. 1526−1526.
  74. Del Rosario IT.О., San S.F. Aggregation of bovine serum albumin in 0.1 M salt solutions. Can.J.Chem., 1973, v.51, N 22, p.3781−3788.
  75. Doremus R.H., Jonson P. The interactions of small ions with proteins from electrical conductance and transference experiments. J.phys.chem., 1958, v.62, И 2, p.203−210.
  76. Eastman J.W., Rehfeld S. J, and Loken H. Ultrafiltrable calcium and the conformation of albumin, Clin.chim. Acta, 1975, v.58, N 3, p.233−237.
  77. Eatough. D.J., Jensen Т.Е., Hansen L.D., Loken H.F. and Rehfeld S.J. The binding of calcium (2+) and magnesium (2+) ions to human serum albumin. A calorimetric study. Thermochim. Acta, 1978, v.25, N 3, p.289−297.
  78. Fehske K.J., Muller W.E. and Wollert U. The lone tryptophan residue of human serum albumin as part of the specific warfarin binding site. Mol.pharm., 1979, v.16, IT 3, p.778−789.
  79. Feldhoff R.C., Peters T.Jr. Fragment of bovine serum albumin produced by limited proteolysis. Isolation and characterization of peptic fragments. Biochemistry, 1975, v.14, N 20, p.4508−4514.
  80. Foster J, F. Some aspects of the structure and conformational properties of serum albumin. In: Albumin structure function and uses. (ed. by Rosenoer V.M., Oratz M. and Rothschid M. A,), Pergamon press, Elmsford, New York and Oxford, 1977, p.53−84.
  81. Poster J.F. Plasma albumin. In «The plasma proteins ed. by F.W.Putman, Academic press, Uew York, 1960, v.1, p.179−239.
  82. Frye K.M., Lees H. and Rechnitz G.A. Magnesium-albumin binding measurements using ion selective membrane electrodes. Clin.Biochem., 1974, v.7, IT 3, p.258−270.
  83. Garten S. and Wosilait W.D. An analysis of the binding of coumarin anticoagulants by human serum albumin. -Сотр.gen.pharm., 1972, v.3, N 1, p.81−88.
  84. Geisow M.J., Beaven G.H. Physical and binding properties of large fragments of human serum albumin. -Biochem.J., 1977, v.163, И 3, p.477−484.
  85. Ghosh В.И. Colloidal ampholytes. Effect of neutral salts on isoionic bovine serum albumin and the dissociation constants of its carboxyl groups between pH 2.0 and 5.0. J.Indian.Chem.Soc., 1975, v.52, N 7, p.567−569.
  86. Goodman D.S. Preparation of human serum albumin free of long-chain fatty acids. Science, 1957, v.125,1. H 3261, p.1296−1297.
  87. Goodman D.S. The interaction of human serum albumin with long-chain fatty acid anions. J.Amer.Chem.Soc, 1958, v.80, N 15, p.3892−3898.
  88. R.P. 1-anilinonaphthalene-8-sulphonate. The dependence of emission spectra on molecular conformation studied by fluorescence and proton-magnetic resonance. Eur.J.Biochem., 1972, v.25, К 2, p.218−228.
  89. Half man C.J., Hishida T. Method for measuring the binding of small molecules to proteins from binding-induced alteractions of physical chemical properties.- Biochemistry, 1972, v.11, If 18, p.3493−3497.
  90. Halfman C.J., Nishida T. Nature of the fluorescence spectrum of bovine serum albumin produced by the binding of dodecyl sulfote. Biochem.Biophys. Acta, 1971, v.243, N 2, p.294−302.
  91. Halfman G.J., Steinhardt J. Electrostatic methods for measuring the binding of ionic ligands to proteins. -Biochemistry, 1971, v.10, Ж 19, p.3564−3569.
  92. Halfman C.J., Hishida T. Influence of pH and electrolyte on the fluorescence of bovine serum albumin. -Biochem.Biophys. Acta, 1971, v.243, Ж 2, p.284−293.
  93. Halle B. and Lindman B. Chloride ion binding to human plasma albumin from chlorine-35 quadrupole relaxation.- Biochemistry, 1978, v. 17, H» 18, p. 3774−3780.
