Производство, передача и распределение электрической энергии
Благодаря тому что в ТЭЦ пар выходит из турбины под ббльшим давлением (5…7 ат), чем на электростанциях конденсационного типа (0,05…0,06 ат), выработка электроэнергии на 1 кг пара в них меньше, чем на конденсационных электростанциях. Общее же полезное использование теплотворной способности топлива значительно больше и достигает 80%. Однако пар и горячая вода от ТЭЦ могут передаваться потребителям… Читать ещё >
Производство, передача и распределение электрической энергии (реферат, курсовая, диплом, контрольная)
ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ
Электрическая энергия для нужд промышленных предприятий жилых районов вырабатывается на электрических станциях. На этих станциях происходит преобразование энергии воды, топлива, атомной энергии и т. д. в электрическую энергию. В этом процессе преобразования энергии можно выделить две основные ступени: сначала первичная энергия в различного рода двигателях преобразуется в механическую энергию, а затем механическая энергия в электромагнитных генераторах преобразуется в электрическую энергию.
В зависимости от вида преобразуемой природной энергии электрические станции разделяют на гидравлические, тепловые, атомные и т. д., а в зависимости от мощности (и назначения) они называются районными и местными. Местные электростанции в отличие от районных имеют ограниченный радиус действия и сравнительно малую мощность.
На районных электрических станциях устанавливают трехфазные электрические генераторы переменного тока. Станции же местного назначения могут иметь и генераторы постоянного тока.
Основным типом тепловых электрических станций являются паротурбинные электрические станции, которые сооружаются на местах нахождения топлива (угля, торфа, сланца, газа и др.), обычно на значительном расстоянии от потребителя.
Паротурбинные станции, которые вырабатывают только электрическую энергию, называются тепловыми электрическими станциями (ТЭС). На них пар, отработавший в турбинах, конденсируется в специальных устройствах и снова подается в котел. Поэтому такие станции часто называются конденсационными. Упрощенная схема конденсационной электрической станции показана на рисунке 8.1.1.
Рис. 8.1.1.
Пар из котла К под давлением 24 МПа и с температурой 838 °К по трубопроводу поступает в турбину Т, где значительная часть внутренней энергии пара превращается в механическую энергию ротора турбины. Из турбины пар поступает в теплообменный аппарат-конденсатор Кр, где за счет проточной воды охлаждается и конденсируется. Конденсат с помощью центробежного насоса Н снова поступает в котел.
Механическая энергия турбины в генераторе Г преобразуется в электрическую энергию, которая по высоковольтной линии и распределительным сетям поступает к потребителям. Схема потерь энергии в процессе ее преобразования, передачи и распределения, показана на рисунке 8.1.2.
Рис. 8.1.2.
За 100% принята энергия топлива, поступающего в котел. Потери энергии в современных паровых котлах составляют примерно 1,5%, в турбине — 55%, а в генераторе — 0,5%. Часть энергии генератора (3%) используется на собственные нужды станции для электропривода насосов, различных механизмов и освещения. Таким образом, КПД современной паротурбинной электростанции составляет 40%.
Существуют электрические тепловые станции, которые одновременно с электрической энергией снабжают потребителей паром и горячей водой. Это так называемые теплоэлектроцентрали (ТЭЦ). На них применяют специальные теплофикационные паровые турбины, которые позволяют производить предварительный отбор пара, еще не полностью отработанного, и использовать его для технологических нужд предприятий и бытовых нужд.
Благодаря тому что в ТЭЦ пар выходит из турбины под ббльшим давлением (5…7 ат), чем на электростанциях конденсационного типа (0,05…0,06 ат), выработка электроэнергии на 1 кг пара в них меньше, чем на конденсационных электростанциях. Общее же полезное использование теплотворной способности топлива значительно больше и достигает 80%. Однако пар и горячая вода от ТЭЦ могут передаваться потребителям по трубам только в радиусе 12… 15 км, что существенно ограничивает их распространение.
