ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ΠœΠΎΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ сСчСний

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠœΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΊΠΎΠ»ΡŒΡ†Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊΠ°ΠΊ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π΄Π²ΡƒΡ… ΠΊΡ€ΡƒΠ³ΠΎΠ²: Рис. 2.4. Бвязь полярных ΠΈ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ элСмСнтарной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠΈ. ΠœΠΎΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ сСчСний Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π°. Рис. 2.5. К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ сСчСния. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ywz (рис. 2.4) связаны. По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° Ρ€ = Ρƒ +z. Π’ΠΎΠ³Π΄Π°. Рис. 2.7. К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠœΠΎΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ сСчСний (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠœΠΎΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ сСчСний Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ Π²ΠΈΠ΄Π°.

ΠœΠΎΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ сСчСний.

Бвойства ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ.

Π Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ — [Π΄Π»ΠΈΠ½Π°41, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ [ΠΌ4] ΠΈΠ»ΠΈ [см4|. ΠžΡΠ΅Π²Ρ‹Π΅ ΠΈ ΠΏΠΎΠ»ΡΡ€Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ всСгда ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅. Π¦Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ, ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ»ΠΈ Ρ€Π°Π²Π½Ρ‹ΠΌ Π½ΡƒΠ»ΡŽ. Оси, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π³Π»Π°Π²Π½Ρ‹ΠΌΠΈ осями ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ сСчСния. Оси симмСтрии всСгда Π³Π»Π°Π²Π½Ρ‹Π΅. Если ΠΈΠ· Π΄Π²ΡƒΡ… осСй хотя Π±Ρ‹ ΠΎΠ΄Π½Π° являСтся осью симмСтрии, Ρ‚ΠΎ ΠΎΠ±Π΅ оси Π³Π»Π°Π²Π½Ρ‹Π΅.

ΠœΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ составного сСчСния Ρ€Π°Π²Π΅Π½ суммС ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ элСмСнтов этого сСчСния. ΠŸΠΎΠ»ΡΡ€Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ суммС осСвых ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ. Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ послСднСС свойство. Π’ ΡΠ΅Ρ‡Π΅Π½ΠΈΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ А для элСмСнтарной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠΈ dA радиус-Π²Π΅ΠΊΡ‚ΠΎΡ€ Ρ€ ΠΈ Π› П Π›.

ΠœΠΎΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ сСчСний.

ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ywz (рис. 2.4) связаны. По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° Ρ€ = Ρƒ +z. Π’ΠΎΠ³Π΄Π°.

ΠœΠΎΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… Ρ„ΠΈΠ³ΡƒΡ€.

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ собствСнных Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… осСй ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… Ρ„ΠΈΠ³ΡƒΡ€: ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠΊΡ€ΡƒΠ³Π°, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. ΠŸΡƒΡΡ‚ΡŒ ywz — оси симмСтрии ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ сСчСния. Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ Π² ΡΠ΅Ρ‡Π΅Π½ΠΈΠΈ (рис. 2.5) ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΡƒΡŽ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΡƒ с14 с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ ywz. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ dA = dydz. ОсСвой ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси Ρƒ

Бвязь полярных ΠΈ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ элСмСнтарной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠΈ.
Рис. 2.4. Бвязь полярных ΠΈ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ элСмСнтарной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠΈ.

Рис. 2.4. Бвязь полярных ΠΈ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ элСмСнтарной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠΈ.

К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ сСчСния.

Рис. 2.5. К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ сСчСния.

Аналогично ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси Z'. Jz — bh3/12. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ >> ΠΈ z — оси симмСтрии, Ρ‚ΠΎ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ±Π΅ΠΆΠ½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π›Ρƒ = 0.

ΠšΡ€ΡƒΠ³ ΠΈ ΠΊΠΎΠ»ΡŒΡ†ΠΎ. Для ΠΊΡ€ΡƒΠ³Π° Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ d вычислСния ΡƒΠΏΡ€ΠΎΡ‰Π°ΡŽΡ‚ΡΡ, Ссли ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΡ€ΡƒΠ³ΠΎΠ²ΡƒΡŽ ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ. Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ элСмСнтарной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠΈ бСсконСчно Ρ‚ΠΎΠ½ΠΊΠΎΠ΅ ΠΊΠΎΠ»ΡŒΡ†ΠΎ радиусом Ρ€ ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ dp (рис. 2.6). Π•Π³ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ dA = 2npdp. Π’ΠΎΠ³Π΄Π° полярный ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΊΡ€ΡƒΠ³Π°.

Рис. 2.6. К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΊΡ€ΡƒΠ³Π°.

Рис. 2.6. К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΊΡ€ΡƒΠ³Π°.

К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Рис. 2.7. К ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°.

Π’Π²ΠΈΠ΄Ρƒ ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ симмСтрии осСвыС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ любой Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ оси ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹: Jy = Jz — Jp/2 = Π»</<sup>4/64 * 0,05*/4.

Π³Π΄Π΅, Π° = Π°{ ΠΈ.

ΠœΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ ΠΊΠΎΠ»ΡŒΡ†Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊΠ°ΠΊ Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π΄Π²ΡƒΡ… ΠΊΡ€ΡƒΠ³ΠΎΠ²:

ΠœΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. НайдСм ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ оси Π³0, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ основанию (рис. 2.7). Π’Ρ‹Π΄Π΅Π»ΠΈΠΌ ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΡƒΡŽ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΡƒ dA ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ основанию: d А = b(y)dy.

ΠœΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. НайдСм ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ оси Π³0, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ основанию (рис. 2.7). Π’Ρ‹Π΄Π΅Π»ΠΈΠΌ ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΡƒΡŽ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΡƒ dA ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ основанию: d А = b (y)dy.

Из ΠΏΠΎΠ΄ΠΎΠ±ΠΈΡ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² 2(h—y)/h = b (y)/b. ΠžΡ‚ΠΊΡƒΠ΄Π° ΠœΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠΈ Π£. вычислим с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Mathcad ΡΠΈΠΌΠ²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΏΡƒΡ‚Π΅ΠΌ. Π’ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ для Π£. ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ ΠΏΠΈΡΠ°Ρ‚ΡŒ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±ΡƒΠ΄Π΅Ρ‚ Π³ΠΎΡ‚ ΠΆΠ΅, Π½ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ окрасится Π² ΠΊΡ€Π°ΡΠ½Ρ‹ΠΉ Ρ†Π²Π΅Ρ‚. ЧислСнноС вычислСниС — Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½ΠΎ, символьноС — Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