  94. Harmsen B.J., De Bruin S.M., Janssen L.M., Rodrigues J.P., De Miranda J.P., Van 0s G.A. pK change of imidazole groups bovine serum albumin dulto the conformational change at neutral pH. Biochemistry, 1971, v. 10, Ж 17, p. 3217−3221.
  95. Herskovits T.T., Laskowski Jr. Laction of chromophoric residues in proteins by solvent perturbation. I. Tyrosyls in serum albumins. J.Biol.Chem., 1962, v.237, H 8, p.2481−2492.
  96. Hultmark D., Borg K.O., Elofsson R. and Palmer L. Intraetion between salicylic acid and indomethacin in binding to human serum albumin. Acta Pharm.Suec., 1975, v.12, N 2, p.259−276.
  97. Hunter M. J, Mc Duffie F.C. Molecular weight studies on human serum albumin after reduction and alkylation of disulfide bonds. J.Amer.Chem.Soc., 1959, v.81,1. 6, p. 1400−1406.
  98. Iyer K.S., Lau S.-J., Laurie S.H., Sarkar B. Synthesis of the native copper (II) transport site of human serum albumin and its copper (II) — binding properties. — Biochem.J., 1978, v.169, N 1, p.61−69.
  99. Jacobsen C. Lysine residue 240 of human serum albumin is involved in high-affinity binding of bilirubin. -Biochem.J., 1978, v.171, IT 2, p.453−459.
  100. Jacobsen C. and Jacobsen J. Dansylation of human serum albumin in the study of the primary binding sites of bilirubin and L-tryptophan. Biochem.J., 1979, v.181, N 2, p.251−253.
  101. Jacobsen J. and Brodersen R, Albiamin-bilirubin binding mechanism. J.Biol.Chem., 1983, v.258, IT 10, p.6319−6326.
  102. Jacobsen J. and Foster T. Thermodynamics and kinetics of the neutral transition of human serum albumin, monitored by the spectral change of bound bilirubin. Biochem.Biophys. Acta, 1980, v.623, N 1, p.199−207.
  103. Jacobsen J. Studies of the affinity of human serum albumin for binding of bilirubin at different temperature and ionic strength. Int.J. peptide prot.Res., 1977, v.9, И 3, p.235−239.
  104. Jacobsen J. Binding of bilirubin to human serum albumin. Determination of the dissociation constants. -Febs.Lett., 1969, v.5, И 2, p.112−114.
  105. Jacobsen J. Chemical modification of the high-affinity bilirubin binding site of human-serum albumin. Eur. J.Biochem., 1972, v.27, N 3, p.513−519.
  106. Jonas A., Weber G. Presence of arginine residues at the strong, hydrophobic anion binding sites of bovine serum albumin. Biochemistry, 1971, v.10, N 8, p.1335−1339.
  107. Kayne F.J. and Suelter C.H. Effects of temperature, substcacte and activating cations on the conformations of pyruvata kinase in aqueous solutions. J. Amer, ch.em.Soc., 1965, v.87, H 4, p.897−900.
  108. Keresztes-Uagy S., Mais R.F., Oester Y.T. and Zaroslinski J.F. Protein binding methodology. Comparison of equilirium dialysis and frontal analysis chromatography in the study of Salicylate binding. -Anal.Biochem. 1972, v.48, N 1, p.80−89.
  109. Klotz I.M., Burhard R.K. and Urquhard J.M. Structural specificities in the interaction of some organic ions and serum albumin. J.Amer.Chem.Soc., 1952, v.74,1. К 1, p.202−209.
  110. Klotz I.M. Protein interactions. In «The proteins» ed. by H. Heurath and K.Baily. Academic Press, New York, 1953, v. IB, p.727−795.
  111. Klotz I.M., Ayers J. Interactions of some neutral organic molecules with proteins. J.Amer.Chem.Soc., 1952, v.74, N 24, p.6178−6180.
