Помощь в написании студенческих работ
Антистрессовый сервис

Метод Гаусса для решения систем линейных уравнений

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

Существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических… Читать ещё >

Метод Гаусса для решения систем линейных уравнений (реферат, курсовая, диплом, контрольная)

1. Система линейных алгебраических уравнений

1.1 Понятие системы линейных алгебраических уравнений

Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких переменных. Системой линейных алгебраических уравнений (далее — СЛАУ), содержащей m уравнений и n неизвестных, называется система вида:

где числа aij называются коэффициентами системы, числа bi — свободными членами, aij и bi (i=1,…, m; b=1,…, n) представляют собой некоторые известные числа, а x1,…, xn — неизвестные. В обозначении коэффициентов aij первый индекс i обозначает номер уравнения, а второй j — номер неизвестного, при котором стоит этот коэффициент. Подлежат нахождению числа xn. Такую систему удобно записывать в компактной матричной форме: AX=B. Здесь, А — матрица коэффициентов системы, называемая основной матрицей;

— вектор-столбец из неизвестных xj.

— вектор-столбец из свободных членов bi.

Произведение матриц А*Х определено, так как в матрице, А столбцов столько же, сколько строк в матрице Х (n штук).

Расширенной матрицей системы называется матрица A системы, дополненная столбцом свободных членов

1.2 Решение системы линейных алгебраических уравнений

Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений системы обращается в верное равенство.

Решением системы называется n значений неизвестных х1=c1, x2=c2,…, xn=cn, при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записать в виде матрицы-столбца Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.

Решить систему — это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.

Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.

Преобразование, применение которого превращает систему в новую систему, эквивалентную исходной, называется эквивалентным или равносильным преобразованием. Примерами эквивалентных преобразований могут служить следующие преобразования: перестановка местами двух уравнений системы, перестановка местами двух неизвестных вместе с коэффициентами у всех уравнений, умножение обеих частей какого-либо уравнения системы на отличное от нуля число.

Система линейных уравнений называется однородной, если все свободные члены равны нулю:

Однородная система всегда совместна, так как x1=x2=x3=…=xn=0 является решением системы. Это решение называется нулевым или тривиальным.

2. Метод исключения Гаусса

2.1 Сущность метода исключения Гаусса

Классическим методом решения систем линейных алгебраических уравнений является метод последовательного исключения неизвестных — метод Гаусса (его еще называют методом гауссовых исключений). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Процесс решения по методу Гаусса состоит из двух этапов: прямой и обратный ходы.

1. Прямой ход.

На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним.

После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

Приведенная ниже система имеет ступенчатый вид:

где Коэффициенты aii называются главными (ведущими) элементами системы.

1-й шаг.

Будем считать, что элемент (если a11=0, переставим строки матрицы так, чтобы a11 не был равен 0. Это всегда возможно, т. к. в противном случае матрица содержит нулевой столбец, ее определитель равен нулю и система несовместна).

Преобразуем систему, исключив неизвестное х1 во всех уравнениях, кроме первого (используя элементарные преобразования системы). Для этого умножим обе части первого уравнения на и сложим почленно со вторым уравнением системы (или из второго уравнения почленно вычтем первое, умноженное на). Затем умножим обе части первого уравнения на и сложим с третьим уравнением системы (или из третьего почленно вычтем первое, помноженное на). Таким образом, последовательно умножаем первую строку на число и прибавляем к i-й строке, для i=2, 3, …, n.

Продолжая этот процесс, получим эквивалентную систему:

Здесь - новые значения коэффициентов при неизвестных и свободные члены в последних m-1 уравнениях системы, которые определяются формулами:

Таким образом, на первом шаге уничтожаются все коэффициенты, лежащие под первым ведущим элементом a110, на втором шаге уничтожаются элементы, лежащие под вторым ведущим элементом а22(1) (если a22(1)0) и т. д. Продолжая этот процесс и дальше, мы, наконец, на (m-1) шаге приведем исходную систему к треугольной системе.

Если в процессе приведения системы к ступенчатому виду появятся нулевые уравнения, т. е. равенства вида 0=0, их отбрасывают. Если же появится уравнение вида то это свидетельствует о несовместности системы.

На этом прямой ход метода Гаусса заканчивается.

2. Обратный ход.

На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений.

Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (она в нем всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх.

Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Примечание: на практике удобнее работать не с системой, а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент a11 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на a11).

2.2 Примеры решения СЛАУ методом Гаусса

В данном разделе на трех различных примерах покажем, как методом Гаусса можно решить СЛАУ.

Пример 1. Решить СЛАУ 3-го порядка.

Обнулим коэффициенты при во второй и третьей строчках. Для этого домножим их на 2/3 и 1 соответственно и сложим с первой строкой:

Теперь обнулим коэффициент при в третьей строке, домножив вторую строку на 6 и вычитая из неё третью:

В результате мы привели исходную систему к треугольному виду, тем самым закончив первый этап алгоритма.

На втором этапе разрешим полученные уравнения в обратном порядке. Имеем:

из третьего;

из второго, подставив полученное ;

из первого, подставив полученные и .

