Помощь в написании студенческих работ
Антистрессовый сервис

Методика изучения показательной и логарифмической функции в курсе средней школы. 
Простейшие показательные и логарифмические уравнения и неравенства

РефератПомощь в написанииУзнать стоимостьмоей работы

Курс алгебры знакомит учащихся с понятием степени с рациональным показателем. Таким образом для любого основания степени (где ,). Можно построить функцию,, область определения которой — множество действительных чисел, необходимо ввести определение, степени с иррациональным показателем. Используемое свойство степени с основным, например, большим единицы (возрастании), рациональное приближение… Читать ещё >

Методика изучения показательной и логарифмической функции в курсе средней школы. Простейшие показательные и логарифмические уравнения и неравенства (реферат, курсовая, диплом, контрольная)

Министерство образования Республики Беларусь Учреждение образования

" Гомельский государственный университет им. Ф. Скорины"

Математический факультет Кафедра МПМ Методика изучения показательной и логарифмической функции в курсе средней школы. Простейшие показательные и логарифмические уравнения и неравенства Реферат Исполнитель:

Студентка группы М-32 Малайчук А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Лебедева М.Т.

Гомель 2007

1. Образовательные цели изучения темы «Показательная и логарифмическая функции» в средней школе

2. Методика изучения свойств степеней и логарифмов.

Введение

определения показательной школе показательной функций, ее свойства и их приложения З. Понятие обратной функции и методика его введения

4. Методика изучения логарифмической функции, ее свойств и их приложения. Производная показательной и логарифмической функции Заключение Литература

Ознакомление учащихся с показательной и логарифмической функциями начиная с изучения свойств степеней и логарифмов.

Курс алгебры знакомит учащихся с понятием степени с рациональным показателем. Таким образом для любого основания степени (где ,). Можно построить функцию:, , область определения которой — множество действительных чисел, необходимо ввести определение, степени с иррациональным показателем. Используемое свойство степени с основным, например, большим единицы (возрастании), рациональное приближение иррационального числа б: r1< б< r2. Исходя из графического изображения зависимости показателя степени и значения степени, показывается, что найдется такое значение y, которое будет наибольшим среди всех ar1 и наименьшим среди всех ar2, которое можно считать значением aб.

1. Образовательные цели изучения темы «Показательная и логарифмическая функции» в средней школе

Изучение темы «Показательная, логарифмическая и степенная функции» в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами:

Обобщение понятия о степени; понятие о степени с иррациональным показателем; решение иррациональных уравнений и их систем; показательная функция, ее свойства и график; основные показательные тождества:

; ;

тождественные преобразования показательных выражений; решение показательных уравнений, неравенств и систем; понятие об обратной функции; логарифмическая функция, ее свойства и график; основные логарифмические тождества:

; ;

тождественные преобразования логарифмических выражений; решение логарифмических уравнений, неравенств и систем; производная показательной функции; число е и натуральный логарифм; производная степенной функции; дифференциальное уравнение радиоактивного распада.

Основная цель — привести в систему и обобщить имеющиеся у учащихся сведения о степени, ознакомить их с показательной, логарифмической и степенной функциями и их свойствами (включая сведения о числе е и натуральных логарифмах); научить решать несложные показательные и логарифмические уравнения, их системы (содержащие также и иррациональные уравнения).

Рассматриваются свойства и графики трех элементарных функций: показательной, логарифмической и степенной. Систематизация свойств указанных функций осуществляется в соответствии с принятой схемой исследования функций. Достаточное внимание должно быть уделено работе с логарифмическими тождествами: тождественные преобразования логарифмических выражений применяются как при изложении теоретических вопросов курса (например, при выводе формулы производной показательной функции), так и при выполнении различного рода упражнений, например, решение логарифмических уравнений и неравенств.

Приведен краткий обзор свойств степенной функции в зависимости от различных значений показателя р.

Особое внимание уделяется показательной функции как той математической модели, которая находит наиболее широкое применение при изучении процессов и явлений окружающей действительности. Рассматриваются примеры различных процессов (например, радиоактивный распад, изменение температуры тела); показывается, что решение дифференциальных уравнений, описывающих эти процессы, является показательная функция. В связи с этим для показательной функции дается формула производной, вывод которой проводится с привлечением интуитивных представлений учащихся.