  112. Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews, 1981, v.33, N 1, p.17−53″
  113. Kragh-Hansen U. Relations between high-affinity binding sites for L-tryptophan, diazepam, salicylate and phenol Red on human serum albumin. Biochem.J., 1983, v.209, N 1, p.135−142.
  114. Kragh-Hansen U. Graphical analysis of competitive binding of comparable concentrations of ligand inhibitor and protein. Ligand binding to serum albumin. -Biochem.pharm., 1983, v.32, N 18, p.2679−2681.
  115. Kronman M.J., Poster J.P. Sedimentation and optical rotation behavior of bovine plasma albumin at low pH in the presence of various anions. Effect of charge on molecular expansion. Arch.Biochem.Biophys., 1957, v.72, N 1, p.205−217.
  116. Ladenson J.H. and Shyong J.C. Influence of fatty acid on the binding of calcium to human serum albumin. -Clin.Chim. Acta, 1977, v.75, N 2, p.293−302.
  117. Lamola A.A., Flores J. and Blumberg W.E. Binding of photobilirubin to human serum albumin estimate of the affinity constant. Eur.J.Biochem., 1983, v.132, 1 1, p.165−169.
  118. Lau S.-J., Sarkar B. Ternary coordination complex between human serum albumin, copper (II), and L-histidine. J.Biol.Chem., 1971, v.246, H 19, p.5938−5943.1 3
  119. Laussac J. and Sarkar B.Carbon-Nuclear magnetic resonance investigation of the Си (II) binding to the native sequence peptide representing the Си (II) -transport site of human albumin. — J.Biol.Chem., 1980, v.255, N 16, p.7563−7568.
  120. Lee J.J. and Gillispie G.D. The effect of pH on the fluorescence of complexes of human serum albumin and bovine serum albumin with bilirubin. Photochem. and photobiol., 1981, v.33, N 5, p.757−760.
  121. Leonard W.J. and Poster J.F. Changes in the acid transformation of plasma albumin. Evidence for the contribution of tertiry structure to rotatory behaviour. J.Biol.Chem., 1961, v.236, IT 10, p.2662−2669.
  122. Leonard W.J., Vi^ai K. and Poster J.P. A structural transformation in bovine and human plasma albumins in alkaline solution as revealed by rotatory dispersion studies. J.Biol.Chem., 1963, v.238, N 2, p.1984--1988.
  123. Lewis M.S., Saroff H.A. The binding of ions to the muscle proteins. Measurements on the binding of potassium and sodium ions to myosin A, myosin В and Actin. J.Amer.Chem.Soc., 1957, v.79, H 9, p.2112--2117.
  124. Loken H.F., Havel R.J., Gordan G.S. and Whittington S.L. Ultracentrifugal analysis of protein-bound and free calcium in human serum. J.Biol.Chem., 1960, v.235,1. N 12, p.3654−3658.
  125. Luetscher J.A. Serum albumin. II. Identification of more than one albumin in horse and human serum by electrophoretisis mobility in acid solution. J. Amer.Chem.Soc., 1939, v.61, N 10, p.2888−2895.
  126. Luk C.K. Quenching of the emission of tryptophan, tyrosine, and serum albumins by cupric ion. Bio-polymers, 1971, v.10, IT 10, p. 1229−1242.
  127. Ma J.K., Jun H.W., Luzzi I.A. Determination of equilibrium constants and binding capacities usinga modified scatchard method in drug protein binding studies. J.pharm.scin., 1973, v.62, N 12, p.2038--2040.
  128. Massey V., Curti B. and Ganther H. A temperature-dependent conformational change in D-amino acid oxidase and its effect on catalysis. J.Biol.Chem., 1966, v.241, H 10, p.2347−2357.
  129. Mathew M.K. and Bularam P. Unmasking of tyrosyl fluorescence in serum albumins on bilirubin binding. -Febs.lett., 1980, v.115, N'1, p.91−94.
  130. Mc Donagh А.P., Palma L.A., Lightner D.A. Blue light and bilirubin excretion. Science, 1980, v.208,1. H 4440, p. 145−151.
  131. Mc Lachlan A.D., Walker J. Serum albumin domain secondary structure prediction. Biochim.Biophys. Acta, 1978, v.536, N 1, p.106−111.