Атомные электрические станции, по существу, являются также тепловыми станциями, но источником энергии в них служит ядерная энергия, которая выделяется при делении ядер атомов тяжелых элементов. Деление ядер происходит в специальном устройстве — реакторе, где выделяется большое количество тепла. Простейшая схема атомной электростанции приведена на рисунке 8.1.3.
Рис. 8.1.3.
Она состоит из реактора Р, парогенератора ПГ, турбины Т, электрического генератора Г, теплообменника-конденсатора Кр и центробежных насосов Я.
Ядерный реактор и парогенератор имеют биологическую защиту БЗ от излучения. Выделяющееся в реакторе тепло с помощью жидкого или газообразного теплоносителя поступает по трубам в парогенератор. В парогенераторе теплоноситель омывает трубы, в которые насосом Я закачивается конденсат из турбины, и конденсат снова превращается в пар, поступающий в турбину, а теплоноситель с помощью насосов возвращается в реактор. В отличие от обычной тепловой электростанции атомная электростанция имеет замкнутый контур радиоактивного теплоносителя. Турбины и прочее оборудование, составляющее второй контур, лишенный радиоактивности, связаны с первым лишь через теплообменник-парогенератор.
Атомные реакторы бывают разных типов. В качестве примера приведем некоторые данные реактора, установленного на Нововоронежской АЭС. Он представляет собой стальной цилиндр высотой более Ими диаметром 3,8 м. Толщина стенок корпуса, выполненного из высокопрочной стали, равна 12 см, а его масса 200 т. Теплоносителем служит дистиллированная вода, которая прокачивается через реактор под давлением 100 ат. Эта вода поступает в реактор при температуре 269 °C и покидает его при температуре 300 °C. Под действием теплоносителя в парогенераторе образуется пар давлением 47 ат, который и подается в паровые турбины.
Турбины и электрические генераторы атомной и обычной тепловой электростанций одинаковы.
Электрические генераторы, приводимые во вращение паровыми турбинами, называются турбогенераторами. Паровые турбины быстроходны: Их роторы развивают частоту п = 3000 мин'1 и более. Поэтому ротор турбогенератора для создания частоты f = 50 Гц обычно имеет одну пару полюсовр:
Гидроэлектрические станции (ГЭС) обычно сооружают на реках (бывают станции, использующие морские приливы). Для их работы необходима разность уровней воды. Это достигается сооружением плотин. На реках с крутыми берегами строят высокие плотины (сотни метров), а на равнинных реках с отлогими берегами возводят относительно невысокие плотины (десятки метров). Преобразование энергии движущейся воды в механическую энергию происходит в гидравлических турбинах. Скорость вращения гидравлических турбин, а, следовательно, и скорость соединенных с ними электрических генераторов (гидрогенераторов) колеблются в пределах от 60 до 750 мин'1. Поэтому гидрогенераторы должны иметь несколько пар полюсов. Например, гидротурбина на Угличской ГЭС вращается со скоростью 62,5 мин1, ротор генератора для обеспечения частоты 50 Гц имеет 48 пар полюсов.
Стоимость сооружения гидроэлектрических станций значительно больше стоимости тепловых электростанций, но вырабатываемая на них электрическая энергия обходится намного дешевле, чем на тепловых станциях. Поэтому большие капиталовложения, идущие на сооружение гидроэлектростанций, вполне себя окупают.
Гидроэлектрические станции могут быть и местного значения, если они сооружаются на малых реках для небольших промышленных предприятий и населенных пунктов, не охваченных сетями районных станций. Их мощность обычно не превышает нескольких сотен или тысячи киловатт.
К местным станциям следует отнести ветровые, локомобильные и дизельные станции, построенные колхозами и совхозами для нужд сельского хозяйства.
В СНГ находятся крупнейшие в мире тепловые, гидравлические и атомные электростанции. Так, мощности тепловых и атомных электростанций достигают 4 млн. кВт, а мощность Красноярской ГЭС — 6,4 млн. кВт.