В случае, если число уравнений в совместной системе получилось меньше числа неизвестных, то тогда ответ будет записываться в виде фундаментальной системы решений.

Пример 2. Решить неопределенную СЛАУ 4-го порядка:

В результате элементарных преобразований над расширенной матрицей системы

исходная система свелась к ступенчатой, где количество уравнений меньше, чем количество неизвестных:

Поэтому общее решение системы: x2=5×4−13×3−3; x1=5×4−8×3−1. Если положить, например, что x3=0, x4=0, то найдем одно из частных решений этой системы x1=-1, x2=-3, x3=0, x4=0.

Пример 3. Решить СЛАУ 4-ого порядка.

Условие:

х1 — 2 — х3 + х4 = 1

х1 — 8х2 — 2х3 — 3х4 = -2

1 + 2х2 — х3 + 7х4 = 7

х1 + х2 + 2х3 + х4 = 1

Перепишем систему линейных алгебраических уравнений в матричную форму. Получится матрица 4х5, слева от разделительной линии стоят коэффициенты при переменных, а справа стоят свободные члены.

1 -2 -1 1 | 1

1 -8 -2 -3 | -2

2 2 -1 7 | 7

1 1 2 1 | 1

Проведём следующие действия:

a) из второй строки вычтем первую строку (cтрока 2 — строка 1);

b) из третьей строки вычтем первую строку, умноженную на 2 (cтрока 3−2 х строка 1)

c) из четвертой строки вычтем первую строку (cтрока 4 — строка 1). Получим:

1 -2 -1 1 | 1

0 -6 -1 -4 | -3

0 6 1 5 | 5

0 3 3 0 | 0

Проведём следующие действия:

a) к третьей строке прибавим вторую строку (строка 3 + строка 2);

b) четвертую строку поделим на 3 (строка 4 = строка 4 / 3). Получим:

1 -2 -1 1 | 1

0 -6 -1 -4 | -3

0 0 0 1 | 2

0 1 1 0 | 0

Проведём следующие действия:

a) четвертую строку поставим на место второй строки;

b) третью строку поставим на место четвертой строки;

c) вторую строку поставим на место третьей строки. Получим:

1 -2 -1 1 | 1

0 1 1 0 | 0

0 -6 -1 -4 | -3

0 0 0 1 | 2

К третьей строке прибавим вторую строку, умноженную на 6 (строка 3 + 6? строка 2). Получим:

1 -2 -1 1 | 1

0 1 1 0 | 0

0 0 5 -4 | -3

0 0 0 1 | 2

Проведём следующие действия:

a) к третьей строке прибавим четвертую, умноженную на 4 (строка3 + 4? строка4);

b) из первой строки вычтем четвертую строку (строка 1 — строка 4);

c) третью строку поделим на 5 (строка 3 = строка 3 / 5). Получим:

1 -2 -1 1 | 1

0 1 1 0 | 0

0 0 1 0 | 1

0 0 0 1 | 2

Проведём следующие действия:

a) из второй строки вычтем третью строку (строка 2 — строка 3);

b) к первой строке прибавим третью строку (строка 1 + строка 3). Получим:

1 -2 0 0 | 0

0 1 0 0 | -1

0 0 1 0 | 1

0 0 0 1 | 2

c) К первой строке прибавим вторую строку, умноженную на 2 (строка 1 + 2? строка 2). Получим:

1 0 0 0 | -2

0 1 0 0 | -1

0 0 1 0 | 1

0 0 0 1 | 2

В левой части матрицы по главной диагонали остались одни единицы. В правом столбце получаем решение:

х1 = -2

х2 = -1

х3 = 1

х4 = 2

3. Преимущества и недостатки метода Гаусса

Итак, метод Гаусса применим к любой системе линейных уравнений, он идеально подходит для решения систем, содержащих больше трех линейных уравнений. Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах.

Достоинства метода:

a) менее трудоёмкий по сравнению с другими методами;

b) позволяет однозначно установить, совместна система или нет, и если совместна, найти её решение;

c) позволяет найти максимальное число линейно независимых уравнений — ранг матрицы системы.

Существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических исследованиях.

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для:

a) нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная:, после чего приводится к виду единичной матрицы методом Гаусса-Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица:);

b) определения ранга матрицы (согласно следствию из теоремы Кронекера-Капелли ранг матрицы равен числу её главных переменных);

c) численного решения СЛАУ в вычислительной технике (ввиду погрешности вычислений используется Метод Гаусса с выделением главного элемента, суть которого заключена в том, чтобы на каждом шаге в качестве главной переменной выбирать ту, при которой среди оставшихся после вычёркивания очередных строк и столбцов стоит максимальный по модулю коэффициент).

Существуют и другие методы решения и исследования систем линейных уравнений, которые лишены отмеченных недостатков. Эти методы основаны на теории матриц и определителей.

Список источников

1. Кремер Н. Ш., Путко Б. А. Высшая математика для экономистов. — М.: Учеб. пособие, 1998.

2. Курош А. Г. Курс высшей алгебры. — М.: Учеб. пособие, 1968.

3. Справочник по математике для экономистов. Под ред. В. И. Ермакова // Инфра-М, Москва — 2009.

Показать весь текст
Заполнить форму текущей работой