  132. Mc Menamy R.H. Binding of indole analogues to human serum albumin. Effects of fatty acids. J.Biol.Chem. 1965, v.240, N 11, p.4235−4243.
  133. Mc Menamy R.H., Lund C.C., Van Marcke J., Oncley J.L. The binding of L-tryptophan in human plasma at 37 °C. -Archives Biochem.Biophys., 1961, v.93, Ж 1, p.135−139.
  134. Mc Menamy R.H. Albumin binding sites. In «The Albumin structure, function and uses» ed. by V.M.Rosenoer, M. Oratz and M.A. Rothschild. Pergamen press Oxford, 1977, p.143−158.
  135. Mc Menamy R.H. The binding of indole analogues to defatted human serum albumin at different chloride concentrations. J.Biol.Chem., 1964, v.239, U 6, p.2835−2862.
  136. Mc Menamy R.H., Lee I.Y. Location of the medium chain fatty acid site on human serum albumin. J.Biol. Chem., 1980, v.255, U 13, p.6121−6127.
  137. Mc Menamy R.H. and Oncley J.L. The specific binding of L-tryptophan to serum albumin, J. Biol, Chem., 1958, v, 233, N 6, p.1436−1447.
  138. Meloun В., Moravek L., Kostka V. Complete amino acid sequence of human serum albumin. Febs.lett., 1975, v.58, N 1, p.134−137.
  139. Motoharu I., Hido N., Kozuo M. The classification of drugs on the basis of the drug-binding site on human serum albumin. Chem. and pharm. Bull., 1982, v.30, N 12, p.4489−4493.
  140. Muller W.E. and Wollert W. Interactions of benzodiazepines with human serum albumin circular dichroism studies. Arch.Pharmacol., 1973, v.278, N 2, p.301--312.
  141. Muller W.E. and Wollert U. Human serum albumin as a «silent receptor» for drugs and endogenous substances. Parmacology, 1979, v.19, N 1, p.59−65.
  142. Muller W.E. and Wollert U. Characterization of the binding of benzadiazepines to human serum albumin. -Arch.Pharmacol., 1973, v.280, H 2, p.229−237.
  143. Murakami S. and Packer L. Protonation and chloroplast membrane structure. J.Cell.Biol., 1970, v.47, H" 2, p.332−351.
  144. Naik D.V., Paul L., Threatte R.M. and Schulman S.G. Pluoremetric determination of drug-protein association constants. The binding of 8-anilino-1-naphthalenes sulfonate by bovine serum albumin. Anal. Chem, 1975, v.47, N 2, p.267−270.
  145. Nandedkar А.К., Nursec E. and Friedberg P. Mh++ binding by plasma proteins. Int.J.Pept.prot.Res. 1973, v.5, N 2, p.279−281.
  146. Oakes J., Caff M.C. Magnetic resonance studies of the interactions between bovine serum albumin and surfactants. I. Nature of binding site. Eur.J.Biochem., 1973, v.36, N 2, p.553−558.
  147. Ockner R., Weisiger R., Lysenko N. Specific and satu125rable binding of I «'-albumin to rat hepatocy tes: furter evidence for surface membrane albumin receptor.-Gastroenterology, 1980, v. 79, N 5, part 2, p.1041−1045.
  148. Odell G.B. Influence of binding on the toxicity of bilirubin. Ann. N.Y. Acad.scin. 1973, v.226, N 2, p.225−235.
  149. Pande C.S. and Mc Menamy R.H. Binding of indole compounds with modified albumins: Characterization of the indole binding site. Biochim.Biophys. Acta, 1974, v.342, N 1, p.60−68.
  150. Pedersen A.O. and Jacobsen J. Reactivity of the thiol group in human and bovine albumin at pH 3−9, as measured by exchange with 2.2'-dithiodipyridine. Eur.J. Biochem., 1980, v.106, N 1, p.291−295.
  151. Pedersen K.O. Binding of calcium to serum albumin, IV. Effect of temperature and thermodynamics of calcium-albumin interaction. Scand.J.Clin, Lab.Invest., 1974, v. 30, N 1, p.89−94.
