Помощь в написании студенческих работ
Антистрессовый сервис

Интеграл дифференциального уравнения

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

Где A, B, C — неопределенные коэффициенты. Найдем первую и вторую производные по x от и подставим полученные результаты в исходное уравнение: Так как корни характеристического уравнения действительные и различны, то решение дифференциального уравнения будет иметь вид: Покажем, что данное уравнение является однородным, т. е. может быть представлено в виде,. Преобразуем правую часть уравнения: Так… Читать ещё >

Интеграл дифференциального уравнения (реферат, курсовая, диплом, контрольная)

АНО ВПО «НАЦИОНАЛЬНЫЙ ИНСТИТУТ ИМЕНИ ЕКАТЕРИНЫ ВЕЛИКОЙ»

Контрольное задание

По дисциплине: «Математика»

Москва 2010 г.

Контрольное задание:

Упражнения

1. Дана последовательность аn=(3n-5)/(4n+1). Установить номер n0, начиная с которого выполняется неравенство ¦аn-А ¦ < 1/500.

Отв. n0=719.

Найти:

2. lim (3-vх)/(х2-81).Отв. -1/108.

х>9

3. lim (5х2-8)/(х3-3х2+11).Отв. 0.

х>?

Проверить непрерывность следующих функций:

4. у=5х/(х3+8).Отв. При всех х?-2 функция непрерывна.

5. у=(х2+4)/ v (х2-36). Отв. Функция непрерывна при всех значениях

¦х¦>6.

6. Определить точки разрыва функции у=(8х+2)/(16х2-1).

Отв. Точки х1=-¼ и х2=¼.

Задача 1

Найти общий интеграл дифференциального уравнения:

Решение

Выполним разделение переменных, для этого разделим обе части уравнения на :

Проинтегрируем обе части уравнения и выполним преобразования:

Ответ

Задача 2

Проинтегрировать однородное дифференциальное уравнение:

Решение

Решение однородных дифференциальных уравнений осуществляется при помощи подстановки:

С учетом этого, исходное уравнение примет вид:

Выполним разделение переменных, для этого умножим обе части уравнения на, получим, Проинтегрируем обе части уравнения и выполним преобразования:

Возвращаясь к переменной y, получим общий интеграл исходного уравнения:

Ответ

Задача 3

Найти общий интеграл дифференциального уравнения:

Решение

Покажем, что данное уравнение является однородным, т. е. может быть представлено в виде,. Преобразуем правую часть уравнения:

Следовательно, данное уравнение является однородным и для его решения будем использовать подстановку, С учетом этого, уравнение примет вид:

Выполним разделение переменных, для этого умножим обе части уравнения на ,

Проинтегрируем обе части уравнения, Возвращаясь к переменной y, получим,

Ответ

Задача 4

Решить линейное дифференциальное уравнение:

Решение

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то решение дифференциального уравнения будет иметь вид:

Ответ

Задача 5

Найти общее решение дифференциального уравнения:

Решение

Общее решение неоднородного уравнения будем искать в виде:

где — частное решение исходного неоднородного ДУ, — общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и совпадают, то общее решение однородного ДУ будет иметь вид:

Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

где A, B, C — неопределенные коэффициенты. Найдем первую и вторую производные по x от и подставим полученные результаты в исходное уравнение:

Приравняем коэффициенты при соответствующих степенях x и определим их:

Следовательно, частное решение неоднородного ДУ примет вид:

Окончательно, общее решение исходного ДУ:

Ответ

Задача 6

Решить уравнение:

Решение

Общее решение неоднородного уравнения будем искать в виде:

где — частное решение исходного неоднородного ДУ, — общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то общее решение однородного ДУ будет иметь вид:

Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

где A, B, C — неопределенные коэффициенты. Найдем первую и вторую производные по x от и подставим полученные результаты в исходное уравнение:

Приравняем коэффициенты при соответствующих степенях x и определим их:

Следовательно, частное решение неоднородного ДУ примет вид:

Окончательно, общее решение исходного ДУ:

Ответ

Комментарии к решению

В задаче № 1, опечатка в предполагаемом ответе, упущен показатель степени при x.

В задаче № 3, ответ следует оставить в виде, содержащем модуль, т.к. нет достаточных оснований его снять.

Показать весь текст
Заполнить форму текущей работой