В ходе изучения свойств показательной, логарифмической и степенной функций учащиеся систематически решают простейшие показательные и логарифмические уравнения и неравенства, а также иррациональные уравнения. По мере закрепления соответствующих умений целесообразно также предлагать им уравнения и неравенства, сводящиеся к простейшим в результате несложных тождественных преобразований.

2. Методика изучения свойств степеней и логарифмов.

Введение

определения показательной школе показательной функций, ее свойства и их приложения

Ознакомление учащихся с показательной и логарифмической функциями начиная с изучения свойств степеней и логарифмов.

Курс алгебры знакомит учащихся с понятием степени с рациональным показателем. Таким образом для любого основания степени (где ,). Можно построить функцию:, , область определения которой — множество действительных чисел, необходимо ввести определение, степени с иррациональным показателем. Используемое свойство степени с основным, например, большим единицы (возрастании), рациональное приближение иррационального числа б: r1< б< r2. Исходя из графического изображения зависимости показателя степени и значения степени, показывается, что найдется такое значение y, которое будет наибольшим среди всех ar1 и наименьшим среди всех ar2, которое можно считать значением aб.

Затем формируется определение показательной функции: функция, заданная формулой y=ax (,), называется показательной функцией с основанием a, и формулируемые основные свойства: D (ax)=R; E (ax)=RТ; ax возрастает при a>1 и ax убывает при 0

В качестве приложения свойств показательной функции рассматриваются решения простейших показательных уравнений и неравенств.

Логарифмическая функция — новый математический объект для учащихся. К понятию логарифма учащихся подводят в процессе решения показательного уравнения ax=b в том случае, если b нельзя представить в виде степени с основанием a. Наше уравнение в случае b>0 имеет единственный корень, который называют логарифмом b по основанию a и обозначают logab, т. е. alogab=b. Одновременно с введением нового понятия учащиеся знакомятся с основным Логарифмическим тождеством. При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции:

При любом () и любых положительных x и y, выполнены равенства:

1. loga1=0

2. logaa=1

3. logaxy= logax+ logay

4. logax/y= logaxlogay

5. logaxp= plogax

При доказательстве используется основное логарифмическое тождество:

x=alogax; y=alogay

Рассмотрим доказательство 3:

xy=alogax a logay=alogax+logay т. е. xy=alogax+logay=alogaxy, ч.т.д.

Основные свойства логарифма широко применяются в ходе преобразования выражений, содержащих логарифмы.

№ 497 (Алгебра и начала анализа, 10−11)

Найти, если:

т.е. равны основания логарифмов, равны значения логарифмов равны логарифмируемые выражения. Этот прием рассуждения в дальнейшем будет применим при решении простейших логарифмических уравнений.

З. Понятие обратной функции и методика его введения

Наиболее доступным введение логарифмической функции можно было бы провести после введения понятия обратной функции. Однако методика изложения темы об обратной функции сложна из-за сложных самого материала. Тема «Понятие об обратной функции» приведена в учебнике «Алгебры и начала анализа. 10−11» и рассчитана на необязательное изучение. В эту тему входят:

1) обратимость функций, связанное с решением следующих задач: вычислить значение функции по данному значению аргумента и найти значение аргументов, при которых функция принимает данное значение. Вторая задача не всегда имеет единственное решение (например, для ,). Функция принимает каждое свое значение в единственной точке области определения, называется обратимой, т. е. если обратима, а число принадлежит, то уравнения имеет решение и притом только одно.

2) Обратная функция — как новое понятие — поясняется на конкретных примерах.

Определение. Пусть — произвольная обратимая функция. Для любого числа из ее области значений имеется в точности одно значение, принадлежащее области определения, такое, что:. Поставив в соответствие каждому это значение, получим новую функцию с областью определения и областью значений .

Задача. Найти функцию, обратную функции

Покажем, что уравнения при любом значении имеет единственное решение .

где .

Если вспомнить область значения данной функции, то получаем положительный ответ. Таким образом, наша функция обратима и обратная ей функция

Алгоритм решения таких задач: найти и данной функции; поменять местами в формуле переменные, т. е. получить формулу и из полученного равенства выразить через .

В более сложных случаях (когда функция не является обратимой на всей области определения) следует пользоваться теоремой: об обратной функции:

Если функция f возрастает (или убывает) на промежутке I, то она обратима. Обратная к f функция g, определенная в области значений f, также является возрастающей (или убывающей).

Задача. Найти функции, обратные функции y=x2-3x+2.

x=y2-3y+2=y2-2y*3/2+9/4−9/4+2=(y-3/2)2-ј => (y-3/2)2=x+¼, где x?-¼ => y1=3/2+(x+¼)½ и y2=3/2-(x+¼)½.