  152. Pedersen K.O. Binding of Calcium to Serum albumin. I. Stoichiometry and intrinsic association constant of physiological pH, ionic strength and temperature. -Scand.J.Clin.Lab.Invest., 1971, v.28, N 4, p.459−470.
  153. Pedersen K.O. Binding of calcium to serum albumin. III. Influence of ionic strength and ionic medium. -Scand.J.Clin, and bab.Invest., 1972, v.29, N 4, p.427−432.
  154. Pedersen K.O. Binding of calcium to serum albumin. II. Effect of pH via competitive hydrogen and calcium ion binding to the imidazole groups of albumin. -Scand.J.Clin.Lab.Invest., 1972, v.29, N 1, p.75−83.
  155. Pedersen K.O. Exclusion chromatography. Arch. Bio-chem.Biophys.Suppl., 1, 1962, p.157−168.
  156. Perrin J.H., Juni K. The effect of calcium (2+) on the binding of drug to human serum albumin: Pharmacokinetic implications. Biopharm.Drug.Dispos., 1982, v.3, И 4, p.379−381.
  157. Peters T.Jr. Serum albumin. Adv.Clin.Chem., 1970, К 13, p.37−111.
  158. Peters T.Jr. and Reed R.G. Serum albumin as a transport protein. In „The transport by proteins“ Walter de Gruyter & Co., Berlin, New York, 1978, p.57−73.
  159. Peters 0?.Jr., Blumenstock P. Copper-binding properties of bovine serum albumin and its amino-terminal peptide fragment. J.Biol.Chem., 1967, v.242, IT 7, p.1574−1578.
  160. Peters T.Jr., Peldhoff R.C. Fragments of bovine serum albumin produced by limited proteolysis. Isolation and characterization of tryptic fragments. Biochemistry, 1975, v.14, H 15, p.3384−3391.
  161. Peters T.Jr. Serum albumin. In „The plasma proteins“ 2 nd ed., ed by F.W. Putnam. Academic Press
  162. Hew York, 1975, v.1, p.133−181.
  163. Peticolas W.L., Klotz I.M. Structural specificities in the interactions of some organic ions with serum albumin. J.Amer.Chem.Soc., 1956, v.78, IT 20, p.5257−5262.
  164. Rachiusky M.R. and Foster J.F. The salting out behaviour of bovine plasma albumin further evidence for configurational isomerization. — Arch.Biochem. Biophys., 1957, v.70, IT 1, p.283−284.
  165. Reed R.G., Feldhoff R.C., Clute O.L., Peters T.Jr. Fragments of bovine serum albumin produced by limited proteolysis. Conformation and ligand binding. Biochemistry, 1975, v.14, IT 21, p.4578−4583.
  166. Reed R.G. Kinetica of bilirubin binding to bovine serum albumin and the effects of palmitate. J.Biol. Chem., 1977, v.252, N 20, p.7483−7497.
  167. Reynolds P.H., Burkhard R.K. and Mueller D.D. A calo-rimetric investigation of the copper-bovine plasma albumin interaction. Biochemistry, 1973, v.12, H 2, p.359−364.
  168. Reynolds J.A., Gallayher J.P. and Steinhardt J. Effect of pH the binding of IT-alkyl sulfates to bovine serum albumin. Biochemistry, 1970, v.9, IT 5, p. 1232−1238.
  169. Roosdorp IT., Wann В., Sjoholm I. Correlation between arginyl residue modification and benzodiozepine binding to human serum albumin. J. Biol, Chem., 1977, v.252, IT 11, p. 3876−3880.
  170. Rudman D., Bixler T.J. and Delrio A.E. Effect of free fatty acids on binding of drugs by bovine serum albumin, by human serum albumin and by rabbit serum. J. Pharmacol.Exp.Ther., 1976, v.176, N 2, p.261−272.
  171. Rudolph R., Holler E., Jaenicke R. Fluorescence and stopped flow studies on the IT-F transition of serum albumin. Biophys.Chem., 1975, v.3, И 3, p.226−233.
  172. Santos E.C. and Spector A.A. Effects of fatty acids on the interaction of 1-anilino-8-naphthalenesulfonate with human plasma albumin. Mol.Pharmacol., 1974, v. 10, IT 3, p. 519−528.
  173. Santos E.C., Spector A.A. Effect of fatty acids on the binding of 1-anilino-8-naphthalene sulfonate to bovine serum albumin. Biochemistry, 1972, v.11, IT 12, p.2299−2302.
  174. Scatchard G., Coleman J.S., Shen A.L. Physical chemistry of protein solutions. VII. The binding of some small anions to serum albumin. J.Amer.Chem.Soc., 1957, v.79, IT 1, p. 12−18.
  175. Scatchard G. and Yar W.T. The physical chemistry of protein solutions. XII. The effects of temperature and hydroxide on the binding of small anions to human serum albumin. J.Amer.Chem.Soc., 1964, v.86, N 17, p.3434−3438.
  176. Schmidt W. and Jahuchen E. Species-dependent stereo-specific serum protein binding of the oral anticoagulant drug phenprocoumon. Experientia, 1978, v.34,1. N 10, p.1323−1324.
  177. SJoedin T. Circular dichroism studies on the inhibiting effect of oleic acid on the binding of diazepam to human serum albumin. Biochem.phar., 1977, v.26,1. N 22, p.2157−2161.
  178. Sjjoholm I. and LJungstedt I. Studies on the tryptophan and drug-binding properties of human serum albumin fragments by affinity chromatography and circular dichroism measurements. J.Biol.Chem., 1973, v.248,1. N 24, p.8484−8441.
  179. Sogami M., Poster J.P. Isomerization reactions of charcoal-deffated bovine plasma albumin. The N-F Transition and acid expansion. Biochemistry, 1968, v.7, N 6, p.2172−2181.
  180. Sogami M. and Oqura S. Structural transitions of bovine plasma albumin. Location of tyrosyl and trypto-phyl residues by solvent perturbation difference spectra. J.Biochem. (Tokyo), 1973, v.73, Ж 2, p.323−334.
  181. Sogami M. Effect of salts on the H-F transition of bovine plasma albumin. J.Biochem., 1971, v.69, К 4, p.819−822.
  182. Sogami M., Uagoaka S., Ikiyoemi В., Sakata S. Fluori-metric studies on the structural transition of bovine plasma albumin in acidic solutions. Biochim.Biophys. Acta, 1973, v.310, И 1, p.118−123.
  183. Spector A.A., John R., Fletcher J. Binding of long-chain fatty acids to bovine serum albumin. J. Lipid Res., 1969, v.10"t U 1, p.56−67.
  184. Spector A.A., Fletcher J.E. and Ashbrook J.D. Analysis of longchain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants. Biochemistry, 1971, v.10, К 10, p.3229−3232.
  185. Spector A.A. Fatty acid binding to plasma albumin. -J.Lipid Res., 1975, v.16, H 3, p.165−179.
  186. Squire P.G., loser P. and dkonski C.T. The hydrodyna-mic properties of bovine serum albumin monomer and dimer. Biochemistry, 1968, v.7, N 12, p.4261−4271.
  187. Steiner R.F. The ultraviolet fluorescence of proteins. I. The influence of pH and temperature. Biochim. Biophys. Acta, 1963, v.66, N 3, p.341−355.
  188. Steiner R.F., Roth J. and Robbins J. The binding of thyroxine by serum albumin as measured by fluorescence quenching. J.Biol.Chem., 1966, v.241, H 3, p.560--567.
  189. Stroupe S.D., Foster J.F. Sulfhydryl-catalyzed isome-rization of bovine mercaptalbumin. Biochemistry, 1973, v.12, N 20, p.3824−30.
  190. Stryer L. The interaction of anaphthalene dye with apomyoglobin and apohemoglobin a fluorescent probe of non-polar binding sites. J.Mol.Biol., 1965, v.13,1. N 2, p.482−495.
  191. Sudlow G. The specificity of binding sites on serum albumin. In „Biochem.Clin.Pharmacol.Proc. 7th Int. Congr.Pharmacol. Paris 1978“. Oxford, 1979, p.113−123.