D (y1)= D (y2)=E (x2-3x+2)=[-¼;+?)

Для нахождения областей значений обратных функций обратимся к графику, используя следующее свойство:

Графики функции f и обратной к ней функции g симметричны относительно прямой y=x.

x2-3x+2=0 => x1=1; x2=2

xв=3/2; yв=-¼

Из графика видно, что

E (y1)=[3/2;+?), E (y2)=(-?;3/2].

4. Методика изучения логарифмической функции, ее свойств и их приложения. Производная показательной и логарифмической функции

Методика изучения логарифмической функции

Изучение логарифмической функции начинается с выделения определения: функцию, заданную формулой называют логарифмической функцией с основанием. Основные свойства выводится из свойств показательной функции:

1. ,

т.к. при решении уравнения

т.е. любое положительное число имеет логарифм по основанию .

2. ,

т.к. по определению логарифма любого действительного числа справедливо равенство:

т.е. функции вида принимает значение в точке .

3. Логарифмическая функция на всей области определения возрастает (при a>1) или убывает (при 0

Покажем, что при a>1 возрастает. Пусть и, надо доказать, что:. Допустим противное, т. е. что. Т.к. показательная функция при a>1 возрастает, то из неравенства следует:, что противоречит выбору. Следовательно: и функция при a>1 — возрастает.

Т.к. при a>1 функция возрастает, то логарифмическая функция положительна при x>1 и отрицательна для 0

Производная показательной и логарифмической функции

Приступая к изучению производной показательной и логарифмической функций, учащиеся знакомятся с новым для них числом e. Необходимость появления этого числа связывается с решением задачи о касательной к графику показательной функции, с угловым коэффициентом, равным 1, т. е. без доказательства принимается следующее утверждение:

существует такое число, больше 2 и меньшее 3 (это число обозначают буквой е), что показательная функция y=ex в точке 0 имеет производную, равную 1, т. е. (eДx-1)/ Дx при Дx0.

Теорема: функция eж дифференцируема в каждой точке области определения и (ex)'= ex. Опр.: Натуральным логарифмом называется логарифмом по основанию е:

ln x = logex

Верно соотношение:

eln a=a => ax=(eln a)x=ex ln a.

Теорема: показательная функция аx дифференцируема в каждой точке области определения, и:

(ax)'=axln a

Дифференцируемость логарифмической функции следует из того, что: графики у=ах и у=log ax симметричны относительно у=х. Показательная функция дифференцируема в любой точке, а ее производная не обращается в нуль, график показательной функции имеет негоризонтальную касательную в каждой точке. Поэтому и график логарифмической функции имеет невертикальную касательную в любой точке, а это равносильно дифференцируемости логарифмической функции на ее области определения.

Производная логарифмической функции для любого х из области определения находится по формуле: ln’x=1/x.

x=eln x => x'=(eln x)', n/r/ x'=1 => (eln x)'=1 => eln x(ln x)'=1 => ln’x=1/eln x=1/x.

Заключение

Изучение темы «Показательная, логарифмическая и степенная функции» в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами:

Обобщение понятия о степени; понятие о степени с иррациональным показателем; решение иррациональных уравнений и их систем; показательная функция, ее свойства и график; основные показательные тождества:

; ;

тождественные преобразования показательных выражений; решение показательных уравнений, неравенств и систем; понятие об обратной функции; логарифмическая функция, ее свойства и график; основные логарифмические тождества:

; ;

тождественные преобразования логарифмических выражений; решение логарифмических уравнений, неравенств и систем; производная показательной функции; число е и натуральный логарифм; производная степенной функции; дифференциальное уравнение радиоактивного распада.

1. К. О. Ананченко «Общая методика преподавания математики в школе», Мн., «Унiверсiтэцкае», 1997 г.

2.Н. М. Рогановский «Методика преподавания в средней школе», Мн., «Высшая школа», 1990 г.

3.Г.Фройденталь «Математика как педагогическая задача», М., «Просвещение», 1998 г.

4.Н.Н. «Математическая лаборатория», М., «Просвещение», 1997 г.

5.Ю. М. Колягин «Методика преподавания математики в средней школе», М., «Просвещение», 1999 г.

6.А. А. Столяр «Логические проблемы преподавания математики», Мн., «Высшая школа», 2000 г.

Показать весь текст
Заполнить форму текущей работой