  192. Sudlow G., Birkett D.J. and Wade D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol., 1976, v.12, N 6, p.1052−1061.
  193. Sudlow G., Birkett D.J. and Wade D.N. The characterization of two specific drug binding sites on human serum albumin. Mol.Pharmacol., 1975, v.11, N.6,p.824−832.
  194. Sun S.F., Del Rosario N.O., Goldstein L.A. Bovine serum albumin in Lithium chloride solutions. Association behavior at neutral pH. Int.J.Peptide protein Res., 1973, v.5, N 5, p.337−344.
  195. Sun S.F., Chang T.S. and Del Rosario N. O, Bovine serum albumin in litum chloride solutions. Changes in conformation. Int.J.pept.prot.Res., 1974, v.6, N 2, p.87−94.
  196. Sundra G.L., William M.T. The interaction of zinc, nicel and cadmium with serum albumin and histidine rich glycoprotein assessed by equilibrium dialysis and immunoadsorbent chromatography. Arch.Biochem. and Biophys., 1982, v.218, N 1, p.320−328.
  197. M., Ъе Н.Р., Shahid F., Мс Pherson А., Birnbaum R. Resonance energy transfer between cyste-ine-34 and tryptophan-214 in human serum albumin. Distance measurements, as function of pH. Biochemistry, 1983, v.22, N 10, p.2415−2420.
  198. Tabachnick M. Thyroxine protein interactions. III. Effect of fatty acids 2,4-dinitrophenol and other anionic compounds on the binding of thyroxine by human serum albumin. Arch, Biochem.Biophys., 1964, v.106, IT 2, p.415−421.
  199. Takagishi Т., Takami K., Kuroki IT. Temperature dependence on the binding of butyl orange by bovine serum albumin. J.Polym.Sci.Polym.Chem.Ed., 1974, v.12,1. 1, p. 191−200.
  200. Tanford C., Buzzell J.G., David G.R. and Sicurd A.S. The reversible explansion of bovine serum albumin acid solutions. J.Amer.Chem.Soc., 1955, v.77, H 24, p.6421−6428.
  201. Tanford C., Swanson S.A., Shore W.S. Hydrogen ion equilibria of bovine serum albumin. J.Amer.Chem. Soc., 1955, v.77, IT 24, p.6414−6421.
  202. Taylor R, P., Chau V.Z., Zenkowich M.J., Leake L.H. Stopped-flow studies of the H-F transition in serum albumin. Biophys.Chem., 1978, v.7, IT 4, p.293−299.
  203. Teale F.W.J, and Weber G. Ultraviolet fluorescence of thearomatic amino acids. Biochem.J., 1957, v.65,1. 3, p. 476−482.
  204. Tejma К., Ozeki S. Drug interactions.VII. The fatty acid binding properties of bovine serum albumin. -Chem.pharm.Bull., 1980, v.28, N 3, p.585−592.
  205. Terada H., Hiramatsu K., Aoki K. Heat denaturation of serum albumin monitored by 1-anilinonaphthalene-8--sulfonate. Biochim.Biophys. Acta, 1980, v.622, IT 2, p. 161−170.
  206. Vandergiesen W.F., Wilting J. Consequences of the IT-B transition of albumin for the binding of warfarin in human serum. J.Biochem.Pharmacol., 1983, v.82, И 2, p.281−285.
  207. Waldmann-Meyer H. Thermodynamic proton-cadmium and zinc-binding constants of serum albumin determined by zone electrophoresis. J. Biol, Chem., 1960, v.235, N11, p, 3337−3345,
  208. Wallevik K, Reversible denaturation of human serum albumin by pH, temperature and guanidine hydrochroride followed by optical rotation. J.Biol.Chem., 1973″ v.248, IT 8, p.2650−2655.
  209. Weber G, and Young L.B. Fragmentation of bovine serum albumin by pepsin. I, The origin of the acid expansion of the albumin molecule. J.Biol.Chem., 1964, v.239, IT 8, p.1415−1423.
  210. Weber G. and Yong L.B. Fragmentation of bovine serum albumin by pepsin. II. Isolation, amino acid composition, and physical properties of the fragments. J. Biol.Chem., 1964, v.239, N 8, p.1424−1431,
  211. Weber G. The binding of small molecules to proteins. -In Molecular Biophysics, Pullman B. and Weissbluth M. Ed. Academic press, Hew York, 1965, p.369−396.
  212. Wetzel R., Becker M., Benlke J., Billwitz H., Bohm S., Ebert В., Hamann H., Krumbiecel J. and Lassmann G. Temperature behaviour of human serum albumin. Eur, J.Biochem., 1980, v.104, N 2, p.369−378.
  213. Williams E.J., Foster J.F. An investigation of bovine plasma albumin by differential ultraviolet spectroscopy. J.Amer.Chem.Soc., 1959, v.81, H 4, p.865−870.
  214. Williams E.J., Foster J.F. The aggregation of bovine plasma albumin at low pH. J.Amer.Chem.Soc, 1960, v.82, IT 14, p.3741−3745.
  215. Wilting J., Feldhoff R., Vesel E.S. Concentration-dependent effects of fatty acids on warfarin binding albumin. Biochem. Pharma, 1977, v.26, H 12, p, 1143--1146.
  216. Wilting J., Thart B.J. and Johan J.D. The role of binding of diazepan to human serum albumin. Biochim. Biophys. Acta, 1980, v.626, H 2, p.291−298.
  217. Wilting J., Weidman M.M., Roomer A.C.J, and Perrin J. H, Conformational changes in human serum albumin around the neutral pH from circular dichroic measurements. -Biochem.Biophys.Acta, 1979, v.579, N 2, p.469−473.
  218. Wooley P.V., Hunter M.J. Binding and circular dichro-ism data on bilirubin-albumin in the presence of oleate and salicyk-late. Arch.Biochem.Biophys., 1970, v.140, N 1, p.197−209.
  219. Wortsman J. and Traycoff R.B. Biological activity of protein-bound calcium in serum. Amer.J.physiol., 1980, v.238, IT 2, Р. Е104-Е108.
  220. Wurtman R.J., Fernstrom J.D. Control of brain neuro-trans-mitter synthesis by precursor availability and nutritional state. Biochem.Pharmacol., 1978, v.25, IT 15, p.1691−1696.
  221. Yang J.T., Foster J.F. Changes in the intrinsic viscosity and optical rotation of bovine plasma albumin associated with acid binding. J.Amer.Chem.Soc., 1954, v.76, N 6, p.1588−1595.
  222. Zurawski V.R., Foster J.F. The neutral transition and the environment of the sulfhydryl side chain of bovine plasma albumin. Biochemistry, 1974, v. 13, IT 17, p.3465−3471.
  223. H.K. Коматозные состояния, M., Медицина, 1962.
  224. Г. Н. Внутренняя среда организма, М., Наука, 1983.
  225. А. А. Водный и электролитный обмен. М., Наука, 1972.
  226. Е.И. Общая физиотерапия. М., Медицина, 1969.
  227. Benson E.S., Hallaway В.Е., J.Biol.Chem. 1970, v.245, p.4144−4150.
  228. Droge J.H.M., Janssen L.H.M., Witting J., Pharm. WeekblacL.Sci.Ed., 1983, v. 5, p.228−233.
  229. Elbary A.A., Vallner J.J., Withworth C. W., J. Pharm. Sci., 1982, V.71, p.241−244.
  230. Fleitman J., Perrin J.H., Int.J.Pharm., 1982, v.11, p.227−236.
  231. Katz S., Klotz I.M., Arch.Biochem.Biophys., 1953, v.44, p.351−361.
  232. Klotz I.M., Ayers J»., J.Amer.Chem.Soc., 1952, v.74, p.6178−6181.
  233. Saroff H.A., Lewis M.S., J.Phys.Chem., 1963, v.67, p.1211−1216.
  234. Wanwimolruk S., Birkett D.J., Biochim.Biophys. Acta, 1982, V.709, p.247−255.
Заполнить форму текущей работой